
MYway

PERSONALIZED CAMPUS ROUTING

Natalie Chyba
Patrick Lerchi

Isabel Viegas de Lima
josh zarrabi

CEE186: Cyber-Physical Systems

Moving around campus is always a challenge: which route will get you to Econ on

time? Which route will you be least likely to run into your GSI? Which route will keep

you most fresh for your interview? Navigating around campus is not always as simple

as getting from point A to point B the fastest. As students, we spend a lot of time

deciding which path to take and which to avoid based on our personal preferences.

MyWay speaks to this and streamlines the decision making process, allowing users to

customize their preferences and thus providing a unique and optimized route to meet

their needs.

1

Table of Contents

Introduction*...*2!

Motivation*and*Background*...*2!

Relevant*Literature*..*2!

Focus*of*This*Study*...*6!

Technical*Description*...*7!

CPS*Architecture*..*7!

Defining*Attributes*...*8!

Determination*of*Routes’*Values*..*9!

Time!...!9!

Scenery!..!9!

Energy!Required!..!10!

Sociability!...!13!

Python*–*Data*Analysis*...*15!

Visualization*...*15!

Discussion*...*18!

Summary*...*19!

Appendix*...*20!

Appendix*A*–*Scenic*Values*of*Campus*...*20!

Appendix*BQ*Arduino*Code*for*eScooter*Data*Collection*...*21!

Appendix*C*–*MATLAB*Code*for*Energy*Integration*..*24!

Appendix*D*–*Original*Data*Collected*from*eScooter*..*27!

Appendix*E*–*Arduino*Code*for*Noise*Data*Collection*..*30!

Appendix*F*–*Bill*of*Materials*...*32!

Works*cited*...*33!

2

Introduction

Motivation and Background

Within the last decade, the surge in navigational apps that provide optimal routing

services have redefined how we travel and revolutionized the transportation industry.

While these services have become commonplace when navigating cities or countries

around the world, there has not been a successful implementation of this technology for

areas of a small scale. Most services can route you through a college campus or national

park; however, they often fail to recognize that users’ priorities in these spaces are not

always centered upon minimizing travel time and instead often depend on the

experience along the way. When traversing an airport, getting from gate to gate the

quickest may be less imperative than guaranteeing you’ll pass a Starbucks on your way.

When navigating Disneyland, your path from ride to ride may be defined by the

likelihood of a route providing your five-year-old with a Buzz Lightyear photo-op rather

than being the first in line. Likewise, there are a number of factors that students, faculty,

and visitors might take into consideration while navigating a campus. We hope to fill the

void in this niche market and provide a standard for navigating areas with a unique set

of characteristics and user preferences. To prototype this concept, we have created

MyWay; a personalized routing service for UC Berkeley designed to meet students’

needs.

Relevant Literature

“We're about to undergo a wholesale redefinition of what

urban mobility is, and how it is provided.”

—Adam Greenfield

London School of Economics

CityLab

3

In the past decade, transit providers and public agencies have made their real-time data

public. With this data, tools have been developed so user can make more informed

decisions. Decisions range from changing driving routes to changing departure times or

even travel mode. In the early 2000s, transit agencies started providing real-time

information on their services. As smartphones became more prominent, apps for turn-

by-turn routing based on user information were developed. Today, multi-modal trip

advising and planning apps are the norm for navigating big cities around the world. As

people become more dependent on their phones for trip planning, apps are starting to

offer incentives to reduce spacial and temporal saturations of transportation networks.

With the wide reach of smart phones, mobile applications have been emerging to

provide real-time trip advice. Waze, for example, is an application through desktop and

mobile platforms, such as Android, iPhone, and Blackberry. The app gives users turn-by-

turn routing for autos based on information from other mobile users and user-reported

events, such as accidents (https://www.waze.com/).

A study was conducted by researchers at Pennsylvania State University on the

effectiveness of turn-by-turn advice. The study used a travel simulation to understand

what affects a driver’s likelihood to accept real-time advice. The mixed model created to

understand compliance found that, while “freeway advice, turning advice, congestion

occurrence, incident occurrence” played a large role, “subjects‘ spatial experience,

subjects’ temporal experience, and subjects' education level” also affected their

likelihood to comply (Chen and Jovanis, 2014). Thus, their drivers will not always comply

with the instructions given by trip advisors.

4

More recently, multi-modal models have been developed to make travel more efficient.

Overall, an Advanced Traveler Advisory Tool (ATAT) is used to advise and guide users

on multimodal trips with both path and mode choices. While trip planners tend to make

suggestions based on real-time route information, trip advisors also allow the user to

tailor the advice to their preferences.

According to Nuzzolo et al. (2014), there are three major types of trip planners and

advisors:

1.! rule-based, i.e. they refer to a selective approach in which a set of filters is

applied to reduce the choice set of all feasible paths and remove generally

unaccepted paths (e.g. those exceeding a maximum walk time or distance,

number of changes, transfer time); such rules can be defined by the transport

agency and/or by the user;

2.! weighted time-based, i.e. they refer to paths individuated through a function

of weighted time components (such as access, waiting, transfer on-board, and

so on), with weights that can be defined by the transport agency and/or by the

user;

3.! utility -based, i.e. they refer to the path “cost” on the basis of the utility theory,

with a utility function of path attributes associated to each alternative. The

parameters, which should be calibrated, can be average values applied to all

users or can be individual parameters tailored on the basis of personal user

preferences (personal traveler advisory tools) (Nuzzolo et al., 2014)

5

While a number of multi-modal apps currently exist on the market, some come to mind

for their presentation and coverage. RideScout started in November 2013 and is now

available on desktop and for Android and iPhone. Covering many major cities

throughout the United States, the app provides route options that list different modes,

approximate cost, calories burnt, departure and arrival times, and trip duration.

Another trip planner is Citymapper, available for desktop, Android, and iPhone. It

consolidates real-time information for practically all modes in the cities it covers. As of

June 2015, it is available in London, Washington DC, San Francisco, México DF,

Philadelphia, Vancouver, New York, Madrid, Chicago, Manchester, São Paulo, Montreal,

Paris, Boston, Milan, Hamburg, Singapore, Berlin, Barcelona, Rome, Los Angeles, and

Toronto. Other than allowing the user to set arrival and departure times, the app gives

suggestions based on travel time and cost, mode choices, and calories burned. The app

integrates transit, ride sharing, car sharing, auto, bike sharing, etc

(https://citymapper.com/).

TripGo, on the other hand, is a trip advisor available for Android and iPhone. The app

allows the user to set their relative priorities between saving money, saving time, the

environment, and convenience. It then uses utility theory to make route suggestions.

Suggestions tell you arrival time, trip duration, approximate cost and CO2 emissions.

The app also allows you to select what modes you are willing to take. The app integrates

transit, ride sharing, car sharing, auto, bike sharing, etc. Furthermore, TripGo also allows

users to create agendas for their days. The app then creates routes and schedules to

make sure you arrive on time.

6

Certain applications have also developed incentive systems to reduce congestion.

Metropia, which is available for desktop and on Android and iPhone, currently works in

Austin, TX and Tucson, AZ. Metropia essentially provides routes for commuting, but then

offers incentives for people to take alternative routes and depart at different times to

reduce saturating certain routes of the network. Awards include music online, gift cards

to local and online shops, etc. The app also tracks how many pounds of CO2 you save

and, through a partnership with American Forests, they plant trees based on your

savings. According to internal data, 74% of Metropia users report saving time and 65%

of users are willing to change their regular departure time. Users experience, on average,

20% reduction in travel times.

Since this type of technology is fairly new and evolving very rapidly, formal studies are

lacking on the effects of these apps. However, it is believed that “[almost] all movement

in a major city now begins with a phone” (Goldwyn, 2014). People depend on technology

to get around in major cities where multi-modal apps provide an easily navigable

approach towards the various choices presented in routing.

Focus of This Study

Our primary objective is to develop a cyber-physical system that takes input from the

users in regards to set preferences, and provides them an optimal route to reach their

destination. Our trip advisor will be utility-based, tailored to the individual needs of the

users.

7

Technical Description

CPS Architecture

Figure 1: MyWay Cyber-Physical System Architecture

MyWay has four parts; hardware, software, a user interface, and a server. Together, they

define the cyber-physical system needed for accurate and optimal trip advice. The

hardware, software, and user interface each pull or push information onto the server,

making the server the center of the architecture. MyWay’s user interface pushes user

preferences and origin-destination information, while sensors push data. The software,

developed using Python, pulls this information and uses it to populate a utility function.

It then pushes the optimal route onto the server, where MyWay’s user interface retrieves

it. The individual parts of this system will be further explained in the remainder of this

report.

8

Defining Attributes

MyWay considers four attributes in route choice that we feel take into consideration user

preferences when traversing campus. They are defined as follows:

Attribute Definition

Time Time a route will take based on mode of travel

Scenery Scenic value of a route

Required Energy Required energy output of a route

Sociability Congestion of a Route

Each attribute is weighed by users’ preferences using the following utility model:

! ", $, %, & = ("

)*
)+
)…
)-

+ $

/*
/+
/…
/-

+ %

0*
0+
0…
0-

+ &

1*
1+
1…
1-

where:

T! Importance of time, inputted by user on a scale of 0-10

S! Importance of scenery, inputted by user on a scale of 0-10

E! Importance of energy required, inputted by user on a scale of 0-10

P! Importance of sociability, inputted by user on a scale of 0-10

)2 The time duration of route x

/2 "Scenic Value" of route x, a normalized summation of each link's value

02 "Energy Required" by route x, a normalized summation of each link's value

12 "Sociability" of route x, a normalized summation of each link's value

The following section will discuss the derivation of links’ values.

9

Determination of Routes’ Values

The attribute values of each route is defined by the summation of its individual links’

values and then normalized. Normalizing the values guarantees each attribute is

weighed the same in the utility function.

Time

The “Time” attribute is the most straightforward. MyWay uses the time provided by

Google Maps and Open Trip Planner when they are called for a specific origin-

destination pair inputted by the user. They are then normalized using the following

equation:

)2 =
32

34
-
45*

where:

)2(! Time value of route x

3! time duration of specified route

Scenery

“Scenery” is defined by MyWay by analyzing the foliage and architecture of campus.

The campus is divided into 32 spaces, as shown in figure 2, with each space given a

ranking from 1-5, 5 being the most beautiful.

Figure 2: Map of defined regions for “Scenery” attribute

10

Figure 3: Heat Map of “Scenic” values around UC Berkeley’s campus

 The ranking process is by nature subjective, however; we try to minimize this by ranking

regions with dense foliage, groomed landscape, or buildings with notable architecture

the highest. The heat map in figure 3 visualizes flagged points on campus. We sum the

scenic values of each region a route crosses, and normalize the data as follows:

(/2 =
64-

45*

58

where:

64 !! The "scenic value" of a region traversed in a given route, scale of 1-5

8! Number of regions traversed in a route

Rankings per region can be found in Appendix A.

Energy Required

The eScooter was utilized when quantifying the “Required Energy” per route. We

connected an Arduino equipped with an SD card reader to the eScooter to collect

voltage and current information as we traversed routes on campus. The routes traversed

are shown in figure 4, and were chosen to show variations in steep, mild, and negligible

11

slopes. The Arduino code used to collect data can be found in Appendix B. The routes

were travelled three times, with the average values used in calculations.

Figure 4: Map of routes traversed on eScooter

To make the data useful, a relationship between power and elevation gain must be

found. The following equation was used to convert collected voltage and current data

to power:

&9:06 = ;<6608) ∗ >9?)@A0

Next, we integrated power by meters travelled for each of the routes to get 19:06 −

30)06/ using trapezoidal numerical integration with MATLAB. The value found was

divided by total distance travelled per route. This gave us three values that represent

power required for a steep, mild, and negligible sloped link. These new values were then

plotted against the individual routes’ elevation gain, producing the graph shown below.

12

Figure 5: Power/Elevation Gain for the three routes traversed

The equation found by linear regression is used by MyWay to populate the “Energy

Required” values by inputting the elevation gain of each link within the route, averaging

the values along the route, and finally, normalizing them.

(&2 = (
71.112G4 + 148.09-

45*

8

02((=
&2
&LM

45*

where:

(&2! Average power along route x

G4 ! Elevation gain in link I along route x

8! Number of links in route x

N! Number of routes being compared

The MATLAB code used for integration can be found in Appendix C, and original data

collected found in Appendix D.

Evans,!

0.875328064,!

205.9148

Campbell,!

5.89176178,!

579.4594

Stanley,!

8.676704407,!

757.1439y!=!71.112x!+!148.09

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10

P
o
w
e
r!
(W

a
tt
s)
!

Elevation!Gain!(m)

Power/Elevation!Gain

Linear!!(WattRm/m)

13

Sociability

“Sociability” is the measure of the congestion of a route. MyWay considers two factors

when determining the “Sociability” value. Firstly, we use current routing information. If

we have populated a route, it lessens the likelihood of it being assigned again. Secondly,

we use noise sensor data. We designed sound boxes using Arduino Uno boards to be

placed around campus to measure noise levels; locations shown in figure 6. The

microphones used can be seen in “Bill of Materials” found in Appendix F.

Figure 6: Map of sensor locations for noise collection

The noise levels were mapped from 0 to 20 for ease of comparison. The Arduino code

can be found in Appendix E. Data was collected every 30 seconds from 6:00am-

10:00pm. The graph in figure 7 depicts the ten minute averages for each region.

14

Figure 7: Plot of Noise Values for each Sensor Location

A correlation can be seen between a spike in noise levels and time between classes, 10

minutes till and 10 minutes past each hour. “Sociability” value is quantified using the

following:

12 =
O4-

45*

208
+

<2
<4M

45*
∗
1
2

where:

12! "Sociability" Factor of route x

O! “Real-time” noise value at each link

8! Number of links in route x

<! Number of users on a route

N! Number of routes being compared

The “real-time” noise values are highly simplified for proof of concept. Areas without a

noise sensor are given the average value of the areas that do. Further, noise values are

set to 0 between 10:00pm and 6:00am. Sensing data was only taken on a single day,

0

2

4

6

8

10

12

6
:0
0
!A
M

6
:4
0
!A
M

7
:2
0
!A
M

8
:0
0
!A
M

8
:4
0
!A
M

9
:2
0
!A
M

1
0
:0
0
!A
M

1
0
:4
0
!A
M

1
1
:2
0
!A
M

1
2
:0
0
!P
M

1
2
:4
0
!P
M

1
:2
0
!P
M

2
:0
0
!P
M

2
:4
0
!P
M

3
:2
0
!P
M

4
:0
0
!P
M

4
:4
0
!P
M

5
:2
0
!P
M

6
:0
0
!P
M

6
:4
0
!P
M

7
:2
0
!P
M

8
:0
0
!P
M

8
:4
0
!P
M

9
:2
0
!P
M

1
0
:0
0
!P
M

N
o
is
e
!V
a
lu
e

Noise!Values!at!Sensor!Locations

Sproul

LeConte

Glade

Wellman

15

with that data being used to mimic “real-time” data. However, to make the system

dynamic in the future, sensors can be deployed full time for real-time data.

Python – Data Analysis

The backend of MyWay was developed using Python. After receiving origin-destination

and mode of travel data from the user, it calls Google and Open Trip Planner’s API for

various route choices. MyWay then picks a random way-point along the route and calls

the APIs once again for the sake of variation, as depending on preferences a route that

is not originally displayed may have a higher utility. Once the route options are called,

formulating the utility function is a matter of calculating the various attributes discussed

above. Links are determined by latitudes and longitudes provided by the API along the

routes. The code determines optimal route choice and pushes it back to the server. The

python code can be found on github.1

Visualization

MyWay’s web platform is a straight-forward user interface. It has standard user inputs:

mode of travel, origin, destination, time constraints, and preference settings. After it

receives your inputs, it pushes them to the server, then retrieves your optimal route. The

optimal route is presented on a google map, along with a table showing the utility of

each of the compared routes. Noise data, elevations, and a heat map of scenery are

displayed as well. The figures below are examples of MyWay’s interface.

1 https://github.com/joshzarrabi/e-mission-server/tree/ce186/emission/ce186

16

Figure 8: MyWay User Inputs

Figure 9: “Take Me MyWay”

Figure 10: Table of Various Routes’ Utilities and “How It Works”

17

Figure 11: Heat Map of UC Berkeley’s Scenery

Figure 12: Visualization of Noise Data at Sensor Locations on Campus

18

Discussion
MyWay is an attempt at addressing the lack of trip advisors for areas of a small scale.

The void in this niche market can likely be attributed to the difficulties in determining

users’ desires and quantifying attributes within regions. Tackling these challenges for

UC Berkeley was simplified by our experiences on campus and knowledge of the region.

We were able to quickly define users’ desires because we have experienced the qualms

of making it to an interview on time, sweat free, and relaxed. However, in regions we

are not familiar with traversing, such as international airports or national parks, this

becomes much more of a challenge. Additionally, we spent many hours quantifying

scenery through campus, collecting noise data, and developing a relationship between

energy output and elevation gain. To apply this across several spaces would be tedious

and inaccurate.

The issues with scalability are enough to keep MyWay merely a proof of concept.

However, after spending time quantifying attributes on campus, it became clear that

much of the work can be automated. For example, it would be possible to quantify

scenery by making a heat map around buildings marked as historical landmarks or built

by notable architects and foliage of a certain density. This could be validated by user

input within the application. Further, sociability and congestion can be measured

without the noise data once there are enough users on the system. Finally, required

energy of a route is greatly simplified now that a linear relationship between elevation

gain and power has been developed. Defining users’ desires would require a case study

for each region, but could be applied to all spaces of a similar definition, as airport

travelers’ needs are the same whether they are in LAX or SFO. In conclusion, with the

help of automation, MyWay is scalable and can provide unique optimal routing

suggestions in a variety of spaces.

19

Summary
MyWay is a cyber-physical system that redefines students’ relationship with campus by

providing the optimal route choice given their origin, destination, mode choice, current

needs, and preferences. We determined four quantifiable attributes on campus that we

feel define students’ needs: time, scenery, required energy, and sociability. By defining

attributes of regions across campus and calling routes through Google and Open Trip

Planner’s APIs, utility theory can be employed to optimize routes. The system is made

dynamic by bringing people into the loop. As preferences change, route suggestions

change as well. Further, MyWay can manage congestion by noting current users’ route

assignments when optimizing a route, adding to its dynamic qualities. While MyWay

was developed for UC Berkeley, its design is fully modular, allowing for easy

implementation across spaces with the same set of attributes. MyWay serves as a proof-

of-concept for trip advisors in regions of a small scale and proves there is feasibility in

scalability across various spaces.

20

Appendix

Appendix A – Scenic Values of Campus

Scenic Attribute Data

RegionID*

Top*

Left*

Lat*

Top*Left*

Long*

Top*

Right*Lat*

Top*

Right*

Long*

Bottom*

Right*Lat*

Bottom*

Right*

Long*

Bottom*

Left*Lat*

Bottom*

Left*

Long*

Scenic*

Value*

1! 37.875! R122.266! 37.875! R122.262! 37.875! R122.262! 37.875! R122.266! 2!

2! 37.875! R122.262! 37.875! R122.260! 37.875! R122.260! 37.875! R122.262! 5!

3! 37.875! R122.260! 37.875! R122.258! 37.874! R122.258! 37.874! R122.260! 1!

4! 37.876! R122.258! 37.876! R122.256! 37.874! R122.256! 37.874! R122.258! 2!

5! 37.874! R122.258! 37.874! R122.255! 37.873! R122.255! 37.873! R122.258! 4!

6! 37.874! R122.259! 37.874! R122.258! 37.873! R122.258! 37.873! R122.259! 1!

7! 37.873! R122.259! 37.873! R122.259! 37.875! R122.259! 37.875! R122.259! 5!

8! 37.875! R122.261! 37.875! R122.259! 37.873! R122.259! 37.873! R122.261! 3!

9! 37.875! R122.262! 37.875! R122.261! 37.873! R122.261! 37.873! R122.262! 2!

10! 37.875! R122.264! 37.875! R122.262! 37.873! R122.262! 37.873! R122.264! 2!

11! 37.875! R122.266! 37.875! R122.264! 37.873! R122.264! 37.873! R122.266! 5!

12! 37.873! R122.266! 37.873! R122.264! 37.871! R122.264! 37.871! R122.266! 4!

13! 37.873! R122.264! 37.873! R122.260! 37.871! R122.260! 37.871! R122.264! 3!

14! 37.873! R122.260! 37.873! R122.259! 37.871! R122.259! 37.871! R122.260! 5!

15! 37.873! R122.259! 37.873! R122.257! 37.871! R122.257! 37.871! R122.259! 1!

16! 37.873! R122.257! 37.873! R122.255! 37.872! R122.255! 37.872! R122.257! 2!

17! 37.873! R122.255! 37.873! R122.254! 37.873! R122.254! 37.873! R122.255! 2!

18! 37.873! R122.255! 37.873! R122.253! 37.871! R122.253! 37.871! R122.255! 3!

19! 37.872! R122.257! 37.872! R122.255! 37.871! R122.255! 37.871! R122.257! 4!

20! 37.871! R122.259! 37.871! R122.257! 37.871! R122.257! 37.871! R122.259! 1!

21! 37.871! R122.263! 37.871! R122.260! 37.870! R122.260! 37.870! R122.263! 5!

22! 37.871! R122.266! 37.871! R122.263! 37.870! R122.263! 37.870! R122.266! 3!

23! 37.870! R122.266! 37.870! R122.264! 37.868! R122.264! 37.868! R122.266! 2!

24! 37.870! R122.264! 37.870! R122.262! 37.868! R122.262! 37.868! R122.264! 2!

25! 37.870! R122.262! 37.870! R122.260! 37.869! R122.260! 37.869! R122.262! 3!

26! 37.871! R122.260! 37.871! R122.259! 37.869! R122.259! 37.869! R122.260! 3!

27! 37.871! R122.259! 37.871! R122.258! 37.870! R122.258! 37.870! R122.259! 2!

28! 37.871! R122.258! 37.871! R122.255! 37.870! R122.255! 37.870! R122.258! 3!

29! 37.871! R122.255! 37.871! R122.252! 37.870! R122.252! 37.870! R122.255! 3!

30! 37.870! R122.254! 37.870! R122.252! 37.869! R122.252! 37.869! R122.254! 2!

31! 37.870! R122.255! 37.870! R122.254! 37.869! R122.254! 37.869! R122.255! 3!

32! 37.870! R122.259! 37.870! R122.255! 37.869! R122.255! 37.869! R122.259! 2!

21

Appendix B- Arduino Code for eScooter Data Collection

eScooter.ino

#include <SoftwareSerial.h>

#include <SPI.h>

#include <SD.h>

File eScooter;

//Call eScooter's Serial Port

SoftwareSerial radioSerial(2, 3); // RX=>DOUT, TX=>DIN

// Constant Variables

const int switchPin = 7;

const int chipSelect = 10; //Adafruit SD shields and modules: pin 10

//Changing Variables

int switchstate = 0;

void setup() {

 pinMode(switchPin, INPUT);

 radioSerial.begin(9600);

 Serial.begin(9600);

 Serial.println("radioSerial Initialized");

 //Ask eScooter for all values

 radioSerial.print("r;");

 //Ask eScooter for readings every 1 second

 radioSerial.print("t1;");

 pinMode(chipSelect, OUTPUT);

 if(!SD.begin(chipSelect)) {

 Serial.println("initialization failed!");

 return;

22

 }

 Serial.println("Initialization done.");

 delay(500);

 //Verify proper opening of SD file

 eScooter = SD.open("ES.txt", FILE_WRITE);

 if(SD.exists("ES.txt")){

 Serial.println("ES.txt exists.");

 eScooter.println("new");

 }else{

 Serial.println("ES.txt does not exist.");}

 eScooter.close();

}

void loop() {

 switchstate = digitalRead(switchPin);

 //Check eScooter Serial for available data

 if (radioSerial.available()>0){

 // If switch is on - check eScooter Serial Port

 if (switchstate == HIGH) {

 eScooter = SD.open("ES.txt", FILE_WRITE);

 if(SD.exists("ES.txt")){

 while (radioSerial.available()>0){

 char i = radioSerial.read();

 Serial.print(i);

 eScooter.print(i);

 }

 }

 eScooter.close();

 }else{

 while (radioSerial.available()>0){

 char i = radioSerial.read();

23

 //Serial.print(i);

 }

 }

 }

 delay(1);

}

24

Appendix C – MATLAB Code for Energy Integration
eScooter.m

%% Scooter

%%T1 = Evans flat average power output

T1 = [948.7912667

735.9049667

610.22

440.2547

406.4888667

246.8261333

220.6164333

225.9810333

245.0238

199.4365

91.00373333

1.235566667

2.347333333

2.223966667

2.352733333

1.6129

1.6791

1.735066667

1.9864

2.111466667]; %Watts

X1 = 0:45.4207424942/(length(T1)-1):45.4207424942; %m -- length of route

provided by Google API

PM1 = trapz(X1,T1); %% Power-meter for Route 1

PM1_M = PM1/45.4207424942; %%power-meter/meter

%%T2 = Campbell uphill average power output

T2 = [869.387

988.8548

981.2432333

911.2304

733.8487667

25

639.9328667

614.1795

619.6322667

643.8648333

673.7056

698.2148333

706.4883667

722.5094333

692.2248667

604.2137

585.9493667

536.5135667

424.9014667

446.4665667

450.4204333

244.7841333

231.4812667

178.9743333

110.5109333

64.37376667]; %%Watts

X2 = 0:72.5655658424/(length(T2)-1):72.5655658424; %m -- length of route

provided by Google API

PM2 = trapz(X2,T2); %Power-meter for Route 2

PM2_M = PM2/72.5655658424; %power-meter/meter

%%T3 = Stanley uphill average power output

T3 = [941.2789667

978.6522333

983.7965667

978.4417667

934.5746333

880.7101667

800.9847333

751.8444

725.4330667

704.6720333

667.3675667

26

639.6788667

646.8751

656.3771

691.6823

704.2643667

734.2714

767.7138667

816.6138667

839.6193667

844.3856

877.1343333]; %%Watts

X3 = 1:114.177218445/length(T3):114.177218445;%m -- length of route provided

by Google API

PM3 = trapz(X3,T3); %%Power-meter for Route 3

PM3_M = PM3/114.177218445; %power-meter/meter

ELEVGAIN = [0.8753280639648011; 5.891761779785199; 8.67670440673831]; %%

elevation gain for each trip [evan campbell stanley]

27

Appendix D – Original Data Collected from eScooter

Trip 1 - Evans (Negligible Incline)

Trial*1* Trial*2* Trial*3* **

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Avg*

Power*

(Watts)*

33.84! 29.03! 982.38! 33.30! 30.00! 999.00! 33.71! 25.66! 865.00! 948.79!

33.49! 28.35! 949.44! 33.08! 29.71! 982.81! 35.59! 7.74! 275.47! 735.90!

34.24! 20.40! 698.50! 33.27! 27.76! 923.58! 35.84! 5.82! 208.59! 610.22!

35.61! 8.91! 317.29! 34.32! 17.83! 611.93! 35.18! 11.13! 391.55! 440.25!

35.75! 8.07! 288.50! 34.98! 12.76! 446.34! 34.69! 13.97! 484.62! 406.49!

35.76! 8.38! 299.67! 35.21! 10.64! 374.63! 36.36! 1.82! 66.18! 246.83!

36.00! 6.72! 241.92! 35.30! 10.15! 358.30! 36.47! 1.69! 61.63! 220.62!

35.99! 6.75! 242.93! 35.38! 9.68! 342.48! 36.43! 2.54! 92.53! 225.98!

35.98! 6.81! 245.02! 36.69! 0.35! 12.84! 33.91! 21.97! 745.00! 245.02!

36.46! 3.31! 120.68! 36.88! 0.10! 3.69! 34.67! 13.67! 473.94! 199.44!

36.95! 0.85! 31.41! 36.96! 0.06! 2.22! 35.57! 6.73! 239.39! 91.00!

37.12! 0.04! 1.48! 37.09! 0.05! 1.85! 36.74! 0.01! 0.37! 1.24!

37.24! 0.05! 1.86! 37.09! 0.08! 2.97! 36.88! 0.06! 2.21! 2.35!

37.25! 0.05! 1.86! 37.10! 0.05! 1.86! 36.93! 0.08! 2.95! 2.22!

37.31! 0.06! 2.24! 37.23! 0.06! 2.23! 36.94! 0.07! 2.59! 2.35!

37.39! 0.03! 1.12! 37.24! 0.05! 1.86! 37.10! 0.05! 1.86! 1.61!

37.40! 0.06! 2.24! 36.19! 7.75! 280.47! 37.14! 0.03! 1.11! 1.68!

37.40! 0.04! 1.50! 36.96! 0.04! 1.48! 37.18! 0.06! 2.23! 1.74!

37.39! 0.05! 1.87! 37.09! 0.04! 1.48! 37.23! 0.07! 2.61! 1.99!

37.40! 0.06! 2.24! 37.09! 0.04! 1.48! 37.24! 0.07! 2.61! 2.11!

28

Trip 2 - Campbell Hall (MIld Incline)
Trial*1* Trial*2* Trial*3* **

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Avg*

Power*

(Watts)*

33.40! 29.38! 981.29! 33.36! 28.65! 955.76! 33.98! 19.75! 671.11! 869.39!

33.20! 30.14! 1000.65! 33.07! 29.64! 980.19! 32.77! 30.08! 985.72! 988.85!

33.19! 30.09! 998.69! 32.98! 29.99! 989.07! 32.84! 29.11! 955.97! 981.24!

33.33! 28.54! 951.24! 33.03! 29.30! 967.78! 33.32! 24.45! 814.67! 911.23!

34.01! 21.97! 747.20! 34.02! 20.03! 681.42! 33.46! 23.10! 772.93! 733.85!

34.46! 17.96! 618.90! 34.19! 18.62! 636.62! 33.84! 19.63! 664.28! 639.93!

34.59! 16.89! 584.23! 34.19! 18.58! 635.25! 34.01! 18.32! 623.06! 614.18!

34.41! 18.44! 634.52! 34.13! 19.18! 654.61! 34.22! 16.65! 569.76! 619.63!

34.35! 18.85! 647.50! 34.11! 19.20! 654.91! 34.01! 18.50! 629.19! 643.86!

34.32! 19.25! 660.66! 33.96! 20.48! 695.50! 33.84! 19.65! 664.96! 673.71!

34.17! 20.52! 701.17! 33.99! 19.99! 679.46! 33.68! 21.20! 714.02! 698.21!

34.13! 20.61! 703.42! 33.90! 20.95! 710.21! 33.74! 20.92! 705.84! 706.49!

34.12! 20.78! 709.01! 33.67! 23.01! 774.75! 33.65! 20.32! 683.77! 722.51!

33.95! 22.31! 757.42! 34.16! 18.53! 632.98! 33.69! 20.37! 686.27! 692.22!

34.41! 18.11! 623.17! 34.38! 16.64! 572.08! 33.96! 18.18! 617.39! 604.21!

34.50! 17.46! 602.37! 34.34! 17.20! 590.65! 34.17! 16.53! 564.83! 585.95!

34.50! 17.41! 600.65! 34.71! 13.99! 485.59! 34.36! 15.23! 523.30! 536.51!

34.82! 14.71! 512.20! 35.64! 6.55! 233.44! 34.31! 15.42! 529.06! 424.90!

34.84! 14.73! 513.19! 35.55! 9.25! 328.84! 34.42! 14.45! 497.37! 446.47!

35.43! 9.64! 341.55! 34.68! 14.92! 517.43! 34.45! 14.29! 492.29! 450.42!

36.85! 0.53! 19.53! 35.68! 6.65! 237.27! 34.53! 13.83! 477.55! 244.78!

35.48! 10.67! 378.57! 35.54! 7.94! 282.19! 36.22! 0.93! 33.68! 231.48!

35.71! 8.14! 290.68! 35.68! 6.84! 244.05! 36.54! 0.06! 2.19! 178.97!

35.75! 7.75! 277.06! 36.55! 1.40! 51.17! 36.67! 0.09! 3.30! 110.51!

36.30! 3.92! 142.30! 36.56! 1.36! 49.72! 36.79! 0.03! 1.10! 64.37!

29

Trip 3 - Stanley (Steep Incline)
Trial*1* Trial*2* Trial*3* **

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Voltage*

(Volts)*

Current*

(Amps)*

Power*

(Watts*

Avg*

Power*

(Watts)*

33.75! 26.03! 878.51! 33.10! 29.18! 965.86! 32.78! 29.88! 979.47! 941.28!

33.21! 29.64! 984.34! 32.96! 29.70! 978.91! 32.63! 29.81! 972.70! 978.65!

33.11! 29.87! 989.00! 32.89! 30.01! 987.03! 32.61! 29.91! 975.37! 983.80!

33.11! 29.83! 987.67! 32.90! 29.68! 976.47! 32.59! 29.80! 971.18! 978.44!

33.28! 28.10! 935.17! 32.99! 28.78! 949.45! 32.79! 28.03! 919.10! 934.57!

33.40! 26.99! 901.47! 33.28! 26.10! 868.61! 32.97! 26.45! 872.06! 880.71!

33.70! 23.97! 807.79! 33.46! 24.34! 814.42! 33.28! 23.46! 780.75! 800.98!

33.85! 22.65! 766.70! 33.71! 22.17! 747.35! 33.40! 22.20! 741.48! 751.84!

33.92! 21.73! 737.08! 33.69! 21.92! 738.48! 33.56! 20.88! 700.73! 725.43!

34.02! 21.08! 717.14! 33.85! 20.65! 699.00! 33.60! 20.77! 697.87! 704.67!

34.15! 19.70! 672.76! 33.93! 19.77! 670.80! 33.72! 19.53! 658.55! 667.37!

34.31! 18.39! 630.96! 34.07! 18.79! 640.18! 33.78! 19.18! 647.90! 639.68!

34.26! 18.99! 650.60! 34.06! 18.84! 641.69! 33.75! 19.21! 648.34! 646.88!

34.20! 19.43! 664.51! 34.05! 18.98! 646.27! 33.71! 19.53! 658.36! 656.38!

34.02! 20.85! 709.32! 33.93! 20.03! 679.62! 33.60! 20.42! 686.11! 691.68!

34.01! 20.93! 711.83! 33.88! 20.26! 686.41! 33.50! 21.33! 714.56! 704.26!

33.89! 21.98! 744.90! 33.78! 21.10! 712.76! 33.40! 22.31! 745.15! 734.27!

33.74! 23.23! 783.78! 33.60! 22.57! 758.35! 33.29! 22.86! 761.01! 767.71!

33.64! 24.44! 822.16! 33.45! 24.08! 805.48! 33.10! 24.84! 822.20! 816.61!

33.56! 25.12! 843.03! 33.33! 25.21! 840.25! 33.04! 25.29! 835.58! 839.62!

33.55! 25.11! 842.44! 33.29! 25.47! 847.90! 33.00! 25.54! 842.82! 844.39!

33.41! 26.27! 877.68! 33.19! 26.29! 872.57! 32.83! 26.84! 881.16! 877.13!

30

Appendix E – Arduino Code for Noise Data Collection

eNoise.ino

#include <SoftwareSerial.h>

#include <SPI.h>

#include <SD.h>

//Create File

File eNoise;

// Constant Variables

const int NoiseSensor = A0;

const int chipSelect = 10; //Adafruit SD shields and modules: pin 10

//Changing Variables

float Noise = 0;

int Count = 0;

float MapNoise = 0;

void setup() {

 pinMode(NoiseSensor, INPUT);

 Serial.begin(9600);

 Serial.print("Initializing SD card...");

 pinMode(chipSelect, OUTPUT);

 if(!SD.begin(chipSelect)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("Initialization done.");

 delay(500);

 eNoise = SD.open("eN.txt", FILE_WRITE);

 if(SD.exists("eN.txt")){

31

 Serial.println("eN.txt exists.");

 eNoise.println("new");

 }else{

 Serial.println("eN.txt does not exist.");}

 eNoise.close();

 }

void loop() {

 Serial.println("Writing to eN.txt...");

 //Collect every 30 seconds for 12 hours

 if(Count<1440) {

 Noise = analogRead(NoiseSensor);

 //Map Noise Values to scale of 0-20

 MapNoise = Noise*20/1023;

 Serial.println(MapNoise);

 eNoise = SD.open("eN.txt",FILE_WRITE);

 if(SD.exists("eN.txt")){

 eNoise.println(MapNoise);

 delay(30000); //Collect data every thirty seconds

 eNoise.close();

 }else {

 }

 Count = Count + 1;

 Serial.println("Done.");

 }

 delay(1);

}

32

Appendix F – Bill of Materials

Item Qty Cost
eScooter equipped with Arduino 1 CEE 186 Equipped
Data Logger Shield 4 CEE 186 Equipped
SparkFun Electret Microphone Breakouts 4 $36.02
MicroSD Card 5 CEE 186 Equipped
Battery Packs 4 CEE 186 Equipped
MicroSD Card Reader 1 CEE 186 Equipped
Arduino Uno Boards 5 CEE 186 Equipped

33

Works cited
Chen, W., & Jovanis, P. (2014), Driver En Route Guidance Compliance and Driver Learning with

Advanced Traveler Information Systems: Analysis with Travel Simulation Experiment.

Transportation Research Board. < http://trrjournalonline.trb.org/doi/abs/10.3141/1843-10>

Goldwyn, E. (2014). The Most Important Transportation Innovation of the Decade Is the

Smartphone. CityLab. <http://www.citylab.com/commute/2014/09/the-most-important-

transportation-innovation-of-this-decade-is-the-smartphone/379525/>

Nuzzolo, A., Comi, A., Crizalli, U., & Rosati, L. (2014). A new Advanced Traveler Advisory Tool

based on personal user preferences. 2014 IEEE 17th International Conference on Intelligent

Transportation Systems (ITSC).

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6957915>

