Cloud Enabled Optimal Charging of Electric Vehicles

Hector Perez, Niloofar Shahmohammadhamedani, Adriana Alexander

Abstract:

This project implements a demand response
(DR) optimization for plug in electric vehicles
(PEV) based on time varying electricity price
and marginal carbon dioxide emissions signals
on the cloud. The optimization solves for the
optimal charge trajectory which considers a
tradeoff between the cost of electricity and
marginal carbon dioxide emissions, energy
required to complete trip, and battery health. An
electric scooter (ES) outfitted with multiple
sensors is used as the PEV to characterize the
energy required to complete a trip. An
equivalent circuit battery model is used to
estimate the state of charge (SOC) of the battery
in the PEV, used in the optimization. This work
demonstrates how DR charge optimization of
PEVs can be performed on the cloud based on
the user’s desired trip information. A smart
charger is actuated from the cloud to perform
the time varying optimal charge protocol.

Introduction:
a. Motivation & Background:

The adoption of electric drive vehicles (Hybrid
Electric Vehicle: HEV, Plug In Hybrid Electric
Vehicle: PHEV, Extended Range Electric
Vehicle: EREV, Battery Electric Vehicle: BEV)
in the United States is becoming more apparent.
In 2010, the total electric drive vehicle (HEV,
PHEV, EREV, BEV) sales in the US was
274,555 [1], where only 345 of those where
EREV’s (326), and BEV’s (19). In 2012 total
electric drive vehicle (HEV, PHEV, EREV,
BEV) sales in the was US 487,480 [1], where
52,835 were Plug In Electric Vehicles (PHEV’s,

EREV’s, BEV’s). The sales breakdown for
2010/2012 is shown in Table I-11.

TABLE L ELECTRIC VEHICLE SALES IN THE US (2010) [1]

2010

Hybrids Extended Range Battery

Month Total

(HEV's) (EREV's) (BEV's)
January 17,157 - - 17,157
February 16,530 — - 16,530
March 23,274 - - 23,274
April 23,654 -~ -- 23,654
May 28,202 -- - 28,202
June 21,679 - - 21,679
July 23,841 - -- 23,841
August 24,002 - -- 24,002
September| 22,193 - - 22,193
October 24,228 - == 24,228
November 20,858 - - 20,858
December 28,592 326 19 28,937
Total 274,210 326 19 274,555
Total Vehicle Sales YTD 11,588,783
Electric Drive Market Share 2.37%
TABLE II. ELECTRIC VEHICLE SALES IN THE US (2012) [1]

2012
Plug-In Hybrid
Hybrids (PHEV's) incl.  Battery

(HEV's) Extended Range (BEV's)

(EREV's)
January 21,778 603 824 23,205
February 36,222 1,023 639 37,884
March 48,206 3,200 961 52,367
April 39,901 3,116 775 43,792
May 37,184 2,766 612 40,562
June 34,558 2,455 863 37,876
July 31,610 2,537 479 34,626
August 38,369 3,878 837 43,084
September 34,835 4,503 1,306 40,644
October 33,290 4,994 2,040 40,324
November 35,002 4,544 2,211 41,757
December 43,690 4,965 2,704 51,359
Total 434,645 All Plug In's: | 52,835 487,480
Total Vehicle Sales YTD 14,439,684
Electric Drive Market Share 3.38%

DR is a good opportunity for optimally charging
PEVs based on cost of electricity, marginal
carbon dioxide emissions, energy required to
complete trip, and battery health. The electric
utility, environment, and end consumer benefits
from this, as there will be less demand during
peak hours, reduced emissions, and the life of



the battery in PEVs extended over time when
compared to conventional charging. Extending
the battery life in a PEV is very important as it
is the costliest component.

b. Relevant Literature:

This work takes the cost of electricity for
charging PEVs from PG&E [2], the marginal
carbon dioxide emissions from WattTime [3],
uses a DR optimization formulation based on
the work in [4], estimates average energy
consumption based on road grade and distance,
and considers lithium ion battery health based
on the work in [5]. That is, the battery should be
stored at low state of charge (SOC) levels to
avoid degradation, and hence the battery should
only be charged enough to complete the trip. It
should be noted that there is much excitement in
this field amongst EV manufacturers,
technology companies, labs, and electric utilities
[6-15].

c. Focus of this Study:

The focus of this study is to demonstrate the
cost/emissions/peak energy benefits to the user
and grid by developing a cyber physical system
that optimally charges PEVs via a cloud based
optimization solver, an ES, and a smart charger.

Technical Description:

The objective of this project is to develop a
cyber physical system which takes desired trip
information from a user through a web interface
(which obtains trip distance and elevation
changes from the Google Maps Directions and
Elevations APIs [16]) and converts that to an
estimate of needed energy from the PEV
(calculated from an average energy model
derived from data) to complete the desired trip.
That information is used to optimize the EV
charging strategy based on electricity time of
use cost and marginal carbon dioxide emissions.

The PEV has hardware (Cycle Analyst/Arduino)
to sense and record (SD card) time, velocity,
distance, voltage, current, power, and
acceleration. The data is transmitted wirelessly
to the charger (XBee) to determine an energy
model and battery state of charge. The data is
then used for optimizing the charge strategy
over the cloud, actuated via a charger relay.

a. Average Energy Model

The average energy model is determined from
data obtained from multiple trips taken as a
function of road grade is as follows:

Ecoerr = 1.11976% + 9.86346 + 37.598

whose units are in Wh/mi with 6 as the road
grade in degrees calculated from the elevation
change and distance traveled. The trip data
points (determined from energy consumed in
Wh divided by trip distance in mi for a specific
road grade in degrees) and polynomial fit
(average energy model) is shown in Fig 1.
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Figure 1: Average Energy vs. Road Grade

The processed trip data is shown in the
appendix.

b. Optimization Formulation

The optimization formulation for optimally
charging the PEV is as follows:



N-1

min Z Bci(RI? 4+ VocyDAtsy,
S

k
k=0

+a(1 — B)ex(RI? + VycyDAtsy,
Subject to

Xpy1 = Xp + Atsy fork=0,..,N—1

Qpatt
X = SO0Cpin fork=1,...,N—1
X9 = SOC,
xy = SOCs
sy ={0,1}fork =0,..,N—1

The objective function minimizes the overall
cost of electricity ($) based on the cost of
electricity ($/kWh) c;., the marginal emissions
(IbCO2/kWh) e, the charging power (kW)
RI? + Vyy 1 , tradeoff parameter B, emissions
cost factor ($/IbCOz) a (assumed to be 1), with
the charging state (0=OFF,1=0ON) s, as the
decision variable. The first constraint is the
battery SOC model dynamics, where At is the
time difference between time step k+1 and k.
The second constraint ensures that the battery
SOC stays above its minimum SOC. The third
constraint defines the initial SOC (calculated
from the at rest voltage of the PEV before
charging). The fourth constraint is the terminal
constraint which defines the terminal SOC that
is required based on the energy estimate from
desired trip parameters. The fifth constraint
defines the decision variables (charger state) as
binary.

The initial SOC is found from looking up the
corresponding SOC from the PEV rest voltage
in the Open Circuit Voltage vs. SOC
(determined as the average curve from
experimental C/10 CCCV cycling) map of the
battery shown in Fig. 2.

The terminal SOC is calculated as follows

SOC; = SOC, + Ecoerrderip
4 Ebatt
Where Eocrr (Wh/mi) calculated from the road

grade 6 (deg), and the trip distance dy,;;, (mi).

Some of the parameters used for this problem
for the ES are as shown in Table IlI.
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Figure 2: Open Circuit Voltage vs. SOC

The rest come from real time electricity price
and emissions data, and user inputs.

Table I11. ES Parameters

Parameters
Internal Charge Open Circuit Battery Energy

Resistance Current Voltage Capacity Capacity

R(Ohm) 1(A) Voo (V) Quat(Ah) Eppee (Wh)
0.13 1.67 37.534 14 566.34

c. Cloud Implementation

The diagram in Fig. 3 shows the implementation
over the cloud.

The user web interface shown in Fig. 4 takes in
the current state of the PEV (calculated by the
cloud app), desired trip information for the user,
extracts google maps API data to produce a trip
route with road grade and sends it to the cloud

app.
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The cloud app then processes that data to find
an energy estimate along with the marginal
emissions data and cost of electricity to form the
optimization problem and sends it to the cloud
mixed integer linear program (MILP) solver.
The cloud MILP solver then sends the optimal
charge trajectory back to the cloud app. The
cloud app then sends the optimal charge
trajectory to the web database. The smart
charger then obtains that optimal charge
trajectory and actuates the charger accordingly.

d. Bill of Materials
The bill of materials is shown in Table IV.

Table IV. Bill of Materials

1kW Electric Scooter
Cvcle Analyst
DC/DC Converter
Arduino Mini

SD Card Shield CE186
Accelerometer Supplied
XBee (2)

Arduino UNO
PowerSwitch Tail Relay
0 | Power Supply

=] | O [l [ | B [

[l A=A Lr=]

e. List of Software Code and Functions

1. ES Datalogger: Logs data in SD card from
trips for characterizing energy model

2. User Web Interface: Takes in user trip
parameters, rest voltage of ES, and calculates
distances, road grades, and initial SOC for the
charge optimization. Also displays solution.

3. Optimization: Takes in data from user trip
parameters and current SOC of ES and
determines optimal charge schedule.

4. Actuation: Receives charge signal and
actuates smart charger.

Discussion:

The Optimal Charge and SOC Trajectory for a
sample trip is shown in Fig. 5. The trip

parameters are as followed: Desired Trip Time
at 10AM, Trip Distance 2.5 Miles, Trip Road
Grade 1.9°, Current SOC 0.5, Tradeoff
parameter 0.5. This trip is different than Fig. 4.

The optimization starts at 6:00AM at which the
charger starts charging the battery. The end of
the optimization occurs at the desired trip start
time at 10:00AM. The yellow bars in the top
subplot of Fig. 5 (within the optimization time
frame) indicate when the charger is ON, and the
blue bars indicate when the charger is OFF. The
bottom subplot of Fig. 5 shows the SOC
trajectory of the battery as it is charged. Note
that when the charger is OFF (as seen by the
blue bars in the top subplot of Fig. 5), the SOC
stays the same because the battery is not being
charged during this time. The final SOC that
results from charging the battery is an SOC of
0.798. The solution can be explained as follows:
the battery is charged when combined cost is
lowest, only as needed to charge the battery to
its required SOC to complete the trip. The total
cost of charging is $0.0831.

This work shows how DR optimization can be
implemented over the cloud for a PEV subject
to user trip requirements, cost of electricity,
emissions, etc. If applied to an aggregation of
PEV’s, then it will positively impact the electric
grid due to loads being shifted out of peak times
(based on cost of electricity). This is especially
important as the number of PEV’s that connect
to the grid continue to grow over time, as seen
by the growth in sales of EV’s, shown
previously. There will also be a considerate
amount of cost savings to all of the end
consumers as a whole. This work provides a
framework for cloud based optimization of
PEVs which can be expanded to include other
objectives and loads/energy sources. The
innovations of this work involve the full
integration of this cloud based system.
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Figure 5: Optimized Combined Cost and Charge Trajectory (Top) and SOC Trajectory (Bottom)

Summary:

This work implements a demand response

optimization problem for cloud enabled optimal

charging of electric vehicles. The optimized
charge and SOC trajectory are cost of

electricity, emissions, trip length, and battery

health conscious which are important to the
electric utility and end consumer. Potential

benefits of this cyber physical
illustrated.
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Appendix:
Table V. Processed Data from Trips

Processed Data from Trips
Trip |Elevation Chg (ft) |Distance (mi) |Distance (ft) |Grade (deg) |Energy (Wh) |Avg Energy (Wh/mi)
0 102 0.331 1747.68| 3.347556946 24.12 72.87009063
1 39 0.2 1056 2.117592167 14.749 73.745
2 -98 0.3 1584 -3.548879111 3.904 13.01333333
3 0 0.1 528 0 3.068 30.68
4 0 0.1 528 0 3.367 33.67
5 52 0.2 1056| 2.823956176 16.217 81.085
6 -49 0.2 1056| -2.66091492 5.394 26.97
7 59 0.1 528| 6.419022623 14.724 147.24
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Figure 6: Modified EV Cost Schedule (PG&E)

Modified Marginal Emissions (Every 30 Minutes)
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Figure 7: Modified Marginal Emissions (Wattime)
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Figure 8: Overview of Web Interface




