
CE 186 Final Report

aSYST-ME eB: Automated System for Managing Energy in eBikes
Battery Energy Coach

Team Members:

Preet Gill, Max Morrison, Grace Vasiknanonte, and Katie Zheng

I. ABSTRACT
Despite the benefits of using an electrically-powered bike, there is a huge concern with this
type of technology: an eBike with dead batteries leaves the user worse off than a regular
bike. To avoid this issue, we have created a battery energy management coach. This is a
prime example of a cyber-physical system, encompassing a physical hardware layer, which
communicates with a software/cyber layer to provide user actuation.

The first interaction the user has with our system is a form on a server-hosted website. The
user selects an origin and destination, which is fed into a Python script that uses Google
Maps API and a built-in physics model to generate an energy plan. This energy plan, which
contains data points in the form of a text string, is loaded onto an SD card and uploaded to
an Arduino microcontroller, which is mounted on the bicycle. The Arduino uses a Hall
Effect sensor attached to the rim of wheel along with a battery monitor to gather real-time
data on the user’s power draw, distance traveled, voltage, current and velocity. It then
compares the real-time energy data with stored plan data. Based on this comparison, a
colored LED feedback indicates whether the user is above, below, or roughly on track with
the plan.

II. INTRODUCTION
Motivation & Background
Bikes are a cheaper more environmentally friendly means of transportation than
automobiles, but they do not provide the same level of convenience and comfort that
conventional vehicles do. Additionally, bikes have traditionally been targeted to only an
athletic audience. Those who want increased mobility but may not be in circumstances that
allow them to physically active would not be able to benefit from normal bikes.

EBikes have stepped in to bridge this gap by offering increased performance and comfort,
while maintaining the maneuverability and low cost that regular bikes offer. Because of
these performance characteristics, eBikes are making up a larger and larger share of the
mode-split of our transportation system. This shift toward bikes and away from cars
provides compounding benefits outside the scope of this course.

Due to superior performance characteristics as compared to traditional bikes and lower
cost compared to cars, eBikes are becoming an increasingly popular mode of
transportation. Ideally, this trend will continue, but there are several significant obstacles
to the widespread adoption of electric bikes.

From the addition of an electric motor and battery pack, eBikes allow people to travel
greater distances or on more strenuous terrain. Not all of the additional features provided
by the e-assist hardware are beneficial. One of the main drawbacks of an eBike setup like
this is the excess weight of the electronics that power it, which is not felt by the user under
most circumstances. However, this excess weight means that if the rider runs out of charge,
the once-useful e-assist system becomes a burden. A user with a “dead” eBike is essentially
worse off than one whose bike is initially unpowered. Thus, it no longer becomes attractive
to ride an eBike without a way to manage battery power.

Our solution is to optimize human energy and depletion of battery power for an eBike
based on a given route. Thus, bikers will not have to worry about a depleted battery pack
during their trip and can travel safely to their destination.

Relevant Literature
Moura, S. et al. Tradeoffs between battery energy capacity and stochastic optimal power

management in plug-in hybrid electric vehicles. J. Power Sources, 195, 2979–2988
(2009).

Katsargyri, G.E. et al. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting,
American Control Conference 2009.

Martin, James C. et al. Validation of a Mathematical Model for Road Cycling Power. Journal
of Applied Biomechanics, 14, 276-291 (1998).

Cook, John D. “Computing the distance between two locations on Earth from coordinates.”
Singular Value Consulting. Web.

O’Keefe, M.P. & Markel, T. “Dynamic Programming Applied to Investigate Energy
Management Strategies for a Plug-in HEV.” National Renewable Energy Laboratory.
Hybrid Electric Vehicle Symposium and Exhibition (EVS-22). 2006.

Appelkvist, O. & Gebel, P. Route Predictive Optimization of State-of-Charge Reference Signal.
Department of Signals and Systems. Chalmers University of Technology. 2010.

Focus of Study
The project goal is to create and communicate to the user an energy usage plan for a trip
between two locations. The plan will ideally balance electric and leg power to maintain
rider comfort while ensuring that the destination is reached successfully. Using a real-time
feedback system, this project will encourage usage of a human-electric hybrid mode of
transportation.

III. TECHNICAL DESCRIPTION
CPS Architecture Schematic

This diagram demonstrates the cyber (blue) and physical (gold) layers of our CPS. The
system starts with the cyber component: user input → website → cloud server → Python
code → plan.txt → SD card

The information in the plan.txt file in the SD card is then incorporated into hardware
components. The Arduino attached to the system compares wheel and battery data from
the data monitor Cycle Analyst (as trip history) with the data in plan.txt. Based on the user
deviation from the route, the LED lights will blink with the corresponding actuation.

Bill of Materials
Bike components:
1. EBike kit

b. Controller
c. Throttle
d. Electronic Brake
e. Ni-MH batteries
f. Battery Charger
g. Associated Cables
h. Inline Fuse
i. Wire Connectors

2. Bike rack
3. Laser-cut components for battery support
4. Cycle Analyst (data monitor)
5. Zip ties
6. Two laser-cut boxes

Arduino:
1. Protoboard

a. SD card
b. LEDs (white, red, yellow, green)

Software
1. Arduino Code

a. CycleDataLogger.ino
b. Actuation.ino

2. Python Code

a. gMapsAPI.py
b. nanoserver.py

3. HTML Code
a. index.html

4. JS Code
a. bootstrap.js
b. bootstrap.min.js
c. custom.js
d. jquery.easing.min.js
e. jquery.min.js
f. jquery.scrollTo.js
g. jquery-1.10.2.js
h. wow.min.js

5. CSS Code
a. animate.css
b. bootstrap.css
c. bootstrap.min.css
d. style.css
e. default.css

CycleDataLogger1115
This is the code that we used to collect and log data from the Cycle Analyst:

• Setup
o Initializes Serial, SD
o Performs Various Diagnostic Tests
o Creates “data.txt” file on SD card
o Timestamps beginning of run

• Loop
o Uses Serial event to collect strings from CycleAnalyst as they come in
o Timestamps each incoming string
o Writes String to SD Card

Actuation
This is the code that takes the real-time data from the trip, which is compared against the
plan.txt file:

• LED pins initialized
• Global Variables which must persist across loops are initialized
• planVals array is initialized
• Setup

o LED pins as OUTPUT
o Begin Serial, SD
o Open “plan.txt”
o Call function parsePlanToArray()
o Flash all LEDs for style points

• Loop
o Grab string from CycleAnalyst with serialEvent()

o Read AmpHr and distance from string with readStr()
o Actuate on results of readStr with actuate()

 Red = low on battery = pedal more
 Yellow = matching plan = continue
 Green = excess battery = pedal less
 White = use throttle

gMapsAPI1207
This is the most recent version of our Python code, which generates and sends to the server
an energy plan. Following is an outline of the program.

• listenFromServer waits for the origin and destination to be sent from the javascript
AJAX request, and then sets them to two variables, imHere and goHere

• An HTTP request is then made to the google maps API using the two points, returns
a dictionary containing the various legs of the trip.

• An array containing polylines corresponding to each leg of the trip, as well as one
with the distance of each of these legs is created.

• Another HTTP request to the google maps API is made using each of the polylines
and sufficient samples to result in a sample roughly every 50m, returns a dictionary
containing sampled elevation data.

• An arc length calculation is performed for each elevation point to calculate the
distance between consecutive points, these will be used as the x values for elevation
points.

• Physics model is then applied to a linearly spaced subset of the distance,elevation
pairs. This results in a monotonically increasing array of energy vs. distance.

• Several things are plotted:
o Elevation v. Distance
o Slope v. Distance
o Energy v. Distance

• Energy Plan (‘plan.txt’) is written to a text file on the desktop.

index
This is main HTML file that serves as the foundation of our website. The first part of the
code sets up the layout of the website as one page that allows the user scroll through the
different sections. index.html calls several other CSS and JS files for added functionality and
design.

The second part of the script is the JavaScript code that communicates with the server

• When the user clicks the submit button, the form data is posted to the server as a
JSON string

• The code listens for the network data, which is sent as different streams, and parses
through them and converts them to integers

• Stream icons are loaded with their corresponding data streams
• Using Highcharts, the data for elevation and energy are mapped as separate plots on

the page and labeled

Data Collection
Below is an example of cycle data logged in the SD shield:

This data required significant cleaning for a variety of reasons. For example, any point at
which the bike was not moving was not useful for analysis. As we later found, points at
which the bike was moving downhill are also not useful and the physics model did not
apply. Due to the fact gravity is doing a significant amount of work on the bike-rider system,
there is no power required of the motor during this time.

It turns out that Cycle Analyst was choking the power output from the battery, so there was
not enough power to run the SD shield at the same time as the real time clock embedded in
the shield. This forced us to plot all of our parameters against distance instead of time. It is
unclear how this would have changed our analysis, but for one thing it would have been
easier to see where any stops occurred during the run. Additionally it would have allowed
us to more accurately recall landmarks in the run, which would have aided data analysis.

Following are examples of graphs used to visualize the parameters collected for each run.
This data comes from the route from Jacobs Hall to Clark Kerr Campus.

Speed is converted from rpm by the Cycle Analyst.

Power is calculated as the product of instantaneous current and voltage.

Energy is calculated by taking a running sum of the instantaneous power values. Data is
collected at a rate of 1Hz, so summing power values each second results in energy
consumption. We attempted to fit our model data to this estimated energy use.

Data Analysis - Physics Model
For modeling energy use for the eBike, we chose three main forces to take into account:
force due to gravity, rolling resistance, and air drag.

𝐹𝑔𝑔𝑔𝑔 = 9.8 × sin(arctan(𝑠𝑠𝑠𝑠𝑠)) × 𝑤𝑠𝑤𝑤ℎ𝑡

𝐹𝑔𝑟𝑟𝑟 = 9.8 × cos(arctan(𝑠𝑠𝑠𝑠𝑠)) × 𝑤𝑠𝑤𝑤ℎ𝑡 × 𝐶𝑔𝑟𝑟𝑟

𝐹𝑑𝑔𝑔𝑔 = 0.5 × �𝐶𝑑𝑔𝑔𝑔 × 𝐴𝑓𝑔𝑟𝑓𝑓� × 𝜌 × 𝑣2

After calculating an array of slopes using Google Maps API Directions data we calculated
power as follows:

𝑃𝑠𝑤𝑠𝑃 = �𝐹𝑔𝑔𝑔𝑔 + 𝐹𝑔𝑟𝑟𝑟 + 𝐹𝑑𝑔𝑔𝑔� × 𝑣 ×
1

𝜂𝑑𝑔𝑑𝑔𝑑𝑓𝑔𝑔𝑑𝑓

For the purposes of our analysis we assumed that rider output was small and constant, but
adding variation to this model would be ideal to most accurately predict power output.

Using speed and slope, as well as literature values for coefficients, we estimated the energy
that would be required by the bike to traverse a route and formulated a battery depletion
plan. Estimating a speed parameter proved to be a challenge, so we used regression to
calculate a likely speed based on the slope. Much of the data we collected was difficult to
interpret, for example speed seems to increase with increasing grade in this case. For ease
of analysis we have discretized slope values into several bins.

Paradoxically, our data illustrates a slightly negative relationship between power and slope.
Perhaps this is just due to our selection of run.

Collected data did not fit physics model initially. With each data collection, we learned
more about our parameters of interest and which terrain would provide useful data that
we could use to fine tune our physics model. There were opportunities to be more rigorous
in conducting experiments to isolate variables. Because each user rode the bike differently,
there were significant confounding variables, with more time we could have more
effectively controlled for these effects. For example riding the same route, with the same
degree of reliance on the throttle might have yielded useful results. Varying the degree to
which we relied on the throttle for identical runs would also have produced interesting
data. As one might expect, there are innumerable ways that we could have teased meaning
out of the raw data.

Looking forward, an interesting avenue of exploration would be to try to more accurately
account for human effort in the power calculations. At around 100 watts, the contribution
of leg power is not insignificant. Allocating this power most efficiently will allow us to
increase rider comfort while minimizing battery output.

Visualization
To visualize our data, we chose to create an interactive website. The website was created
from Squadfree, a free HTML template online. The dynamic functionality was included with
the Bootstrap 3 framework. All the pages were customized by the team to best represent all
the components of our project. The sections of our website are listed below:

• Project: A quick overview of the problem we are trying to solve and our solution
• Navigation: User form to submit Origin and Destination to the server and access the

Python code. There is also an embedded Google Map that we intended to display the
route. We were able to embed just a coordinate view of Google Map with no specific
location, but our intention was to have a dynamic map that would show the
directions based on user input.

• Plots: These plots show Energy vs. Distance as well as Elevation vs. Distance graph
based on user input. If there are other parameters, additional plots would be
mapped here according to the network data received.

• Gallery: Images of the project hardware.
• About Us: Images of our team members.

• Contact Us: A simple form that would be used in a hypothetical situation to receive
emails but not actually connected to anything.

The key component is the Navigation tool, which takes the user input and communicates
with our server. The server calls our Python code and makes a GoogleMaps API request
based on an origin and destination provided by the user. From GoogleMaps, elevation and
distance data were collected and the physics model we programmed into the code output
an energy plan. The elevation and energy data streams generated from the Python code

were sent separately to the server, which then posted the graphs to our website under the
Plots tool.

Below is a flow chart for Web Visualization

• First off the server (nanoserver.py) is run on a python console
• Next the python code (gMapsAPI.py) is run on another python console. It begins

listening for data from the server, and waits until something is found.
• Meanwhile, the user inputs addresses for the desired origin and destination into the

html forms
• The Javascript code makes an ajax ‘POST’ request to send data to the server to the

specified stream url. In addition, it prevents the website from redirection to the url.
• The origin and destination data (data type: string) are now in the server
• gMapsAPI.py now successfully finds the data it has been listening for from the

server. It takes the origin and destination addresses and uses them to generate
elevation vs. distance and energy vs. distance plots.

• gMapsAPI.py then sends the elevation and energy data points to the server and the
Javascript file then plots the graphs onto the website.

The following graphs are the plots produced by HighCharts about the trip data with an
example route.

Origin: Downtown Berkeley BART
Destination: Clark Kerr Campus

IV. DISCUSSION
aSYST-ME eB solves one of the most inherent problems of battery energy storage system in
transportation industry, which is limited energy capacity gives you limited miles and the
sole purpose of any vehicle is to get the user to its destination. As discussed earlier, if the
battery runs out of energy, the extra added weight of the hardware system on an eBike
compared to a regular bike makes it a burden and a worse option.

However, aSYST-ME eB with its smart nexus of software and hardware, gives the user
feedback of the eBike state of charge in relation to energy use while on the go. With the
help of its user friendly web interface, it also provides user a beforehand graphical data of
elevation change as well energy use expected over the route to destination. By doing so, it
not only acts as an early warning system for any sudden charge depletion due to system
malfunction but also makes sure user reaches the destination in the most optimal manner.
An aSYST ME-eB driven eBike broadens the spectrum of customers from avid bikers to
anyone who wants to adopt a green and clean means of transportation. This can include
commuters who use bikes to travel long distances with least amount of human energy used
to get to their destination and recreational bikers who wants to enjoy their decreased
carbon footprint worry-free.

V. SUMMARY
The project addresses one of the major issues with electric hybrid modes of transportation:
rate of battery depletion. 4 of the 5 pillars of CPS are fully developed in this project.
Infrastructure is well integrated with sensing and actuation hardware, in the form of an
eBike, Cycle Analyst, and Arduino/LEDs. Data visualization is done on an HTML/CSS/JS
platform, and all these parts are connected together by a combination of HTTP requests
and SD file transfers.

Looking to the future, we would streamline the user experience. Additional data collection
would enhance the accuracy of our mathematical model and predict SOC based on user
determined physical parameters. We would also consider adding other factors into the user
input, such as “sweatiness factor” or other fitness options for a more customizable system.
In the end, this eBike will be an optimized human hybrid electric system that aims to help
eBike users complete their trip without worrying about running out of battery.

