Go Green, Go Home

"Make America Green Again"

Tremendous Problem w/EV's & Renewables

"Climate Change is not a hoax" - China

0 12am 3am 6am 9am 12pm 3pm 6pm 9pm Hour

Solution - Go Green, Go Home

GGGH aligns energy use with renewable energy generation. Take energy demands from users and execute them based on when energy generation is cleanest and most readily available

The Best People

Brandon Wong

Web visualization LCD Hardware

Sara Mitchell

User Interface Industry Research

Kan Ito

Actuation Hardware Connectivity

Liam Weaver

Data Analysis 'Sensor' Communication

The 'Sensor'

WattTime provides real-time data about the carbon footprint of electricity coming from the grid.

Deferrable Load

Fixed Load

Shapeable Loads

Data Analysis

3 separate optimization problems to create load schedules for:

electric vehicle charging

running a washer and dryer (these are one problem)

regulating indoor air temperatures with an air conditioner and electric heater

211 Decision Variables633Constraints

Optimization Equations

Shapeable Load (Electric Vehicle)

min $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ $\mathbf{x} = [P(0), P(1), ..., P(23), E(0), E(1), ..., E(23)]$

$$c = [c_0, c_1, ..., c_{23}, 0, ..., 0] \qquad E_{min} \le E(k) \le E_{max} \\ E(k+1) = E(k) + \Delta t \cdot P(k) \\ 0 \le P(k) \le P_{max} \end{cases} \qquad E_{min} = E_{max} - (k_{out} - k)P_{max}$$

Deferrable load (washer/dryer)

 $\min f(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x}$

$$\boldsymbol{x} = [W(0), W(1), \dots, W(23), D(0), D(1), \dots, D(23), E(0), E(1), \dots, E(23)]$$

$$c = [P_W c_0, P_W c_1, \dots, P_W c_{23}, P_D c_0, P_D c_1, \dots, P_D c_{23}, 0, \dots, 0]$$

 $W(k) \in \mathbf{Z}$ $D(k) \in \mathbf{Z}$ $0 \le W(k) \le 1$ $0 \le D(k) \le 1$ D(k+1) = W(k) $\mathbf{T}^{T} \mathbf{W}(k) = 1$ $\mathbf{T}^{T} \mathbf{D}(k) = 1$

We use an optimization server to solve the MILP (Mixed Integer Linear Program)

The Cyber-Physical System

Fixed

- -Lights -small electronics -small appliances -Furnace
- -Stove/oven

Shapeable

-EV Charge State -HVAC -Battery Storage

Residential Actuation

Typical hatesetecticatoads

Deferrable

Washer
Dryer
Dishwasher

www.georgiapower.com

Let's see it.

Potential yearly CO2-e saved by using optimization

Equivalent to 100 gallons of gasoline or 3,000 miles traveled

Reduction in Peak Demand

Implementation in 160,000 homes would prevent the need for construction of a \$600 million Natural Gas power plant

Scheduling Summary

Highcharts.com

Fixed Load (lights)

$\star \star \star \star \star$

GO GREEN

GO HOME

MAKE AMERICA GREEN AGAIN!

Together, let's MAKE AMERICA **GREEN AGAIN!**