
CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

CHAPTER 1: LINEAR PROGRAMMING

Overview

Civil and Environmental (CEE) Systems Analysis refers to the development and solution of opti-
mization problems that guide decision making and planning in CEE applications. In this course,
you will learn to abstract mathematical optimization programs from physical systems to “optimally”
design a civil engineered system.

Our exposition begins with an introduction of the canonical “optimization program”, or just “opti-
mization problem”. This mathematical statement formally communicates the optimization problem,
and is a structure we use throughout the course. We discuss its essential elements, namely the
optimization objective function and constraints, and their physical significance. The remainder of
this chapter covers the simplest of optimization problems - linear programming (LP). Put simply,
the class of LPs includes all optimization problems in which the objective and constraint functions
are linear. Coincidentally, a large number of CEE system design problems can be formulated and
solved as a LP. We discuss several examples, and provide both graphical and algorithmic solution
examples. During our exposition, several concepts fundamental to all optimization problems are
introduced, including feasible sets, boundedness, uniqueness, constraint domination, and active
constraints.

Readers should note that optimization is a fundamental discipline that is highly applicable to
a variety of fields, including CEE, mechanical engineering, industrial engineering, electrical engi-
neering, computer science, materials science engineering, bioengineering, aerospace engineer-
ing, chemical engineering, economics, physics, and so forth. It is an essential tool for the modern
engineer, made more practical by the proliferation of numerical computation. By the course’s
conclusion, you will be capable of abstracting nearly any application design problem into a math-
ematical optimization problem, solve it, and perform a variety of analyses.

Chapter Organization

This chapter is organized as follows:

• (Section 1) Objective Functions and constraints

• (Section 2) Linear Programs (LP)

• (Section 3) Example 1: Transportation Problem

• (Section 4) Example 2: Shortest Path Problem

• (Section 5) Graphical Solutions to LPs

• (Section 6) Simplex Algorithm

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 1

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

1 Objective Function and Constraints

We begin our exposition of optimization by introducing the canonical optimization problem. The
canonical problem is to minimize a cost (or objective) function

min
x

f(x), (1)

subject to constraints:

gi(x) ≤ 0, i = 1, · · · ,m (2)

hj(x) = 0, j = 1, · · · , l, (3)

where (2) includes the inequality constraints and (3) includes the equality constraints. The exact
structure of x, f(x), gi(x), and hj(x) determine the ‘type’ of optimization program, such as linear
program, quadratic program, integer program, and nonlinear program. As such (1)-(3) essen-
tially summarizes the entire course. Next we examine the notation and physical interpretation of
objective functions and constraints.

1.1 Objective Functions

In (1), variable x represents the decision variable. This is a vector of system parameters that we
seek to design to meet some objective. For example, vector x may include a beam width, concrete
density, or rod radius. It might include chemical concentration, water volume, or fluid pressure.
Mathematically, we say x ∈ Rn. This means x exists within the domain of n-element vectors
whose elements are real numbers. In applications, we may restrict x to a subset of real numbers
D, i.e. x ∈ D ⊆ Rn. For example, the beam width, concrete density, and rod radius can only be
positive numbers.

The function f(x) maps the decision variables x into a performance metric. Mathematically,
f(x) : Rn → R. This is, the objective function measures the performance of your decision variables
using some scalar metric. Example objectives include monetary cost [USD], fuel consumption
[gal], emissions [g], and power [kW].

Remark 1.1 (Objective Function Terminology). Note that “cost” function, “reward” function, and
“objective” function are used interchangeably. The objective function need not represent an eco-
nomic quantity. However, there are some conventions. The term “cost” has the connotation of
minimizing an objective function, whereas the term “reward” has the connotation of maximizing an
objective function.

Remark 1.2 (Maximizing a Reward). Note that maximizing any “reward” function f(x) can be for-

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 2

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Figure 1: Gasoline has linear cost. Figure 2: U-haul rental has affine cost.

mulated as a minimization problem by minimizing it’s negative. That is,

x∗ = argmax
x

f(x) = argmin
x
−f(x) (4)

where x∗ represents the optimal design.

The mathematical structure of objective function f(x) has relevance throughout the course. At
this point, let us examine linear and affine objective functions. Consider the cost of gasoline versus
the cost of renting a U-haul, as depicted in Fig. 1 and 2. The price of gasoline goes through the
origin, i.e. zero gallons cost zero dollars. A U-haul rental includes a one-time price plus a price
per mile driven. Mathematically, these can be written:

Linear Function: f(x) = ax, (5)

Affine Function: f(x) = bx+ c. (6)

Proposition 1 (Linear vs. Affine Cost Functions). Next we conjecture that minimizing an affine
cost function is equivalent to minimizing the linear part only. That is,

x∗ = argmin
x
{bx+ c} = argmin

x
{bx} . (7)

More generally, minimizing any nonlinear cost function is equivalent to minimizing the same cost
function plus an offset term. That is,

x∗ = argmin
x
{f(x)} = argmin

x
{f(x) + C} . (8)

As a consequence, we can always disregard the affine offset term when formulating an optimiza-
tion problem. To understand, consider the graphical explanation in Fig. 3. This example demon-
strates that translating the objective function value by a constant does not impact the minimizer

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 3

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

f f(x)

x

f(x)+C

Minimum obtained
at the same x

Figure 3: Minimizing any nonlinear cost function is equivalent to minimizing the same cost function plus an
offset term.

value. For example, minimizing the affine cost function

f(x1, x2) = 2x1 + 3x2 + 5 (9)

is equivalent to minimizing the linear cost function

f(x1, x2) = 2x1 + 3x2 (10)

Exercise 1. Which of the following functions are linear, affine, neither, or both, over the set D =

[−10, 10]?

(a) f(x) = 0

(b) f(x) = x

(c) f(x) = x2

(d) f(x) = −x2

(e) f(x) = x3

(f) f(x) = sin(x)

(g) f(x) = e−x
2

(h) f(x) = |x|

1.2 Constraints

Constraints encode physical restrictions on the decision variables. As such, it is natural to explain
the concept of constraints via an example.

Example 1.1 (Building a Wall). Suppose you are tasked with building a wall for minimum cost,
subject to certain design specifications. Specifically, you must decide how much cement and steel

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 4

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

beam to use. You are given the problem parameters listed in Table 1.

Table 1: Building a Wall Problem Parameters

Cost of a pound of cement (USD per kg) a1
Cost of a foot of steel beam (USD per m) a2
Weight of cement (kg) x1
Length of steel beam (m) x2

Total cost (USD) f(x1, x2) = a1x1 + a2x2

Note that all variables have different dimensions. However, the expressions a1x1, a2x2, and
f(x1, x2) have the same units - USD. Our goal is to minimize the total cost, subject to certain
constraints

• Your maximum budget for cement is cmax: a1x1 ≤ cmax

• Your minimum budget for steel is smin: a2x2 ≥ smin

• Your cannot have negative kg of cement, nor negative m of steel beam: x1, x2 ≥ 0

• Your maximum total budget is fmax: a1x1 + a2x2 ≤ fmax

The optimization program incorporating all the constraints can be formulated as:

Minimize: f(x1, x2) = a1x1 + a2x2 (11)

Subject to: a1x1 ≤ cmax (12)

a2x2 ≥ smin (13)

x1, x2 ≥ 0 (14)

a1x1 + a2x2 ≤ fmax (15)

We also remark that constraints are often represented in negative null form or standard form, as
shown in Table 2. In negative-null form, all inequality constraints are converted into less-than-or-
equal-to constraints, with zeros on the right-hand-size. In standard form, all inequality constraints
are converted into less-than-or-equal-to constraints, with the constants moved to the right-hand-
size.

Often, physical constraints take the mathematical form of equalities. We call these equality
constraints. For example, consider the additional constraint:

• You must spend exactly twice as much for steel as for cement: a2x2 = 2a1x1

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 5

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Table 2: Negative-null and Standard Forms

Negative-null form Standard form

a1x1 − cmax ≤ 0 a1x1 ≤ cmax

smin − a2x2 ≤ 0 −a2x2 ≤ −smin

−x1 ≤ 0 −x1 ≤ 0

−x2 ≤ 0 −x2 ≤ 0

a1x1 + a2x2 − fmax ≤ 0 a1x1 + a2x2 ≤ fmax

Remark 1.3 (Equality Constraints→ Inequality Constraints). Note that equality constraint a2x2 =

2a1x1 is equivalent to
a2x2 ≥ 2a1x1 AND a2x2 ≤ 2a1x1.

Consequently, any equality constraint can be converted into two inequality constraints, without
loss of generality or accuracy. As a result, we can express the optimization program as

Minimize: f(x1, x2) = a1x1 + a2x2 (16)

Subject to: a1x1 ≤ cmax (17)

a2x2 ≥ smin (18)

x1, x2 ≥ 0 (19)

a1x1 + a2x2 ≤ fmax (20)

a2x2 ≥ 2a1x1 (21)

a2x2 ≤ 2a1x1 (22)

with inequality constraints only.

Remark 1.4 (Equality Constraints → Program Reducton). Interestingly, equality constraints can
be used to reduce the program size. For example, we can solve the equality constraint for x2,

x2 =
2a1
a2

x1 (23)

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 6

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Substituting (23) into (11)-(15) renders the reduced program

Minimize: f(x1) = 3a1x1 (24)

Subject to: a1x1 ≤ cmax (25)

2a1x1 ≥ smin (26)

x1, x2 ≥ 0 (27)

3a1x1 ≤ fmax (28)

which contains only one decision variable, x1. From (24), it is intuitive that we need to minimize
x1 until some lower bound becomes active. Assuming smin is positive (which must be true to
be physically meaningful), then (26) is true with equality at the minimizer. That is, this inequality
constraint defines the minimum.

x∗1 = argmin
x1

f(x1) =
smin

2a1
(29)

f(x∗1) = min
x1

f(x1) =
3

2
smin (30)

Note that we use the asterisk notation to denote an optimum.

Definition 1.1 (Active Constraints). When an inequality is true with equality at the optimum, then
we say the inequality constraint is active. Active constraints are an important concept, and will be
referenced throughout the course.

2 Linear Programs (LP)

We are now positioned to precisely define a linear program (LP).

Definition 2.1 (Linear Program). A linear program (LP) is an optimization problem of the form
(1)-(3) where the functions f(x), g(x), h(x) are all linear in the decision variable x.

Given the linear structure, the general form of a LP is

Minimize: c1x1 + c2x2 + . . .+ cNxN

subject to: a1,1x1 + a1,2x2 + . . .+ a1,NxN ≤ b1

a2,1x1 + a2,2x2 + . . .+ a2,NxN ≤ b2
...

aM,1x1 + aM,2x2 + . . .+ aM,NxN ≤ bM .

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 7

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Alternatively, we can express this in compact form using the “Sigma” notation

Minimize:
N∑
k=1

ckxk

subject to:
N∑
k=1

a1,kxk ≤ b1

N∑
k=1

a2,kxk ≤ b2

...
N∑
k=1

aM,kxk ≤ bM

We can further compact the notation using matrix notation

Minimize: cTx

subject to: Ax ≤ b

where

x = [x1, x2, . . . , xN]T

c = [c1, c2, . . . , cN]T

[A]i,j = ai,j , A ∈ RM×N

b = [b1, b2, . . . , bM]T

Exercise 2 (Building a Solar Array Farm). You are tasked with designing the parameters of a new
photovoltaic array installation. Namely, you must decide on the square footage of the photovoltaic
arrays, and the power capacity of the power electronics which interface the generators to the grid.
The goal is to minimize installation costs, subject to the following constraints:

• You cannot select negative PV array area, nor negative power electronics power capacity.

• The minimum generating capacity for the photovoltaic array is gmin.

• The power capacity of the power electronics must be greater than or equal to the PV array
power capacity.

• The available spatial area for installation is limited by smax.

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 8

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

• You have a maximum budget of bmax.

Using the notation in Table 3, perform the following steps

1. Write down the objective function

2. Write down the constraints. Label the physical meaning of each constraint.

3. Re-write the entire mathematical optimization problem in Standard Form (see Table 2).

4. Re-write the LP in matrix-vector form, with appropriate definitions for c, A, b.

Table 3: Building a Solar Array Farm

Spatial area of photovoltaic arrays [m2] x1

Power capacity of power electronics [kW] x2

Cost of square meter of PV array [USD/m2] c1

Cost of power electronics per kW [USD/kW] c2

Min PV array generating capacity [kW] gmin

Power of PV array per area [kW/m2] a1

Max spatial area [m2] smax

Maximum budget [USD] bmax

3 Example 1: Transportation Problem

In this section, we introduce the transportation problem - a typical transportation system engineer-
ing problem that can be formulated and solved as a linear program. More information about the
transportation problem can be found in Chapter 6.D of [1].

Consider a supplier-buyer network consisting of two apple farms and two factories. The farm
production and factory consumption rates are given by Table 4. George owns both the farms and
factories. He is paying the cost of shipping all the apples from the farms to the factories. The
shipping costs for George are given by Table 5.

The problem is to determine the best way to distribute apple shipments. The problem can
be visualized by the network graph in Fig. 4. The left-hand nodes represent farms, the right-
hand nodes represent factories, and the edges represent shipping costs. Let si represent the

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 9

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Table 4: Supply and demand capacities for the farms and factories, respectively.

Paul’s farm produces 4 tons of apples per day sp = 4

Ron’s farm produces 2 tons of apples per day sr = 2

Max’s factory needs 1 ton of apples per day dm = 1

Bob’s factory needs 5 tons of apples per day db = 5

Table 5: Shipping costs from farm to factory.

Paul→ Max: 1000 USD per ton cpm = 1000 xpm

Ron→ Max: 1250 USD per ton crm = 1250 xrm

Paul→ Bob: 1350 USD per ton cpb = 1350 xpb

Ron→ Bob: 1450 USD per ton crb = 1450 xrb

farm production supply, dj represent the factory demand, xij represent tons of apples shipped
from farm i to factory j, and cij is the corresponding cost. Indices i ∈ {p, r} denote farms and
j ∈ {m, b} denote factories.

Paul "!

4 -
1000 USD

@
@
@
@
@
@
@
@
@R

1350 USD
"!

1 Max

Ron "!

2 -

1450 USD
�
�
�
�
�
�
�
�
��

1250 USD

"!

5 Bob

Figure 4: Apple Farm-Factory Network Graph

With this notation established, we can write the total shipping costs as

f = cpmxpm + cpbxpb + crmxrm + crbxrb (31)

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 10

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Moreover, the factory demand constraints must be satisfied

xpm + xrm = dm, (32)

xpb + xrb = db, (33)

and the farm supply capacity must be satisfied

xpm + xpb = sp, (34)

xrm + xrb = sr. (35)

In addition, the number of shipped apples along each edge must be non-negative

xpm ≥ 0, xpb ≥ 0, xrm ≥ 0, xrb ≥ 0. (36)

We can now assemble the cost function and constraints to produce the linear program

min: f(xpm, xpb, xrm, xrb) = cpmxpm + cpbxpb + crmxrm + crbxrb (37)

s. to xpm + xrm = dm (38)

xpb + xrb = db (39)

xpm + xpb = sp (40)

xrm + xrb = sr (41)

xpm ≥ 0, xpb ≥ 0, xrm ≥ 0, xrb ≥ 0 (42)

3.1 General LP Formulation

Next we consider a general formulation for the transportation problem. Consider a generalized
supplier-consumer network graph, consisting of N consumers and M suppliers, as shown in Fig.
5. As before, si represents the supply capacity of supplier i, dj represent the demand of consumer
j, xij represents the shipped goods from supplier i to consumer j, and cij is the corresponding
cost.

Then we can write the transportation problem in the general LP formulation

min:
M∑
i=1

N∑
j=1

cijxij (43)

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 11

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

��
��

��
��

��
��

��
��

-XXXXXXXXXXXz

HHH
HHH

HHH
HHj

@
@
@
@
@
@
@
@
@
@@R

���
���

���
��:

-XXXXXXXXXXXz

H
HHH

HHH
HHHHj

�
��

�
��

�
��

��*

��
���

���
���:

-XXXXXXXXXXXz
�
�
�
�
�
�
�
�
�
���

��
�
��

�
��

�
��*

���
���

���
��:

-

��
��

��
��

��
��

��
��

Figure 5: Supplier-Consumer network graph, consisting of N consumers and M suppliers.

s. to
M∑
i=1

xij = dj , j = 1, · · · , N (44)

N∑
j=1

xij = si, i = 1, · · · ,M (45)

xij ≥ 0, ∀i, j (46)

Exercise 3 (Transportation Problems). Exercises 6.2 and 6.4 in Revelle and Whitlatch [1].

4 Example 2: Shortest Path Problem

In this section, we introduce the shortest path problem - a typical transportation system engineer-
ing problem that can be formulated and solved as a linear program. In fact, this exact problem is
solved when searching for directions on Google Maps. More information about the shortest path
problem can be found in Chapter 6.B of [1].

Consider a network of locations (nodes), connected by various routes (edges) in the network
graph in Fig. 6. The problem is to find the shortest path from Alice’s house (node A) to Bob’s
house (node B). For tutorial purposes, suppose the shortest path is the path denoted in red in Fig.
6. Let cij represent the distance from node i to node j, where i, j ∈ {A, 2, 3, · · · , 9, 10, B}. Then
the shortest path length is given by cA3 + c34 + c45 + c59 + c9B.

Let us now consider how to formulate an LP that produces the shortest path solution. Let
xij represent whether the edge between nodes i and j is included in the chosen path. That is,
xij = 1 for every (i, j) on the chosen path and xij = 0 for every (i, j) NOT on the chosen path. For
example, in the path denoted in red, xA3 = x34 = x45 = x59 = x9B = 1 and xij = 0 for all other
(i, j) pairs.

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 12

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Figure 6: The shortest path problem is to determine the shortest path between Alice and Bob on the
network above.

Using these notational definitions, it is straight-forward to verify∑
(i,j) chosen on path

cij =
∑

(i,j) chosen on path

cijxij =
∑

all (i,j)

cijxij

As a result, we can formulate the cost function

J =
∑
j∈DA

cAj xAj +
10∑
i=2

∑
j∈Di

cijxij +
∑
i∈AB

ciBxiB (47)

where sets DA,Di are the subsets of nodes that descend from nodes A and i, respectively. For
example, DA = {2, 3, 7} and D5 = {6, 9}. Set AB is the subset of nodes that ascend from node
B, namely AB = {9, 10}. Consequently, the terms in (47) respectively denote the first leg length,
intermediate leg lengths, and final leg length.

In addition to the cost function, we can formulate constraints that “stitch” the legs together and
ensure they begin and end at nodes A and B, respectively. The leg stitching constraint can be
interpreted as follows. If a selected path arrives to node j, then a selected path must also depart
from node j. Mathematically ∑

i∈Aj

xij =
∑
k∈Dj

xjk, j = 2, · · · , 10 (48)

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 13

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

The origin and destination constraints are given by∑
j∈DA

xAj = 1, (49)

∑
i∈AB

xiB = 1. (50)

Finally, we have the non-negativity constraints

xij ≥ 0, ∀ i, j ∈ {2, · · · , 10}, xAj ≥ 0, ∀ j ∈ DA, xiB ≥ 0, ∀ i ∈ AB (51)

To summarize, we can write the shortest path problem as the following LP:

Minimize: J =
∑
j∈DA

cAj xAj +
10∑
i=2

∑
j∈Di

cijxij +
∑
i∈AB

ciBxiB [total path length] (52)

subject to:
∑
i∈Aj

xij =
∑
k∈Dj

xjk, j = 2, · · · , 10, [leg stiching] (53)

∑
j∈DA

xAj = 1, [origin] (54)

∑
i∈AB

xiB = 1, [destination] (55)

xij ≥ 0, ∀ i, j ∈ {2, · · · , 10}, [middle node non-negativity](56)

xAj ≥ 0, ∀ j ∈ DA, [origin node non-negativity] (57)

xiB ≥ 0, ∀ i ∈ AB. [destination node non-negativity] (58)

5 Graphical Solutions to LPs

For problems of one, two, or sometimes three dimensions, we can use graphical methods to visu-
alize the feasible sets and solutions. This visualization provides excellent intuition for the nature
of LP solutions. Moreover, the graphical solution process motivates the concepts of feasible set,
boundedness, uniqueness, and constraint domination.

5.1 Feasible Set

Consider the following example.

max Z = 140x1 + 160x2 (59)

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 14

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

s. to 2x1 + 4x2 ≤ 28 (60)

5x1 + 5x2 ≤ 50 (61)

x1 ≤ 8 (62)

x2 ≤ 6 (63)

x1 ≥ 0 (64)

x2 ≥ 0 (65)

On a graph, one may successively plot each of the inequality constraints (60)-(65) and divide the
Cartesian space into feasible “half-spaces.” This procedure is demonstrated in the left side of Fig.
7. As each half-space is identified, we retain the intersection of the remaining feasible set. This
successive construction provides the feasible set, as shown in Fig. 7. This intuition motivates the
following formal definition of feasible set.

Definition 5.1 (Feasible Set). Consider the canonical optimization problem (1)-(3). The feasible
set D is the set of all possible designs x that satisfy the constraints, i.e. D = {x ∈ Rn | g(x) ≤
0, h(x) = 0}.

After constructing the feasible set, we plot the iso-contours of the objective function. For ex-
ample, the lower-left-most iso-contour in the right side of Fig. 7 corresponds to Z = 0. Continuing
towards the upper-right, the value of the objective function increases. The intersection of the
largest-valued iso-contour and the feasible set occurs when Z∗ = 1480, at x∗1 = 6, x∗2 = 4. Conse-
quently, we have graphically solved the LP.

Figure 7: Construction of the feasible set in a linear program [LEFT], and the objective function isolines
[RIGHT].

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 15

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

5.2 Boundedness

A feasible set can fall within one of the following three categories:

• [Bounded] The feasible set is bounded if it forms a closed subset of the Cartesian plane
that does not include infinity.

• [Unbounded] The feasible set is unbounded if it forms a subset of the Cartesian plane that
includes infinity.

• [Empty] The feasible set is empty if the intersection of all the constraints forms the empty
set. In this case the problem is infeasible. That is, no solution exists.

Exercise 4. Draw examples of each of the three categories given above.

Also note that an objective function may be bounded or unbounded. We make these concepts
concrete with the following examples. Consider the feasible set defined by inequalities x2 ≥ 3,
x1 + x2 ≥ 6, and x2 ≤ 0.5x1 + 7, as shown in Fig. 8. On the left, consider the objective maxZ =

3.24x1. The iso-contours continue towards x1 = ∞, without being bounded by the feasible set.
Hence, objective function Z is unbounded. In contrast, consider the objective minZ = x1 + 3x2.
Although the feasible set is unbounded, the iso-contours are bounded as they decrease in value.
In this case, objective function Z is bounded.

Figure 8: An unbounded [LEFT] and bounded [RIGHT] objective function.

5.3 Solution Uniqueness

This graphical analysis motivates the following proposition about LP solutions.

Proposition 2 (LP Solutions). The solution to any linear program is characterized by one of the
following three categories:

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 16

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

• [No Solution] This occurs when the feasible set is empty, or the objective function is un-
bounded.

• [One Unique Solution] There exists a single unique solution at the vertex of the feasible
set. That is, two constraints are active and their intersection gives the optimal solution.

• [A Non-Unique Solution] There exists an infinite number of solutions, given by one edge
of the feasible set. That is, one constraint is active and all solutions along this edge are
equally optimal. This can only occur when the objective function gradient is orthogonal to a
constraint.

Exercise 5. Construct graphical examples of each of the three possible LP solutions given above.

5.4 Constraint Domination

Consider a LP with the inequality constraints

x1 ≥ 2, (66)

x1 ≥ 4. (67)

Figure 9 draws these constraints on the x1 − x2 plane and divides the Cartesian space into half-
spaces. In this case, we note that constraint x1 ≥ 4 dominates x1 ≥ 2. That is, x1 ≥ 2 is
automatically satisfied when x1 ≥ 4 is satisfied. As a result, we can disregard the dominated
constraint x1 ≥ 2. This concept of constraint domination enables the optimization engineer to
reduce the number of constraints.

	

Constraint 𝑥1 ≥ 4 dominates 𝑥1 ≥ 2

𝑥1 ≥ 2	
 𝑥1 ≥ 4	

Figure 9: The constraint x1 ≥ 2 is dominated by x1 ≥ 4.

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 17

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

5.5 A General Method for Graphical LP Solutions

Armed with the concepts of feasible sets, boundedness, and uniqueness, we now present a flow
chart of graphical LP solutions in Fig. 10. Note this procedure is useful for problems of one, two,
or sometimes three dimensions. However, real-world civil engineering problems are typically have
hundreds, thousands, or even millions of dimensions. As a result, an automated procedure is
necessary.

Write	
 your	
 LP	

Successively	
 eliminate	

half-­‐spaces	

Feasible	
 Set	
 Empty?	

Problem	

Infeasible	

Objec?ve	

Bounded?	

Infinite	

Solu?on	
 Solu?on	

Unique?	

Feasible	
 Set	

Bounded?	

YES	
 NO	

NO	

NO	
 YES	

Corner	
 Point	

Solu?on	

Boundary	

Solu?on	

YES	
 NO	

YES	

Figure 10: Flowchart for graphically solving LPs.

Exercise 6 (Graphical LP). Exercises 3.1 to 3.12 in Revelle and Whitlatch [1].

6 Simplex Algorithm

George B. Dantzig’s Simplex Algorithm is an automated procedure for solving LPs [2]. It stands
as one of the most significant algorithmic achievements of the 20th century. Danzig (1914 - 2005)
was a Professor Emeritus of Transportation Sciences and Professor of Operations Research and
of Computer Science at Stanford.

In this section we provide an overview of the simplex algorithm concepts without a deep
exposition on the mathematical implementation. Today, the simplex algorithm is a mature off-

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 18

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

the-shelf technology. As such, the modern engineer will rarely implement the algorithm them-
selves. Nonetheless, the intuition behind the algorithm is instructive, as it builds upon the concepts
throughout the chapter.

As shown in Proposition 2, LPs can have one of three types of solutions: no solution (in feasible
or infinite), a unique solution (a corner point), or a non-unique solution (a boundary). The basic
idea of the simplex method is to confine the search to corner points of the feasible region (of which
there are only finitely many) in a most intelligent way. Consider a LP in standard form

Minimize: cTx (68)

subject to: Ax ≤ b, (69)

Aeqx = beq (70)

In geometric terms, the feasible set D = {x | Ax ≤ b, Aeqx = beq} is a (possibly unbounded) con-
vex polytope, which can be characterized by its corner points. Proposition 2 says if the objective
function has a minimum value on the feasible set, then the minimum occurs on (at least) one of
the corner points. This reduces the problem to a finite computation since there is a finite number
of corner points, but the number of corner points is unmanageably large for all but the smallest
linear programs.

It can also be shown that if a corner point is not a minimum point of the objective function
then there is an edge containing the point so that the objective function is strictly decreasing on
the edge moving away from the point. If the edge is finite then the edge connects to another
corner point where the objective function has a smaller value, otherwise the objective function is
unbounded below on the edge and the linear program has no solution. The simplex algorithm
applies this insight by walking along edges of the polytope to corner points with lower and lower
objective values. This continues until the minimum value is reached or an unbounded edge is
visited, concluding that the problem has no solution. The algorithm always terminates because
the number of vertices in the polytope is finite; moreover since we jump between vertices always
in the same direction (that of the objective function), we hope that the number of vertices visited
will be small.

7 Notes

You can learn more about the essential elements of optimization models in Ch. 1 of Papalombros
and Wilde [3]. An excellent introduction of mathematical optimization formulations is provided in
Ch. 1 of Boyd and Vandenverghe [4]. An overview of CEE system optimization applications are
given in Ch. 2 of Revelle and Whitlatch [1].

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 19

CE 191 — CEE Systems Analysis Professor Scott Moura — University of California, Berkeley

Figure 11: A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm
begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the
optimum solution.

The textbook by Dantzig [2] is a classic reference for linear programming. Chapter 6 of Revelle
and Whitlatch [1] contains many LP models of network flow, including the shortest path problem,
the transportation problem, the transshipment problems, the maximum flow problem, and the trav-
eling salesmen problem. Graphical solution methods for LPs are discussed in Ch. 3 of Revelle and
Whitlatch [1]. Finally, Ch. 4 of Revelle and Witlach [1] and Dantzig [2] provide excellent expositions
of the Simplex Algorithm.

References

[1] C. A. Revelle and E. E. Whitlach, Civil and environmental systems engineering. Prentice Hall PTR,
1996.

[2] G. B. Dantzig, Linear programming and extensions. Princeton university press, 1998.

[3] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design: Modeling and Computation. Cam-
bridge University Press, 2000.

[4] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2009.

Revised October 25, 2014 | NOT FOR DISTRIBUTION Page 20

	Objective Function and Constraints
	Objective Functions
	Constraints

	Linear Programs (LP)
	Example 1: Transportation Problem
	General LP Formulation

	Example 2: Shortest Path Problem
	Graphical Solutions to LPs
	Feasible Set
	Boundedness
	Solution Uniqueness
	Constraint Domination
	A General Method for Graphical LP Solutions

	Simplex Algorithm
	Notes

