CE 191: Civil and Environmental Engineering Systems Analysis

LEC 01 : Linear Programming

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014

Canonical Optimization Problem

Summary of Entire Course

Minimize a cost (or objective) function:

 $\min_{x} f(x),$

subject to constraints:

$$g_i(x) \leq 0, i = 1, \cdots, m$$

 $h_j(x) = 0, j = 1, \cdots, l.$

 $\min_{x\in\mathcal{D}} f(x)$

x | decision variables

 $x \in \mathcal{D} \subseteq R^n$ | decision variables live in space \mathcal{D}

 $f(x): \mathbb{R}^n \to \mathbb{R}$ | maps decision variables into performance metric

Example objectives:

- Monetary cost [USD]
- Fuel consumption [gal]
- Emissions [grams]
- Power [kW]

• ...

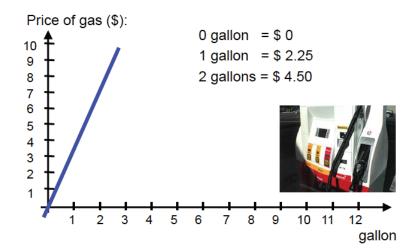
Remark 1 (Objective Function Terminology).

Note "cost", "reward", and "objective" function are used interchangeably.

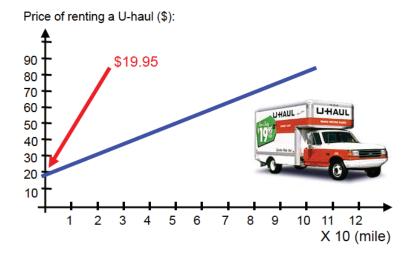
Remark 2 (Maximize a Reward).

Maximizing any "reward" function f(x) is equivalent to minimizing -f(x).

$$x^* = \arg \max_x f(x) = \arg \min_x -f(x)$$



Affine Function



Linear vs. Affine Cost Functions

Minimizing the affine cost function

$$f(x_1, x_2) = 2x_1 + 3x_2 + 5$$

is the same as minimizing the linear cost function

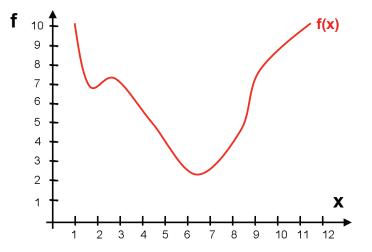
$$f(x_1, x_2) = 2x_1 + 3x_2$$

A general expression for a linear cost function is

$$f(x_1, x_2, \dots, x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
$$= \sum_{i=1}^n a_i x_i$$
$$= a^T x$$

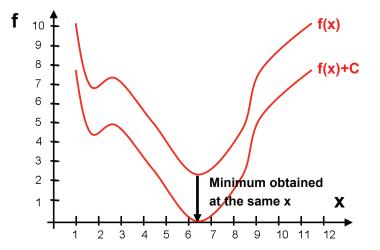
Linear vs. Affine | Graphical Explanation

Minimizing a function f(x)



Linear vs. Affine | Graphical Explanation

Minimizing a function f(x) or f(x) + C is the same



Cost of a pound of cement (USD per lbs)	a_1
Cost of a foot of steel beam (USD per ft)	a ₂
Weight of cement (lbs)	<i>x</i> ₁
Length of steel beam (ft)	<i>x</i> ₂

Total cost (USD)

 $f(x_1, x_2) = a_1 x_1 + a_2 x_2$

Note: All variables have different dimensions

Note: Expressions a_1x_1 , a_2x_2 , and $f(x_1, x_2)$ have the same units - USD.

Constraints - What are they?

Constraints encode physical restrictions on the decision variables.

Your maximum budget for cement is c_{max}

 $a_1x_1 \leq c_{\max}$

Your minimum budget for steel is s_{min}

 $a_2x_2 \geq s_{\min}$

You cannot have negative pounds of cement

 $x_1 \ge 0$

You maximum total budget is f_{max}

$$a_1x_1 + a_2x_2 \leq f_{\max}$$

The optimization program incorporating all the constraints can be formulated as:

Minimize: $f(x_1, x_2) = a_1x_1 + a_2x_2$ Subject to: $a_1x_1 \le c_{\max}$ $a_2x_2 \ge s_{\min}$ $x_1 \ge 0$ $a_1x_1 + a_2x_2 \le f_{\max}$ The optimization program incorporating all the constraints can be formulated as:

Minimize: $f(x_1, x_2) = a_1 x_1 + a_2 x_2$ Subject to: $a_1 x_1 - c_{max} \le 0$ $s_{min} - a_2 x_2 \le 0$ $-x_1 \le 0$ $a_1 x_1 + a_2 x_2 - f_{max} < 0$

Negative-null form

The optimization program incorporating all the constraints can be formulated as:

 Minimize:
 $f(x_1, x_2) = a_1 x_1 + a_2 x_2$

 Subject to:
 $a_1 x_1 \le c_{max}$
 $-a_2 x_2 \le -s_{min}$ $-x_1 \le 0$
 $a_1 x_1 + a_2 x_2 < f_{max}$

Standard form

Sometimes, physical constraints take the mathematical form of equalities.

Ex: You must spend exactly twice as much for steel as for cement:

$$a_2 x_2 = 2a_1 x_1$$

Remark 1: This is exactly the same as

 $a_2x_2 \ge 2a_1x_1$ AND $a_2x_2 \le 2a_1x_1$

Equality Constraints \rightarrow Inequality Constraints

 Minimize:
 $f(x_1, x_2) = a_1 x_1 + a_2 x_2$

 Subject to:
 $a_1 x_1 \leq c_{max}$
 $a_2 x_2 \geq s_{min}$ $x_1 \geq 0$
 $a_1 x_1 + a_2 x_2 \leq f_{max}$ $a_2 x_2 \geq 2a_1 x_1$
 $a_2 x_2 \leq 2a_1 x_1$ $a_2 x_2 \leq 2a_1 x_1$

One can thus assume all constraints are always given in the form of inequalities.

Sometimes, physical constraints take the mathematical form of equalities.

Ex: You must spend exactly twice as much for steel as for cement:

$$a_2 x_2 = 2a_1 x_1$$

Remark 2: By solving the equality constraint, one can reduce the problem size

$$x_2 = \frac{2a_1}{a_2}x_1$$

Equality Constraints \rightarrow Program Reduction

Minimize: $f(x_1) = 3a_1x_1$ Subject to: $a_1x_1 \le c_{\max}$ $2a_1x_1 \ge s_{\min}$ $x_1 \ge 0$ $3a_1x_1 \le f_{\max}$

Equality Constraints \rightarrow Program Reduction

Minimize: $f(x_1) = 3a_1x_1$ Subject to: $a_1x_1 \le c_{\max}$ $2a_1x_1 \ge s_{\min}$ $x_1 \ge 0$ $3a_1x_1 \le f_{\max}$

Solution:

$$f(x_1^*) = \min_{x_1} f(x_1) = \frac{3}{2} s_{\min}$$
$$x_1^* = \arg\min_{x_1} f(x_1) = \frac{s_{\min}}{2a_1}$$

Note: We use the asterisk notation to denote an optimum.

Equality Constraints \rightarrow Program Reduction

Minimize: $f(x_1) = 3a_1x_1$ Subject to: $a_1x_1 \leq c_{max}$ $2a_1x_1 \geq s_{min}$ $x_1 \geq 0$ $3a_1x_1 \leq f_{max}$

Solution:

$$f(x_1^*) = \min_{x_1} f(x_1) = \frac{3}{2} s_{\min}$$
$$x_1^* = \arg\min_{x_1} f(x_1) = \frac{s_{\min}}{2a_1}$$

Note: We use the asterisk notation to denote an optimum. When an inequality constraint is true with EQUALITY at the optimal solution, we say it is ACTIVE.

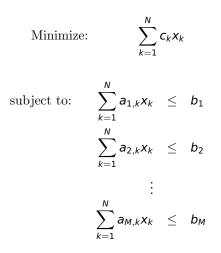
Prof. Moura | UC Berkeley | CE 191

Minimize: $c_1 x_1 + c_2 x_2 + ... + c_N x_N$

subject to: $a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,N}x_N \leq b_1$ $a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,N}x_N \leq b_2$ \vdots $a_{M,1}x_1 + a_{M,2}x_2 + \ldots + a_{M,N}x_N \leq b_M$

General Form of LP

"Sigma notation":



"Matrix notation":

where

Revelle: Chapter 2 - Models in CEE Systems

• Overview of optimization problems

Revelle: Chapter 4 - Simplex Algorithm for Linear Programs

- Overview of LP
- Dantzig's Simplex algorithm

Boyd: Section 1.2 - Least Squares & Linear Programming

Brief overview