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General Form of Quadratic Program (QP)

Minimize:
1

2
xTQx+ RTx+ S

subject to: Ax ≤ b

Aeqx = beq

Design Vars: x ∈ Rn

Q ∈ Rn×n, R ∈ Rn, S ∈ R,
A ∈ Rm×n, b ∈ Rm, Aeq ∈ Rl×n, beq ∈ Rl,

n = # of design variables,
m = # of inequality constraints,
l = # of equality constraints.
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Remarks on QP Format

(1) Can drop “S” term without loss of generality

Minimize:
1

2
xTQx+ RTx

subject to: Ax ≤ b

Aeqx = beq

(2) Quadratically Constrained Quadratic Program (QCQP).

Minimize:
1

2
xTQx+ RTx

subject to:
1

2
xTUx+ VTx+W ≤ 0

Aeqx = beq

Solvers exist. Not discussed in CE 191.
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Overdetermined Systems

Consider a “skinny” matrix A, and the following equation to solve

y = Ax

x : unknown
y : measured data
A ∈ Rm×n : known matrix, where m > n
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Least Squares Solution

This set of equations is called “overdetermined”, since there are more
equations than unknowns.

For most y, it is not possible to find a unique solution for x.

One possible approach is to look for an approximate solution.
For this, one can define the residual error, defined by

r = Ax− y

Consider the solution x∗ that minimizes ‖r‖.

This solution is called the “least squares” solution to the problem.
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Graphical Example

The curve-fit Ax∗ is closest to the measured data y, in a least squares sense.
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Least Squares Solution

The least squares solution is given by the famous formula

x∗ = (ATA)−1ATy

where some assumptions make the matrix (ATA) invertible.

Remark: The matrix (ATA)−1AT is sometimes called the pseudoinverse.
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Derivation

Assume:
1 A is full rank
2 A is skinny, i.e. A ∈ Rm×n, m > n.

To find x∗, we minimize the norm of the residual squared,

‖r‖2 = xTATAx− 2yTAx+ yTy

Set the gradient w.r.t. x equal to zero,

∂

∂x
‖r‖2 = 2ATAx− 2ATy = 0

which yields the normal equations

ATAx = ATy

The assumptions imply ATA is invertible, so we have

x∗ = (ATA)−1ATy
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What does it mean to do least squares?

Reflection on minimizing the residual squared

‖Ax− y‖2 = (Ax− y)T(Ax− y)

= xTATAx− 2yTAx+ yTy

= xTQxT + Rx+ S

Least squares can then be viewed as minimizing a quadratic cost function:

min xTQx+ Rx+ S

This is a quadratic program (QP)!

Remark 1: If the problem is unconstrained, then the solution takes the
closed-form solution (using the psuedoinverse) as derived above.

Remark 2: The same minimizer x∗ solves min
(
xTQx+ Rx+ S

)
and

min
(
xTQx+ Rx

)
.
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Graphical QP

Consider the familiar example with the same linear constraints, but now
with a quadratic cost function

min J = (x1 − 2)2 + (x2 − 2)2

s. to 2x1 + 4x2 ≤ 28

5x1 + 5x2 ≤ 50

x1 ≤ 8

x2 ≤ 6

x1 ≥ 0

x2 ≥ 0
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The feasible set is the same as before
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Draw isolines - Solution is an interior point
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Ex2 : Solution can be boundary point
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Additional Reading

Simplex Algorithm

Revelle Chapter 4 - The Simplex Algorithm for Solving Linear Programs

Quadratic cost functions

Papalambros & Wilde Section 4.2 - Local Approximations

Papalambros & Wilde Section 4.3 - Optimality Conditions
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