CE 191: Civil and Environmental Engineering Systems Analysis

LEC 04 : Introduction to Quadratic Programs (QP)

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014

General Form of Quadratic Program (QP)

Minimize: ¹ $\frac{1}{2}x^TQx + R^Tx + S$ subject to: $Ax < b$ $A_{eq}x = b_{eq}$

Design Vars: $x \in \mathbb{R}^n$

$$
Q \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^n, S \in \mathbb{R},
$$

$$
A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, A_{eq} \in \mathbb{R}^{l \times n}, b_{eq} \in \mathbb{R}^l,
$$

 $n = #$ of design variables, $m = #$ of inequality constraints, $l = #$ of equality constraints.

Remarks on QP Format

(1) Can drop "S" term without loss of generality

Minimize:
$$
\frac{1}{2}x^TQx + R^Tx
$$

subject to:
$$
Ax \leq b
$$

 $A_{eq}x = b_{eq}$

(2) Quadratically Constrained Quadratic Program (QCQP).

Minimize:
$$
\frac{1}{2}x^T Q x + R^T x
$$

subject to:
$$
\frac{1}{2}x^{T}Ux + V^{T}x + W \leq 0
$$

$$
A_{eq}x = b_{eq}
$$

Solvers exist. Not discussed in CE 191.

Consider a "skinny" matrix A, and the following equation to solve

 $y = Ax$

x : unknown y : measured data $\mathsf{A} \in \mathbb{R}^{m \times n}$: known matrix, where $m > n$ This set of equations is called "overdetermined", since there are more equations than unknowns.

For most y , it is not possible to find a unique solution for x .

One possible approach is to look for an approximate solution. For this, one can define the residual error, defined by

 $r = Ax - y$

Consider the solution x^* that minimizes $||r||$.

This solution is called the "least squares" solution to the problem.

Graphical Example

The curve-fit Ax^* is closest to the measured data y, in a least squares sense.

The least squares solution is given by the famous formula

 $\pmb{\mathsf{x}}^*=(\pmb{\mathsf{A}}^{\mathsf{T}}\pmb{\mathsf{A}})^{-1}\pmb{\mathsf{A}}^{\mathsf{T}}\pmb{\mathsf{y}}$

where some assumptions make the matrix $(A^T A)$ invertible.

Remark: The matrix $(A^T A)^{-1} A^T$ is sometimes called the *pseudoinverse*.

Derivation

Assume:

1 A is full rank

2 A is skinny, i.e. $A \in \mathbb{R}^{m \times n}$, $m > n$.

To find x^* , we minimize the norm of the residual squared,

$$
||r||^2 = x^T A^T A x - 2y^T A x + y^T y
$$

Set the gradient w.r.t. x equal to zero,

$$
\frac{\partial}{\partial x}||r||^2 = 2A^T Ax - 2A^T y = 0
$$

which yields the normal equations

$$
A^T A x = A^T y
$$

The assumptions imply $A^T A$ is invertible, so we have

$$
\pmb{\chi}^* = (\pmb{\mathcal{A}}^\mathsf{T}\pmb{\mathcal{A}})^{-1}\pmb{\mathcal{A}}^\mathsf{T}\pmb{\mathcal{y}}
$$

What does it mean to do least squares?

Reflection on minimizing the residual squared

$$
||Ax - y||2 = (Ax - y)T(Ax - y)
$$

= $xTATAx - 2yTAx + yTy$
= $xTQxT + Rx + S$

Least squares can then be viewed as minimizing a quadratic cost function:

$$
\min \qquad x^T Q x + R x + S
$$

This is a quadratic program (QP)!

Remark 1: If the problem is unconstrained, then the solution takes the closed-form solution (using the psuedoinverse) as derived above.

Remark 2: The same minimizer x^* solves min $(x^TQx + Rx + S)$ and min $(x^T Qx + Rx)$.

Consider the familiar example with the same linear constraints, but now with a quadratic cost function

$$
min \t J = (x_1 - 2)^2 + (x_2 - 2)^2
$$

s. to
\n
$$
2x_1 + 4x_2 \le 28
$$
\n
$$
5x_1 + 5x_2 \le 50
$$
\n
$$
x_1 \le 8
$$
\n
$$
x_2 \le 6
$$
\n
$$
x_1 \ge 0
$$
\n
$$
x_2 \ge 0
$$

The feasible set is the same as before

Draw isolines - Solution is an interior point

Ex2 : Solution can be boundary point

Simplex Algorithm

• Revelle Chapter 4 - The Simplex Algorithm for Solving Linear Programs

Quadratic cost functions

- Papalambros & Wilde Section 4.2 Local Approximations
- Papalambros & Wilde Section 4.3 Optimality Conditions