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Conditions for Optimality

Consider an unconstrained QP

min f(x) =
1

2
xTQx+ Rx

Recall from calculus (e.g. Math 1A) the first order necessary condition
(FONC) for optimality: If x∗ is an optimum, then it must satisfy

d

dx
f(x∗) = 0

= Qx∗ + R = 0

⇒ x∗ = −Q−1R

Also recall the second order sufficiency condition (SOSC): If x† is a
stationary point (i.e. it satisfies the FONC), then it is also a minimum if

∂2

∂x2
f(x†) positive definite

⇒ Q positive definite
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Review: Positive-definite matrices

All of the following conditions are equivalent:

Consider Q ∈ Rn×n

Q is positive definite

xTQx > 0, ∀x 6= 0

the real parts of all eigenvalues

of Q are positive

−Q is negative definite

Q is positive semi-definite

xTQx ≥ 0, ∀x 6= 0

the real parts of all eigenvalues

of Q are positive, and at least

one eigenvalue is zero

−Q is negative semi-definite
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Nature of stationary point based on SOSC

Hessian matrix Quadratic form Nature of x†

positive definite xTQx > 0 local minimum

negative definite xTQx < 0 local maximum

positive semi-definite xTQx ≥ 0 valley

negative semi-definite xTQx ≤ 0 ridge

indefinite xTQx any sign saddle point
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Local Maximum
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Valley
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Ridge
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Saddle Point
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Example 5.1

f(x1, x2) = (3− x1)
2 + (4− x2)

2

=
[
x1 x2

] [ 1 0
0 1

] [
x1

x2

]
+
[
−6 −8

] [ x1

x2

]

Check the FONC:
∂f

∂x
=

[
−6 + 2x1

−8 + 2x2

]
=

[
0
0

]
has the solution (x†1, x

†
2) = (3,4).

Check the SOFC:

∂2f

∂x2
=

[
2 0
0 2

]
→ positive definite

Solution: Unique local minimum
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Example 5.2

f(x1, x2) = −4x1 + 2x2 + 4x2
1 − 4x1x2 + x2

2

=
[
x1 x2

] [ 4 −2
−2 1

] [
x1

x2

]
+
[
−4 2

] [ x1

x2

]

Check the FONC:

∂f

∂x
=

[
−4 + 8x1 − 4x2

2− 4x1 + 2x2

]
=

[
0
0

]
has an infinity of solutions (x†1, x

†
2) on the line 2x1 − x2 = 1.

Check the SOFC:

∂2f

∂x2
=

[
8 −4
−4 2

]
→ positive semidefinite

Solution: Infinite set of minima (valley)
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A Connection to Nonlinear Programming

Consider the more general nonlinear programming problem,
with nonlinear cost and nonlinear constraints

min J = f(x)

s. to g(x) ≤ 0

Consider a given value for the decision variable, xk.
Let’s take a Taylor series expansion of the cost and constraints.
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Taylor Series

Review: Expand f(x) into infinite power series around x = xk

f(x) = f(xk) + f ′(xk) (x− xk) +
1

2
f ′′(xk) (x− xk)

2 + . . .

=
∞∑
n=0

fn(xk)

n!
(x− xk)

n

Expand cost function, truncated to be 2nd order

f(x) ≈ f(xk) + f ′(xk) (x− xk) +
1

2
f ′′(xk) (x− xk)

2

Expand inequality constraints, truncated to be 1st order

g(x) ≈ g(xk) + g′(xk) (x− xk) ≤ 0

For ease of notation, define x̃ = x− xk
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Sequential Quadratic Programming (SQP)

We arrive at the following approximate QP

min Qx̃2 + Rx̃

s. to Ax̃ ≤ b

where

Q =
1

2
f ′′(xk), R = f ′(xk)

A = g′(xk), b = −g(xk)

Suppose the optimal solution is x̃∗.
Then let xk+1 = xk + x̃∗.
Repeat.
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SQP Remarks

Remark 1:

Can add equality constraints h(x) = 0 and expand via 1st order Taylor series.

Remark 2:

If xk+1 does not satisfy g(xk+1) ≤ 0,

then you can “project” xk+1 onto surface g(·) = 0.

Remark 3:

Iterate until a stopping criteria is reached, e.g. x̃ ≤ ε.

Summary:

Can re-formulate nonlinear program into sequence of quadratic programs.
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Example 5.3

Consider the NLP

min
x1,x2

e−x1 + (x2 − 2)2

s. to x1x2 ≤ 1.

with the initial guess [x1,0, x2,0]
T = [1,1]T . Perform 3 iterations of SQP.

We have the functions:

f(x) = e−x1 + (x2 − 2)2 and g(x) = x1x2 − 1

We seek to find the approximate QP subproblem

min
1

2
x̃TQx̃+ RT x̃

s. to Ax̃ ≤ b
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Example 5.3

Taking derivatives of f(x) and g(x),

Q =

[
e−x1 0

0 2

]
, R =

[
−e−x1

2(x2 − 2)

]
,

A =
[
x2 x1

]
, b = 1− x1x2

Now consider the initial guess [x1,0, x2,0]
T = [1,1]T . This iterate is feasible.

First iteration: Q,R,A,b matrices are

Q =

[
e−1 0
0 2

]
, R =

[
−e−1

−2

]
,

A =
[

1 1
]
, b = 0

Solving this QP subproblem results in x̃∗ = [−0.6893,0.6893].

Next iterate: [x1,1, x2,1] = [x1,0, x2,0] + x̃∗ = [0.3107,1.6893]
Iterate is feasible.
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Example 5.3

Second iteration: Result is [x1,2, x2,2] = [0.5443,1.9483]. Iterate is
infeasible.

Continuing the process...
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g(x) = 0

Iterations 

of SQP

Iter. [x1, x2] f(x) g(x)

0 [1, 1] 1.3679 0

1 [0.3107, 1.6893] 0.8295 -0.4751

2 [0.5443, 1.9483] 0.5829 0.0605

3 [0.5220, 1.9171] 0.6002 0.0001

4 [0.5211, 1.9192] 0.6004 -0.0000
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Additional Reading

Papalambros & Wilde Section 4.2 - Local Approximations

Papalambros & Wilde Section 4.3 - Optimality Conditions

Papalambros & Wilde Section 7.7 - Sequential Quadratic Programming
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