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Optimum Z* of a LP

feasible set

Prof. Moura | UC Berkeley CE 191 | LECO5 - IP Slide 2



What if the desired solution is an integer?

Suppose the decision variables represent the number of trucks and drivers.

A
dd
) e
= L~ \\\
| - * ,‘ T
\ f %E-t /
~_ /
~L //
‘\
S— /
~"

>
trucks

Prof. Moura | UC Berkeley CE 191 | LECO5 - IP Slide 3



Fractional solution

Suppose the decision variables represent the number of trucks and drivers.
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Fractional solution

What should one do?
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Fractional solution

What should one do?
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Bounds on the optimum

The fractional solutions provides upper or lower bounds on the optimum.
@ If a min problem, then it provides a lower bound.
@ If a max problem, then it provides a upper bound.

lI/ - \H\

N
J/T:\*

\
I\\

Prof. Moura | UC Berkeley CE 191 | LECO5 - IP Slide 7



Bounds on the optimum

The fractional solutions provides upper or lower bounds on the optimum.

Integer problems are sometimes very hard to solve exactly. However,
sometimes guaranteed bounds on the optimal cost are sufficient (quick &
dirty, but correct).
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Relaxing Integer problems into fractional problems

(LP)

The feasible set for fractional solutions is larger than for integer solutions.

@ The result is better, that is

e If it's a max problem, then the cost is greater

e If it's a min problem, then the cost is less

@ The result may not make physical sense, i.e. 8.9 trucks & 2.2 drivers

@ Are there algorithms to determine A / THE optimal integer solution?

This is a hard problem!
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Feasible Sets

Does an integer solution to the problem exist?

Case 1: no point on grid, bounded feasible set
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Case 2: no point on grid, unbounded feasible set
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Decision Variables

A possible definition for a decision variable encodes a “yes/no” decision, i.e.
a discrete choice.

Example decision variables that can be modeled by integer variables:
@ Do | hire this worker (x = 1) or not (x = 0)?

© How many cars are allowed in this parking lot everyday:
x=0,1,2,3,4,567

© Do | take the first (x = 1), second (x = 2), or fifth train (x = 5)?

© At this intersection, do | take the first left, the second left, the first right?
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Shortest Path Revisited: Decision Variables

Alice
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Shortest Path Revisited: Decision Variables

Bob
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Shortest Path Revisited: Decision Variables
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Shortest Path Revisited: Decision Variables

Define

xj =1 Forevery (i,j) on the shortest path
xj =0 Forevery (i,j) not on the shortest path
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Shortest Path Revisited: Decision Variables

Bob

Define

xj =1 Forevery (i,j) on the shortest path
xj =0 Forevery (i,j) not on the shortest path
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Shortest Path Revisited: Decision Variables

Define

xj =1 Forevery (i,j) on the shortest path
xj =0 Forevery (i,j) not on the shortest path
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Shortest Path Revisited: Decision Variables

Define a graph (road network)

Denote ¢j; as the cost to go from i to j (e.g. fuel burned)

For example c34 is the cost to go from node 3 to node 4
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Shortest Path Revisited: Decision Variables

Define a graph (road network)

Take xj; = 1 if Alice decides to go through link (i), zero otherwise

For example x34 = 1 if Alice decides to use route (3,4)
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Shortest Path Revisited: Decision Variables

X12 = X25 = X53 = X34 = Xg7 = 1
All other x; =0
Total length of this path: ¢12 4 €25 + Cs3 + C34 + C47
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Shortest Path Revisited: Decision Variables

X12 = X25 = X53 = X34 = X47 = 1

All other x; = 0

Decision variables x;; cannot be fractional, i.e. 0.534.

Q: How do we ensure that the LP provides an integer solution?

A: Dijkstra’s algorithm (one possible answer)
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Additional Reading

The shortest path problem: Revelle Chapter 6.B
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