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Optimum Z∗ of a LP

Z* 

feasible	  set	  
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What if the desired solution is an integer?

Suppose the decision variables represent the number of trucks and drivers.

feasible	  set	  

Z* dr
iv
er
s	  

trucks	  
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Fractional solution

Suppose the decision variables represent the number of trucks and drivers.

feasible	  set	  

Z* dr
iv
er
s	  

trucks	  

8.9 

2.2 
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Fractional solution

What should one do?

9	  drivers	  
2	  trucks	  

9	  drivers	  
3	  trucks	  

8	  drivers	  
3	  trucks	  

8	  drivers	  
2	  trucks	  

8.9 

2.2 

Prof. Moura | UC Berkeley CE 191 | LEC 05 - IP Slide 5



Fractional solution

What should one do?

Feasible	  
candidate	  
solu/on	  1	  

Feasible	  
candidate	  
solu/on	  2	  
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Bounds on the optimum

The fractional solutions provides upper or lower bounds on the optimum.

If a min problem, then it provides a lower bound.

If a max problem, then it provides a upper bound.

Z* 
Z* (integer) 
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Bounds on the optimum

The fractional solutions provides upper or lower bounds on the optimum.

Integer problems are sometimes very hard to solve exactly. However,
sometimes guaranteed bounds on the optimal cost are sufficient (quick &
dirty, but correct).

Z* 
Z* (integer) 
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Relaxing Integer problems into fractional problems
(LP)

The feasible set for fractional solutions is larger than for integer solutions.

The result is better, that is

If it’s a max problem, then the cost is greater

If it’s a min problem, then the cost is less

The result may not make physical sense, i.e. 8.9 trucks & 2.2 drivers

Are there algorithms to determine A / THE optimal integer solution?

This is a hard problem!
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Feasible Sets

Does an integer solution to the problem exist?
dr
iv
er
s	  

trucks	  

Case	  1:	  no	  point	  on	  grid,	  bounded	  feasible	  set	  

Case	  2:	  no	  point	  on	  grid,	  unbounded	  feasible	  set	  
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Decision Variables

A possible definition for a decision variable encodes a “yes/no” decision, i.e.

a discrete choice.

Example decision variables that can be modeled by integer variables:

1 Do I hire this worker (x = 1) or not (x = 0)?

2 How many cars are allowed in this parking lot everyday:

x = 0,1,2,3,4,5,6?

3 Do I take the first (x = 1), second (x = 2), or fifth train (x = 5)?

4 At this intersection, do I take the first left, the second left, the first right?
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Shortest Path Revisited: Decision Variables
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Shortest Path Revisited: Decision Variables
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Shortest Path Revisited: Decision Variables
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Shortest Path Revisited: Decision Variables

Define

xij = 1 For every (i, j) on the shortest path
xij = 0 For every (i, j) not on the shortest path

Prof. Moura | UC Berkeley CE 191 | LEC 05 - IP Slide 15
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Shortest Path Revisited: Decision Variables

Define

xij = 1 For every (i, j) on the shortest path
xij = 0 For every (i, j) not on the shortest path
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Shortest Path Revisited: Decision Variables

Define a graph (road network)

Denote cij as the cost to go from i to j (e.g. fuel burned)

For example c34 is the cost to go from node 3 to node 4
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Shortest Path Revisited: Decision Variables

Define a graph (road network)

Take xij = 1 if Alice decides to go through link (i, j), zero otherwise

For example x34 = 1 if Alice decides to use route (3,4)
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Shortest Path Revisited: Decision Variables

x12 = x25 = x53 = x34 = x47 = 1

All other xij = 0

Total length of this path: c12 + c25 + c53 + c34 + c47
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Shortest Path Revisited: Decision Variables

x12 = x25 = x53 = x34 = x47 = 1

All other xij = 0

Decision variables xij cannot be fractional, i.e. 0.534.

Q: How do we ensure that the LP provides an integer solution?

A: Dijkstra’s algorithm (one possible answer)
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Additional Reading

The shortest path problem: Revelle Chapter 6.B
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