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Intro to Mixed Integer Programming

Problem Statement

Some decision variables are integers, some are not. Suppose
X = [x1, X2, %3, X4]".

min c' X
s. to Ax<b
X1,X2 €R

X3,X4 € 7.
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Graphical Interpretation

Some variables are integer, some are not.
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Order of arrival of aircraft 1 t 1
The solution for these two It does not matter where the
variables has to be on the grid. solution for these two variables is
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Queueing airplane landings - Decide the order

Decision variable: order of arrival

A =3 min A =3 min

aircraft

' 't 't e
ti—to > A

Another way to express this:

it —t] > A
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Absolute values

Absolute values of this form are not linear, not affine. That is, they're
difficult.

|tp —t| > A

Absolute values can be expressed as a logical disjuntion.
This is a mathematical way of saying “OR".
Lb-tt > A OR th—6H>A
if >t otherwise

Or put more simply
|t —t2] > A
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AND is easy, OR is difficult

Reminder: you have already used AND many times

min:
. to:

f(x1,x2) =
aix; <

axz 2

aixXy +axxz2 =
axy =

axy <

All of the constraints are logical AND.
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Transformation of OR into an AND

Pick a very large number M.
Also consider a decision variable d € {0, 1}.

For sufficiently large M, the following two statements are equivalent:

Statement 1:

t —tb>A ifty >t
OR 1 p ITh =2 0
tb—t; > A o.w.

Statement 2:

t —tb > A —Md
AND
th—tb <-A+M(1-d)
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Logical Explanation

Suppose M = 10°. Two cases to investigate:
Casel:d=0 (Order: t5,t1, i.e. th < t1)

th—tb>A—-Md — thh—-t>A
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Logical Explanation

Suppose M = 10°. Two cases to investigate:
Casel:d=0 (Order: t5,t1, i.e. th < t1)

th—tb>A—-Md — thh—-t>A

th -t <-A+M1-d) — t-t<-A+10°<10°
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Logical Explanation

Suppose M = 10°. Two cases to investigate:
Casel:d=0 (Order: t5,t1, i.e. th < t1)

th—tb>A—-Md — thh—-t>A

th -t <-A+M1-d) — t-t<-A+10°<10°

The second condition is always true for sufficiently large M.
Combine conditions: A<t —t; <10°
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Logical Explanation

Suppose M = 10°. Two cases to investigate:
Casel:d=0 (Order: t5,t1, i.e. th < t1)

th—tb>A—-Md — thh—-t>A

th -t <-A+M1-d) — t-t<-A+10°<10°

The second condition is always true for sufficiently large M.
Combine conditions: A<t —t; <10°

Case2:d=1 (Order: t1,t, i.e. t; < tp)

t; —t, > A — Md — th —t, >A—10° > —10°
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Logical Explanation

Suppose M = 10°. Two cases to investigate:
Casel:d=0 (Order: t5,t1, i.e. th < t1)

th—tb>A—-Md — thh—-t>A

th -t <-A+M1-d) — t-t<-A+10°<10°

The second condition is always true for sufficiently large M.
Combine conditions: A<t —t; <10°

Case2:d=1 (Order: t1,t, i.e. t; < tp)

t; —t, > A — Md — th —t, >A—10° > —10°

t1*t2§*A+M(17d) — tlftzng
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Logical Explanation
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t; —t, > A — Md — th —t, >A—10° > —10°

t1*t2§*A+M(17d) — tlftzng

The first condition is always true for sufficiently large M.
Combine conditions: A<t,—t; <10°
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Transformation of OR into an AND

Pick a very large number M.
Also consider a decision variable d € {0, 1}.

For sufficiently large M, the following two statements are equivalent:

Statement 1:

t —tb>A iftgy >t
OR 1 p ITh =2 0
tb —t; > A o.w.

Statement 2:

t —tb >A—Md
AND
thh—tb <-A+M(1-d)

Transform an OR condition to an AND condition,
at the expense of an added binary variable d.
Variable d encodes the order.

d =0 — Order: t, t;.

d =1 — Order: t1, t;.
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt:r‘r(l—d)tz

s. to: tt—t, > A—Md
t—t, < —A+M(1-d)
th < b
thh 2 a
tp < b
t > a
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt1+(1-d)t; Aircraft 1 or 2 is last, if d = 1 or 0 respectively.

s. to: tt—t, > A—Md
t—t, < —A+M(1-d)
th < b
thh 2 a
tp < b
t > a
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt1+(1-d)t; Aircraft 1 or 2 is last, if d = 1 or 0 respectively.

s. to: ti — b
th —t

t

ty

t2
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A —Md  Aircrafts 1 & 2 are separated by at least A.
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt1+(1-d)t; Aircraft 1 or 2 is last, if d = 1 or 0 respectively.

s. to: ti — b
th —t

t

ty

t2
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A —Md  Aircrafts 1 & 2 are separated by at least A.

—A+M(1-d)
b1 Aircraft 1 arrives in [a1, bq].
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt1+(1-d)t; Aircraft 1 or 2 is last, if d = 1 or 0 respectively.

s. to: ti — b
th —t

t

ty

t2
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IV IA IV IAN N IV

A —Md  Aircrafts 1 & 2 are separated by at least A.

—A+M(1-d)
b1 Aircraft 1 arrives in [a1, bq].
ay
by Aircraft 2 arrives in [az, ba].
az
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How many holding patterns should an aircraft fly?

A holding pattern delays an aircraft by a fixed amount of time, e.g. T= 3
min.

CTAS tracks courtesy of NASA Ames

Question for ATC:
How many holding patterns should one aircraft do before it is allowed to
land?
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A holding pattern shifts arrival times by T

aircraft
B e e e - === === = c=esssssmm==ss==mm=e== aircraft 4
a4 ba

P A - -~~~ == ========= === aircraft 3
do b a

) S _“2_““_““_“_“"_:3“?_31 --------------------------------------- aircraft 2

B — I - - - - == === e aircraft 1
a1 b1

feasible arrival times
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olding pattern shifts arrival times by T

One holding Two holding Three holding
pattern patterns patterns
aircraft
N R LRGEEEEE PR PR R R PR S S CEUEEEELEEEREES EELEEEEEEEEE EEs aircraft 4
a4 bg
N et SRR e - --- - eee --- aircraft 3
a2 b a
[ NSURR —-2----3[:)3 ----------------------------------------- aircraft 2
B — —— - - - - - S 3T Craft 1
aq b.]
feasible arrival times
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olding pattern shifts arrival times by T

One holding Two holding Three holding
pattern patterns patterns
aircraft
------------------------------------------ N -----=----=s=-==q=---=--------. Jircraft 4
as Py
---------------------------------- B R B ||~ = 1) &<
ar ba as bj )
-------- N - - - - - - - - - - . - - - - -~ - -~ - I - - - -- - -~~~ - ------ aircraft 2
------ I - - S S - - E — - S ircraft 1

ai b1

feasible arrival times
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A holding pattern shifts arrival times by T

One holding Two helding Three holding
pattern patterns patterns
aircraft
bl bbbt bbbty el bbbl Rttt bt St aircraft 4
a4 ba
Bl ittt | — | - aircraft 3
az b2 ds b3 .
| R - - - - - - - —----- aircraft 2

B CEEEEE I - - S - - S - - S, i rc raft 1
aq b-]

feasible arrival times
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olding pattern shifts arrival times by T

One holding Two holding
pattern patterns
aircraft
B e e e e - - e= === I - - - === aircraft 4
a4 by
o B T - - {--=-==-=-—= - - e-—-- -EEEm-- aircraft3
as ba as bs )
-p------ [ DEEEEEEEEER I - - - - - - - --- - - e REEEEE aircraft 2
N — I - - S - - S - S - i raft 1
ai b1
feasible arrival times
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A holding pattern can be expressed as a MILP

This is the set in which we want to schedule
aircraft. We seek one arrival time for each
aircraft in each of the colored sets.

aircraft
N - - - ---- - aircraft 4
a4 by
B — - - aircraft 3
az bo as bs i
-f-------- e — - - — - aircraft 2

-f------ I - - - - - W - S C T aft 1
aq b-]

feasible arrival times
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A holding pattern can be expressed as a MILP

The number of holding patterns is a decision variable (the
decision is actually made by the human Air Traffic Controller).

ty = ay + 31'

aircraft

R SR aircraft 4

e E = -- aircraft 3

Y R —— aircraft 2

aircraft 1

feasible arrival times
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A holding pattern can be expressed as a MILP

The number of holding patterns is a decision variable (the
decision is actually made by the human Air Traffic Controller).

t?r

continuous .
integer

aircraft

e e e e e e e R = = === = = = = = = = N - - -~ ===~ aircraft 4

- - aircraft3

e T e - - aircraft 2

ai

aircraft 1

feasible arrival times
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A holding pattern can be expressed as a MILP

Actually, the human air traffic controller has the possibility to
schedule aircraft 2 anywhere in the fourth time interval (i.e.
with three holding patterns).

to € |as + 31, by + 31|

aircraft

Y SRR SRR SR RS- aircraft 4
e e A - -- aircraft 3
i P aircraft 2

ai

aircraft 1

feasible arrival times
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A holding pattern can be expressed as a MILP

This is can be expressed in terms of two linear constraints
involving integer and continuous variables, more generally, for
any admissible interval for aircraft 2:

ty > as + n’l’ Forn holding
ty < fJQ +nT patterns

aircraft

S SRRy Raaa—— aircraft 4

) A -- aircraft3

[ S ——— aircraft 2

aircraft 1

feasible arrival times

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 21



A real-world example: Air Traffic Control

Problem: separating aircraft by A = 3 min: how to schedule the
aircraft so the last aircraft comes as early as possible.

A =3 min

aircraft

aircraft 4
aircraft 3

aircraft 2

-}-------- E::: ----------- - T - - - - - - - - - -- - - -
-f------ - - . - - - - S ircraft 1
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A real-world example: Air Traffic Control

Problem: separating aircraft by A =3 min: how to schedule the
aircraft so the last aircraft comes as early as possible.

A =3 min
A =3 min
E=
Jd
£
Lo R e e R bbb - - - - - - aircraft 4
A o - - aircraft 3
S : ------- == = - == === === - - - aircraft 2
-p----- - I - - I - - S 3ircraft 1
|-
Ll
t 2 t 1 feasible arrival times
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A real-world example: Air Traffic Control

Problem: separating aircraft by A = 3 min: how to schedule the
aircraft so the last aircraft comes as early as possible.

A =3 min
A=3min A=3min
g <
b
£
@ B e - aircraft 4
B et Ei il Eelie i L o S Ity - aircraft3
- - - - - -~ - - - ---- - - - - - aircraft 2

- I - - I - S Jircraft 1
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A real-world example: Air Traffic Control

Problem: separating aircraft by A = 3 min: how to schedule the
aircraft so the last aircraft comes as early as possible.

A =3 min
A=3min A=3min A=atleast3min

= < >

ju

[ ittt ittt ieletel sl bl (e - - . - - - aircraft 4

A B o - - aircraft 3

S EEEEEEEE : ------- - - - - - - - - - - - aircraft 2

-}------ - I - - B - S aircraft 1
>

t 2 t 1 t 3 t 4 feasible arrival times
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A real-world example: Air Traffic Control

This is a Mixed Integer Linear Program (MILP):
- Some variables are integer (the order of arrival): 3, 1, 2, 4...
- Some variables are continuous (the times of arrival)

- The problem can be posed as a linear program involving both
integer and continuous variables.

A =3 min A =3 min A = at least 3 min

%
b
£ L

- ittt Ittt Rttt Mt B It o aircraft 4
---------------------------------- - - - o-ccccoco - - ccoco-c-- EEEC aircraft3
B P : ------- - - - - - - — - - - - - - - - aircraft 2
N - I - - B |- S  aircraft 1
>
tz t‘1 t3 t4 feasible arrival times
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MIP Formulation

Notation

m | Number of aircraft

[ai, bj] | Feasible arrival time interval for airplane i

T | Length of holding pattern

t; | Arrival time of aircrafti

A | Minimum time separation between landings

n; | No. of holding patterns for aircraft i

M | Large number

dj | Encoding of relative order for aircrafts i and j
Constraints
Non-negativity, integer : tt>0, nfeZ Yi=1,---'m
Feasible arrival times : ai+nT<t<b+nT, Vi=1l---'m
Minimum time separation : t—t| > A, Vij=1,---.m i#j
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MIP Formulation

Notation

m | Number of aircraft
[ai, bi] | Feasible arrival time interval for airplane i
T | Length of holding pattern
t; | Arrival time of aircrafti
A | Minimum time separation between landings
n; | No. of holding patterns for aircraft i
M | Large number
d;j | Encoding of relative order for aircrafts i and j

Constraints
Non-negativity, integer : ti>0 nmecZ Yi=1,---.m
Feasible arrival times : ai+nT<t<bj+nT, Vi=1l---,m

Minimum time separation :
t—t > A—-Md
t—t < —A+M(1-d),
di € {0,1} Vijj=1,---.m i#j
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Additional Reading

Revelle Section 7.B.3
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