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Intro to Mixed Integer Programming

Problem Statement
Some decision variables are integers, some are not. Suppose
x = [x1, x2, x3, x4]T .

min cTx

s. to Ax ≤ b

x1, x2 ∈ R
x3, x4 ∈ Z
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Graphical Interpretation

Some variables are integer, some are not.
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Queueing airplane landings - Decide the order

Decision variable: order of arrival

Another way to express this:

|t1 − t2| ≥ ∆
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Absolute values

Absolute values of this form are not linear, not affine. That is, they’re
difficult.

|t1 − t2| ≥ ∆

Absolute values can be expressed as a logical disjuntion.
This is a mathematical way of saying “OR”.

t2 − t1 ≥ ∆ OR t1 − t2 ≥ ∆

if t2 ≥ t1 otherwise

Or put more simply
|t1 − t2| ≥ ∆
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AND is easy, OR is difficult

Reminder: you have already used AND many times

min: f(x1, x2) = c1x1 + a2x2

s. to: a1x1 ≤ cmax

a2x2 ≥ amin

a1x1 + a2x2 ≥ amin

a2x2 ≥ 2a1x1

a2x2 ≤ 2a1x1

All of the constraints are logical AND.
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Transformation of OR into an AND

Pick a very large number M.
Also consider a decision variable d ∈ {0,1}.

For sufficiently large M, the following two statements are equivalent:

Statement 1:

OR

{
t1 − t2 ≥ ∆ if t1 ≥ t2
t2 − t1 ≥ ∆ o.w.

Statement 2:

AND

{
t1 − t2 ≥ ∆−Md

t1 − t2 ≤ −∆ + M(1− d)
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Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Logical Explanation

Suppose M = 109. Two cases to investigate:

Case 1 : d = 0 (Order: t2, t1, i.e. t2 < t1)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆ + 109 ≤ 109

The second condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t1 − t2 ≤ 109

Case 2 : d = 1 (Order: t1, t2, i.e. t1 < t2)

t1 − t2 ≥ ∆−Md → t1 − t2 ≥ ∆− 109 ≥ −109

t1 − t2 ≤ −∆ + M(1− d) → t1 − t2 ≤ −∆

The first condition is always true for sufficiently large M.
Combine conditions: ∆ ≤ t2 − t1 ≤ 109

Prof. Moura | UC Berkeley CE 191 | LEC 09 - MIP Slide 8



Transformation of OR into an AND

Pick a very large number M.
Also consider a decision variable d ∈ {0,1}.

For sufficiently large M, the following two statements are equivalent:

Statement 1:

OR

{
t1 − t2 ≥ ∆ if t1 ≥ t2
t2 − t1 ≥ ∆ o.w.

Statement 2:

AND

{
t1 − t2 ≥ ∆−Md

t1 − t2 ≤ −∆ + M(1− d)

Transform an OR condition to an AND condition,
at the expense of an added binary variable d.
Variable d encodes the order.
d = 0→ Order : t2, t1.
d = 1→ Order : t1, t2.
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Why is this useful?

Now you can pose the problem of earliest arrival time for the last aircraft
with a decision variable for the order of arrival. That is, you can deal with
continuous and discrete variables.

min : dt1+(1−d)t2

Aircraft 1 or 2 is last, if d = 1 or 0 respectively.

s. to: t1 − t2 ≥ ∆−Md

Aircrafts 1 & 2 are separated by at least ∆.

t1 − t2 ≤ −∆ + M(1− d)

t1 ≤ b1

Aircraft 1 arrives in [a1,b1].

t1 ≥ a1

t2 ≤ b2

Aircraft 2 arrives in [a2,b2].

t2 ≥ a2
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How many holding patterns should an aircraft fly?

A holding pattern delays an aircraft by a fixed amount of time, e.g. T = 3
min.

Question for ATC:
How many holding patterns should one aircraft do before it is allowed to
land?
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A holding pattern shifts arrival times by T
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A holding pattern can be expressed as a MILP
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A real-world example: Air Traffic Control
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A real-world example: Air Traffic Control
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MIP Formulation

Notation

m Number of aircraft
[ai,bi] Feasible arrival time interval for airplane i

T Length of holding pattern
ti Arrival time of aircraft i

∆ Minimum time separation between landings
ni No. of holding patterns for aircraft i
M Large number
dij Encoding of relative order for aircrafts i and j

Constraints
Non-negativity, integer : ti ≥ 0, ni ∈ Z ∀i = 1, · · · ,m
Feasible arrival times : ai + niT ≤ ti ≤ bi + niT, ∀i = 1, · · · ,m
Minimum time separation : |ti − tj| ≥ ∆, ∀ i, j = 1, · · · ,m i 6= j
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ti − tj ≤ −∆ + M(1− d),

dij ∈ {0,1} ∀ i, j = 1, · · · ,m i 6= j
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Additional Reading

Revelle Section 7.B.3
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