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Intro to Nonlinear Programming

Abstract Optimization Problem

min f(x)

s. to g(x) ≤ 0

h(x) = 0

Questions / Issues
1 What, exactly, is the definition of a minimum
2 Does a solution even exist?
3 Is it unique?
4 What are the necessary & sufficient conditions to be a solution?
5 How do we solve?
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Convex Functions

Let D = {x ∈ R | a ≤ x ≤ b}.
Def’n (Convex function) : The function f(x) is convex on D if and only if

f(x) = f (λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)
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Concave Functions

Let D = {x ∈ R | a ≤ x ≤ b}.
Def’n (Convex function) : The function f(x) is concave on D if and only if

f(x) = f (λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b)
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Properties of Convex/Concave Functions

True Properties

If f is convex, then −f is concave

If f is concave, then −f is convex

f(x) is a convex function on D⇔ f ′′(x) is positive semi-definite ∀x ∈ D.

f(x) is a concave function on D⇔ f ′′(x) is negative semi-definite ∀x ∈ D.

Common mistakes, i.e. false properties

If f is non-convex, then f is concave counter-ex: f(x) = sin(x)

If f is non-concave, then f is convex counter-ex: f(x) = sin(x)

A function must be concave or convex counter-ex: f(x) = sin(x)

A function cannot be concave and convex counter-ex: f(x) = x
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Ex 1: Convex functions not defined for all x
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Ex 2: Convex functions not defined for all x
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Ex 3: Domain is important

f(x) is convex on D1 = {x ∈ R | 2.2 ≤ x ≤ 6.9}
f(x) is convex on D2 = {x ∈ R | 7 ≤ x ≤ 9.2}
f(x) is not convex on D3 = {x ∈ R | 2.2 ≤ x ≤ 9.2}

Prof. Moura | UC Berkeley CE 191 | LEC 10 - NLP Intro Slide 8



Convex Sets
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Non-convex Sets
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Famous Convex Sets
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Famous Non-convex Sets
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Definitions of minimizers

Def’n (Global minimizer) : x∗ ∈ D is a global minimizer of f on D if

f(x∗) ≤ f(x) ∀x ∈ D

in English: x∗ minimizes f everywhere in D.

Def’n (Local minimizer) : x∗ ∈ D is a local minimizer of f on D if

∃ ε > 0 s.t. f(x∗) ≤ f(x) ∀x ∈ D ∩ {x ∈ R | ‖x− x∗‖ < ε}

in English: x∗ minimizes f locally in D.
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Examples of minimizers
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Uniqueness of minimizers
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Q: Why should I care about convex functions, convex
sets, and types of minimizers?
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Convex Optimization Problem

min f(x)

s. to g(x) ≤ 0

f is a convex function

g(x) ≤ 0 encodes a convex set

Convex optimization problems are
relatively “easy” to solve

no analytical solution

reliable and efficient algorithms

many tricks for transforming
problems into convex form

surprisingly, many problems
can be solved via convex
optimization

Convex function
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History of Convex Optimization

Theory: convex analysis: ca1900 - 1970

Algorithms:

1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin,...)

1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

Applications:

before 1990: mostly in operations research; few in engineering

since 1990: many new applications in engineering (control, signal
processing, communications, environmental analysis, climate analysis,
structures, geoengineering, project management,...)
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Additional Reading

Boyd & Vandenberghe, Chapters 2 and 3

Stephen Boyd Convex Optimization Lectures on YouTube Channel
http://www.youtube.com/view_play_list?p=3940DD956CDF0622
These have become extremely popular in recent years.

EE 227 - Convex Optimization with Prof. El Gaouhi
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