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Constrained Nonlinear Programming

Abstract Optimization Problem

min f(x)

s. to gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , l

Questions / Issues
1 What, exactly, is the definition of a minimum? local and global
2 Does a solution even exist? feasibility
3 Is it unique? if it’s convex, then yes
4 What are the necessary & sufficient conditions to be a solution?
5 How do we solve?
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Simple Graphical Example

Prof. Moura | UC Berkeley CE 191 | LEC 13 - KKT Slide 3



Method of Lagrange Multipliers

Equality Constrained Optimization Problem

min f(x)

s. to hj(x) = 0, j = 1, · · · , l

Lagrangian
Introduce the so-called “Lagrange multipliers” λj, j = 1, · · · , l, i.e. one for
each equality constraint. The Lagrangian is

L(x) = f(x) +
l∑

j=1

λjhj(x)

= f(x) + λTh(x)

First order Necessary Condition (FONC)
If a local minimum x∗ exists, then it satisfies

∇L(x∗) = ∇f(x∗) + λT∇h(x∗) = 0
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Remarks

Remark 1 - Only necessary
This condition is only necessary. That is, if a local minimum x∗ exists, then it
must satisfy the FONC. However, a design x which satisfies the FONC isn’t
necessarily a local minimum.

Remark 2 - Convexity⇒ Necessary and sufficient
If the optimization problem is convex, then the FONC is
necessary and sufficient. That is, a design x which satisfies the FONC is also
a local minimum.
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Example 1: Equality Constrained QP

min
1

2
xTQx+ Rx

s. to Ax = b

Form the Lagrangian:

L(x) =
1

2
xTQx+ Rx+ λT (Ax− b)

Then the FONC is:
∇xL(x

∗) = Qx∗ + R+ ATλ = 0

Combining the FONC with the equality constraint:[
Q AT

A 0

] [
x∗

λ

]
=

[
−R
b

]
provides a set of linear equations, which can be solved directly!
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Example 2: Circle and plane

min f(x, y) = x+ y

s. to x2 + y2 = 1

Form the Lagrangian:

L(x, y, λ) = x+ y+ λ(x2 + y2 − 1)

The FONC are

∂L

∂x
= 1 + 2λx = 0

∂L

∂y
= 1 + 2λy = 0

∂L

∂λ
= x2 + y2 − 1 = 0

(x∗, y∗) =

(
±
√

2

2
,±
√

2

2

)
f(x∗, y∗) = ±

√
2

λ = ∓1/
√

2
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Karush-Kuhn-Tucker (KKT) Conditions

General Constrained Optimization Problem

min f(x)

s. to gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , l

If x∗ is a local minimum, then the following necessary conditions hold:

∇f(x∗) +
m∑
i=1

µi∇gi(x∗) +
l∑

j=1

λj∇hj(x∗) = 0, Stationarity (1)

gi(x
∗) ≤ 0, i = 1, · · · ,m Feasibility (2)

hj(x
∗) = 0, j = 1, · · · , l Feasibility (3)

µi ≥ 0, i = 1, · · · ,m Non-negativity (4)

µigi(x
∗) = 0, i = 1, · · · ,m Complementary slackness (5)
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Karush-Kuhn-Tucker (KKT) Conditions

General Constrained Optimization Problem

min f(x)

s. to gi(x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , l

If x∗ is a local minimum, then the following necessary conditions hold:
[Matrix form]

∇f(x∗) + µT∇g(x∗) + λT∇h(x∗) = 0, Stationarity (1)

g(x∗) ≤ 0, Feasibility (2)

h(x∗) = 0, Feasibility (3)

µ ≥ 0, Non-negativity (4)

µTg(x∗) = 0, Complementary slackness (5)
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Remarks

Non-zero µi indicates gi ≤ 0 is active (true with equality).

Conditions are necessary, only.

If problem is convex, then the conditions are necessary and sufficient.

Lagrange multipliers λ, µ are sensitivity to perturbations in constraints

In economics, this is called the “shadow price”

In control theory, this is called the “co-state”
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Geometric Interpretation

µ1∇g1
µ2∇g2

g2 

g1 

x1 

x2 

∇f 
Feasible set 

isolines 

Weighted sum of gradient vectors balances to zero

∇f(x∗) + µ1∇g1(x
∗) + µ2∇g2(x

∗) = 0
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Example 3: Circle and plane REDUX

min f(x, y) = x+ y

s. to x2 + y2 ≤ 1

The KKT conditions are

∂L

∂x
= 1 + 2µx = 0

∂L

∂y
= 1 + 2µy = 0

∂L

∂λ
= x2 + y2 − 1 ≤ 0

µ ≥ 0

µ
(
x2 + y2 − 1

)
= 0 (x∗, y∗) =

(
−
√

2

2
,−
√

2

2

)
f(x∗, y∗) = −

√
2

µ = 1/
√

2
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Ex 4: Mechanics (Physics 7A) Interpretation

Find equilibrium,
i.e. minimize potential energy
subject to kinematic constraints

min f(x1, x2) =
1

2
k1x

2
1 +

1

2
k2 (x2 − x1)

2 +
1

2
k3 (l− x2)

2

s. to x1 −
w

2
≥ 0,

x1 +
w

2
≤ x2 −

w

2
,

x2 +
w

2
≤ l

This is a QP
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Ex 4: Mechanics (Physics 7A) Interpretation

With λ1, λ2, λ3 as the Lagrange multipliers, the KKT conditions are:

λi ≥ 0 for non-negativity,

λ1

(w
2
− x1

)
= 0, λ2 (x1 − x2 + w) = 0, λ3

(
x2 +

w

2
− l
)
= 0

for complementary slackness, and[
k1x1 − k2 (x2 − x1)

k2 (x2 − x1)− k3 (l− x2)

]
+ λ1

[
−1
0

]
+ λ2

[
1
−1

]
+ λ3

[
0
1

]
= 0

for stationarity.

Interestingly, the λi’s can be interpreted as contact forces.
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Additional Reading

Boyd & Vandenberghe, Section 5.5

Papalambros & Wilde, Chapter 5
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