CE 191: Civil and Environmental Engineering Systems Analysis

LEC 13 : Lagrange Multipliers & KKT Conditions

Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley

Fall 2014

Questions / Issues

- **1** What, exactly, is the definition of a minimum? local and global
- 2 Does a solution even exist? feasibility
- **3** Is it unique? if it's convex, then yes
- ⁴ What are the necessary & sufficient conditions to be a solution?
- **5** How do we solve?

Simple Graphical Example

Method of Lagrange Multipliers

Equality Constrained Optimization Problem

$$
\begin{array}{ll}\n\text{min} & f(x) \\
\text{s. to} & h_j(x) = 0, \quad j = 1, \cdots, l\n\end{array}
$$

Lagrangian

Introduce the so-called "Lagrange multipliers" $\lambda_j, j=1,\cdots,l$, i.e. one for each equality constraint. The Lagrangian is

$$
L(x) = f(x) + \sum_{j=1}^{I} \lambda_j h_j(x)
$$

= $f(x) + \lambda^T h(x)$

First order Necessary Condition (FONC)

If a local minimum x^* exists, then it satisfies

$$
\nabla L(x^*) = \nabla f(x^*) + \lambda^T \nabla h(x^*) = 0
$$

Remark 1 - Only necessary

This condition is only necessary. That is, if a local minimum x^* exists, then it must satisfy the FONC. However, a design x which satisfies the FONC isn't necessarily a local minimum.

Remark 2 - Convexity \Rightarrow Necessary and sufficient

If the optimization problem is convex, then the FONC is necessary and sufficient. That is, a design x which satisfies the FONC is also a local minimum.

Example 1: Equality Constrained QP

min
$$
\frac{1}{2}x^{T}Qx + Rx
$$

s. to
$$
Ax = b
$$

Form the Lagrangian:

$$
L(x) = \frac{1}{2}x^{T}Qx + Rx + \lambda^{T}(Ax - b)
$$

Then the FONC is:

$$
\nabla_{x}L(x^*)=Qx^*+R+A^T\lambda=0
$$

Combining the FONC with the equality constraint:

$$
\left[\begin{array}{cc} Q & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^* \\ \lambda \end{array}\right] = \left[\begin{array}{c} -R \\ b \end{array}\right]
$$

provides a set of linear equations, which can be solved directly!

Example 2: Circle and plane

min $f(x, y) = x + y$ s. to $x^2 + y^2 = 1$

Form the Lagrangian:

$$
L(x, y, \lambda) = x + y + \lambda(x^2 + y^2 - 1)
$$

The FONC are

$$
\frac{\partial L}{\partial x} = 1 + 2\lambda x = 0
$$

$$
\frac{\partial L}{\partial y} = 1 + 2\lambda y = 0
$$

$$
\frac{\partial L}{\partial \lambda} = x^2 + y^2 - 1 = 0
$$

Karush-Kuhn-Tucker (KKT) Conditions

General Constrained Optimization Problem

If x^* is a local minimum, then the following necessary conditions hold:

$$
\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla g_i(x^*) + \sum_{j=1}^l \lambda_j \nabla h_j(x^*) = 0, \qquad \text{Stationarity} \qquad (1)
$$

General Constrained Optimization Problem

If x^* is a local minimum, then the following necessary conditions hold: [Matrix form]

$$
\nabla f(x^*) + \mu^T \nabla g(x^*) + \lambda^T \nabla h(x^*) = 0, \qquad \text{Stationarity} \tag{1}
$$

µ

- Non-zero μ_i indicates $g_i\leq 0$ is active (true with equality).
- Conditions are necessary, only.
- If problem is convex, then the conditions are necessary and sufficient.
- Lagrange multipliers λ, μ are sensitivity to perturbations in constraints
	- In economics, this is called the "shadow price"
	- In control theory, this is called the "co-state"

Geometric Interpretation

Example 3: Circle and plane REDUX

min $f(x, y) = x + y$ s. to $x^2 + y^2 \le 1$

The KKT conditions are

∂L $\frac{\partial}{\partial x} = 1 + 2\mu x = 0$ ∂L $\frac{\partial}{\partial y}$ = 1+2 μ y = 0 $\frac{\partial L}{\partial \lambda}$ = $x^2 + y^2 - 1 \leq 0$ $\mu \geq 0$ $\mu(x^2+y^2-1)$

Ex 4: Mechanics (Physics 7A) Interpretation

Find equilibrium,

i.e. minimize potential energy subject to kinematic constraints

min
$$
f(x_1, x_2) = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_2 - x_1)^2 + \frac{1}{2}k_3(1 - x_2)^2
$$

\ns. to $x_1 - \frac{w}{2} \ge 0$,
\n $x_1 + \frac{w}{2} \le x_2 - \frac{w}{2}$,
\n $x_2 + \frac{w}{2} \le 1$

This is a QP

Ex 4: Mechanics (Physics 7A) Interpretation

$$
\lambda_1 \longrightarrow \lambda_2 \qquad \lambda_2 \longrightarrow \lambda_3
$$
\n
$$
k_1 x_1 \longrightarrow \lambda_2 (x_2 - x_1) \qquad k_2 (x_2 - x_1) \longrightarrow \lambda_3
$$
\n
$$
k_3 (l - x_2)
$$

With $\lambda_1, \lambda_2, \lambda_3$ as the Lagrange multipliers, the KKT conditions are: $\lambda_i \geq 0$ for non-negativity.

$$
\lambda_1\left(\frac{w}{2}-x_1\right)=0, \qquad \lambda_2\left(x_1-x_2+w\right)=0, \qquad \lambda_3\left(x_2+\frac{w}{2}-l\right)=0
$$

for complementary slackness, and

$$
\begin{bmatrix} k_1x_1 - k_2(x_2 - x_1) \\ k_2(x_2 - x_1) - k_3(1 - x_2) \end{bmatrix} + \lambda_1 \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0
$$

for stationarity.

Interestingly, the λ_i 's can be interpreted as contact forces.

Boyd & Vandenberghe, Section 5.5

Papalambros & Wilde, Chapter 5