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Fuel Cell Hybrid Vehicles

AC Transit HyRoad Fuel Cell Bus

2016 Toyota Mirai
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How Fuel Cells Work
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Fuel Cell Hybrid Powertrain

Figure: Fuel cell hybrid powertrain. The vehicle is propelled by an electric machine
(EM), which obtains energy from a fuel cell system (FCS), or an electric buffer
(battery or supercapacitor). When EM operates as a generator, mechanical energy
from the wheels is converted to (and stored as) electrical energy in the buffer.
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Bus Line Velocity and Road Grade

Figure: Model of a bus line, expressed by demanded vehicle velocity and road
altitude. The initial and final velocities and road altitudes, respectively, are equal,
thus conserving kinetic and potential energy of the vehicle.
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Research Question
Given a fixed bus line (i.e. velocity-road grade profile), optimize

Fuel cell & super capacitor component sizes

Energy management strategy for power-split

to minimize operating (hydrogen fuel) + component (FC + SC) costs

Unique Features
Component sizes are static design variables (not time-varying)

Energy management strategy is a multi-stage control process
(time-varying)
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Optimization Framework

Figure: Optimization framework for simultaneous component sizing and energy
management of a hybrid city bus. After user inputs are provided, the combined
operational and components cost are minimized simultaneously, in order to obtain
the optimal power split control and sizes of powertrain components.
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Optimization Problem

minimize Operation + Component Cost
subject to: Driving cycle constraints,

Energy conversion and balance constraints,
Buffer dynamics,
Physical limits of components,
...
(For all time instances along the bus line).
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Useful Properties of Convex Function

The function f is said to be concave if −f is convex.

An affine function h(x) = qx+ r is both concave and convex.

A quadratic function f(x) = qx2 + px+ r with domain f R is convex if
p ≥ 0.

A quadratic-over-linear function f(x, y) = x2/y with
dom f =

{
(x, y) ∈ R2 | y > 0

}
is convex.

The geometric mean f(x, y) =
√
xy with dom f =

{
(x, y) ∈ R2 | x, y ≥ 0

}
is concave.

A nonnegative weighted sum f =
∑

wifi, with wi ≥ 0, of convex
functions fi, is a convex function.

A product f(x, y) = xy is generally not a convex function.
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Longitudinal Vehicle Dynamics

Newton’s Second Law, Electric Machine Torque:
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Vehicle Mass:
m(sF, sB) = m0 + sFmF + sBmB
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Electric Motor

PM(TM, t) = a0(ωM) + a1(ωM) · TM(t) + a2(ωM) · T2
M(t)
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Fuel Cell

PFf (PFe, sF) = b0sF + b1 · PFe(t) + b2 ·
P2
Fe(t)

sF
0 ≤ PFe(t) ≤ sFPFe,max
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Supercapacitor

Energy Storage Dynamics
ĖB(t) = −PB(t)

Resistive Losses

PB,loss(PB(t),EB(t)) =
RC

2

P2
B(t)

EB(t)

The SC energy level EB(t) is related to the number of SC cells sFn0 and

voltage V(t) according to EB(t) =
CV2(t)

2 sBn0. Both pack energy, cell voltage,
and electric current are limited according to

0 ≤ EB(t) ≤
CV2

max

2
sBn0

imin

√
2n0

C
EB(t)sB ≤ PB(t) ≤ imax

√
2n0

C
EB(t)sB

KEY STEP: Show these produce convex ineq. constraints, using convex fcn
properties
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Objective Function

Minimize operational cost (consumed hydrogen) and component costs (FC
and SC)

J(TM(t), PFe(t), sF, sB,EB(t), PB(t)) = wh

∫ tf

0
PFf (PFe(t), sF)dt + wFsF + wBsB

subject to:

Longitudinal Vehicle Dynamics

Electric Motor Constraint Equations

Fuel Cell Constraint Equations

Supercapacity Constraint Equations

Must show:

Obj. Fcn. is convex w.r.t. design variables

Inequality Fcns are all convex w.r.t. design variables

Equality Fcns are all affine w.r.t. design variables
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Optimal Results - I
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Optimal Results - II
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Summary

Optimize component sizes (design) and energy management (control)
of fuel cell city bus

Enormously complicated problem

THE SECRET: convex model formulation

Solutions in less than 10sec→ rapid design iteration

This is just the beginning...
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