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Fuel Cell Hybrid Vehicles

AC Transit HyRoad Fuel Cell Bus

2016 Toyota Mirai
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How Fuel Cells Work
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Fuel Cell Hybrid Powertrain

Fuel tank| _ ___ﬂ

Figure: Fuel cell hybrid powertrain. The vehicle is propelled by an electric machine
(EM), which obtains energy from a fuel cell system (FCS), or an electric buffer
(battery or supercapacitor). When EM operates as a generator, mechanical energy
from the wheels is converted to (and stored as) electrical energy in the buffer.
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Bus Line Velocity and Road Grade
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Figure: Model of a bus line, expressed by demanded vehicle velocity and road
altitude. The initial and final velocities and road altitudes, respectively, are equal,
thus conserving kinetic and potential energy of the vehicle.
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Research Question
Given a fixed bus line (i.e. velocity-road grade profile), optimize

@ Fuel cell & super capacitor component sizes
@ Energy management strategy for power-split
to minimize operating (hydrogen fuel) + component (FC + SC) costs

Unique Features
@ Component sizes are static design variables (not time-varying)

@ Energy management strategy is a multi-stage control process
(time-varying)
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Optimization Framework
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Figure: Optimization framework for simultaneous component sizing and energy
management of a hybrid city bus. After user inputs are provided, the combined
operational and components cost are minimized simultaneously, in order to obtain
the optimal power split control and sizes of powertrain components.
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Optimization Problem

minimize

Operation + Component Cost

subject to:

Driving cycle constraints,

Energy conversion and balance constraints,
Buffer dynamics,

Physical limits of components,

(For all time instances along the bus line).
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Useful Properties of Convex Function

@ The function f is said to be concave if —f is convex.
@ An affine function h(x) = gx + r is both concave and convex.

@ A quadratic function f(x) = gx? + px + r with domain f R is convex if
p=>0.

@ A quadratic-over-linear function f(x,y) = x?/y with
dom f = {(x,y) € R? | y > 0} is convex.

@ The geometric mean f(x,y) = \/xy with dom f = {(x,y) € R? | x,y > 0}
is concave.

@ A nonnegative weighted sum f = Y w;f;, with w; > 0, of convex
functions f;, is a convex function.

@ A product f(x,y) = xy is generally not a convex function.
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Longitudinal Vehicle Dynamics

Newton’s Second Law, Electric Machine Torque:

R2, ArcqR3
Toem(SF,Sa,t) = <]v + m(sk,S)—= e ) wm(t) + Pa:r273wwﬁ’(t)
fg

¢rR
+m(sk, s5) ; Ygcosaft )+m(sF,sB) gsina(t)
fg I'tg

Vehicle Mass:
m(Sg,Sg) = Mo + SFME + SpMg
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Electric Motor
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(a) Original model. (b) Approximated model.

Pu(Tw, t) = ao(wwm) + a1(wwm) - Tu(t) + az(wm) - T5(t)
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Fuel Cell
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2
P Fe(t)

Pe(Pre, SF) = boSr + b1 - Pre(t) + by - e
.

0 < PFe(t) < SFPFe,max
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Supercapacitor

Energy Storage Dynamics

Resistive Losses
RC P3(t)

2 Eg(t)
The SC energy level Eg(t) is related to the number of SC cells sgng and

voltage V(t) according to Eg(t) = v (t) sgho. Both pack energy, cell voltage,
and electric current are limited accordmg to

PB,IOSS(PB(t)7EB(t)) =

cVv2
0 < EB(t) < %Sgno
, 2n . 2n
irmin TOE (t)ss < Ps(t) < imax %’EB(t)sB

KEY STEP: Show these produce convex ineq. constraints, using convex fcn
properties
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Objective Function

Minimize operational cost (consumed hydrogen) and component costs (FC
and SC)

tr
J(Tm(t), Pee(t), sF, s, Es(t), Pa(t)) = Wh/ Pes(Pre(t), sF)dt 4+ Wese + wass
0
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Objective Function

Minimize operational cost (consumed hydrogen) and component costs (FC
and SC)

tr
J(Tu(t), Pre(t), s, Sg, Ea(t), Pa(t)) = Wh/ Prs(Pre(t), sr)dt + wesr + wass
0

subject to:
@ Longitudinal Vehicle Dynamics
@ Electric Motor Constraint Equations
@ Fuel Cell Constraint Equations
@ Supercapacity Constraint Equations

Prof. Moura | UC Berkeley CE 191 | LEC 16 - FCHV Design & Control Slide 14



Objective Function

Minimize operational cost (consumed hydrogen) and component costs (FC
and SC)

tr
J(Tu(t), Pre(t), s, Sg, Ea(t), Pa(t)) = Wh/ Prs(Pre(t), sr)dt + wesr + wass
0

subject to:
@ Longitudinal Vehicle Dynamics
@ Electric Motor Constraint Equations
@ Fuel Cell Constraint Equations
@ Supercapacity Constraint Equations
Must show:
@ Obj. Fcn. is convex w.r.t. design variables
@ Inequality Fcns are all convex w.r.t. design variables
@ Equality Fcns are all affine w.r.t. design variables
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Table 5: Psendo code in CVX for convex optimization of simultaneous component sizing
and energy management of a hybrid city bus.

minimize wy, Zle (bns,: + by Pr.(k) + bg%}fk)) At +wpsy + wesp
with respect to: Ppe(k), Pp(k),Ep(k),Ta(k),sp, 85, Yk=1,.,N

subject to:
The(k) = To(k) + 11 (k)se + Ta(k) s,
Pro(k) + Pp(k) - 120 _ p,
= ag(wnr (k) + ay(wnr (k) Tas (k) + az(wa (k)T (k)
Eg(k+1) — Eg(k) = —Pg(k)At,
Ep(N+1)=Eg(1),
Tar(k) = Tatmin(wnr (K)),
0 < Ppe(k) < 8¢ PreBmaz,
0 < Bl < ot

imin\.r'z%EB(k)SB < Pg(k) < tmax %EB("‘:)SB‘

.Sf)-o.

sp >0,
foralk =1,...,N.
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Optimal Results - |

e Optimal results for a FCHV city bus using Parameter Value
supercapacitor as an energy buffer: Hydrogen price 4.44 €kg
FCS price 34.78 €/kWh

Parameter Value Supercapacitor price 10000 €/kWh
FCS size 69.3kW Yearly travel distance 70000 km
Buffer size 0.7kWh Bus’ service period 2 years
Total cost 0.28€/km Yearly interest rate 5%
Computational time <10s Prices and bus specifications.

Optimal results.
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Optimal cost for different sizes of fuel cell system and electric buffer. The shaded region illustrates infeasible component sizes.
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Optimal Results - I

B0
50
£ - .
= 40 - Optimal operating points
H [ | Distribution [%]
T 30
%
@ 20
4
10 H
o |_| Hﬂﬂl_h—h—.m =
Time [min] o 20 40 60
FCS power [kW]
FCS’s operating points.
£ 100 \
5 o
5 — 80 D
5 ) N\
§ fe
£ 5 0 V2,
a é Optimal
[} 5 10 15 25 35 40 45 50 20 ::;[;m
Time [min] L0 ) | Efficiency [%]
Buffer's state of charge trajectory. Pmm 1000 0 1000

Pack power at terminals [kW]
Buffer's operating points.
Further details in
[17 N.Murgovski, X. Hu, L. Johannesson, B. Egardt. Combined design and control optimization of hybrid vehicles. Handbook of Clean
Energy Systems. Accepted for publication.
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@ Optimize component sizes (design) and energy management (control)
of fuel cell city bus

@ Enormously complicated problem
@ THE SECRET: convex model formulation

@ Solutions in less than 10sec — rapid design iteration

This is just the beginning...
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Case study 3: Plug-in hybrid electric vehicle (PHEV) in a series
configuration

¢ Dual buffer consisting of Saft VL. 45E Electric grid
battery and Maxwell BCAP2000 P270

supercapacitor. Ausiliary load

e Can charge at 7 bus stops for 105, or
10 min before starting the route.
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