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CHAPTER 1: MODELING AND SYSTEMS ANALYSIS

1 Overview

The fundamental step in performing systems analysis and control design in energy systems is
mathematical modeling. That is, we seek to write the ordinary differential equations (ODEs) that
describe the physics of the particular energy system of interest. This process is highly non-trivial,
and requires a careful combination of first principles (e.g. physics, chemistry, thermodynamics),
experience, and creativity. Once these equations are properly derived, we then formulate the sys-
tem dynamics into a so-called “state-space” form. The state-space form is the canonical template
for analysis and control. State-space models can be divided into linear and nonlinear systems.
We next focus on linear systems, and how they can be derived from nonlinear systems. The next
and final fundamental concept is “stability”. Stability, in rough terms, means the energy system
does not “blow up” in some sense. In summary, this chapter is organized as follows:

1. Mathematical modeling of dynamic systems

2. State-space representations

3. Linear Systems

4. Stability

2 Mathematical Modeling of Dynamic Systems

Energy systems convert and store energy from a variety of physical domains, such as mechanical
(e.g. flywheel), electrical (e.g. ultracapacitor), hydraulic (e.g. accumulator), chemical (e.g. gaso-
line), thermal (e.g. ice storage), (strong) nuclear (e.g. the energy binding a Uranium nucleus),
economic (e.g. bank account) and more. As such, engineers and scientists require a common
framework for describing and analyzing energy systems. This common framework is mathemat-
ics, and we refer to our description of the dynamic energy systems as a mathematical model. One
must understand that a mathematical model is, at best, a surrogate for the physical system, whose
precision is subject to the assumptions and requirements made by the energy systems engineer.
To quote eminent statistician Dr. George E. P. Box (1919 – 2013): “Essentially, all models are
wrong, but some are useful.”

2.1 First Principles Modeling vs. Data-Driven Modeling

The process of translating an unstructured technical (or non-technical) energy system into a pre-
cise and clearly defined mathematical model is far from trivial. In many cases, a well-established
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set of models already exist. In other cases, a model must be generated for our purpose. Therefore,
we desire a methodology for model generation.

Unfortunately, such a methodology cannot be “algorithmic” in the sense that it would offer a
recipe that, when exactly followed, is guaranteed to produce the best possible model. The process
of abstraction from a complex energy system to a mathematical model is simply not amenable to
such a high degree of formalization. It is, in many instances, an “art form” that requires experience
and intuition. Nevertheless, this section will provide some useful concepts for model generation.

The focus below will be on “control-oriented models,” i.e., models which capture a system’s
main static and dynamic phenomena, without creating an excessive computational burden. The
main reason for this requirement is that the models are assumed to be used repeatedly in numeri-
cal computations (for instance, when optimizing the system design or feedforward control signals)
or in real-time loops (for instance, in feedback control systems). In simpler terms, we anticipate
using these control-oriented models for planning and/or operation, where computational simplicity
is desired.

A contrasting modeling paradigm is often pursued by scientists. That is, a scientist often stud-
ies the natural or man-made world to theorize mathematical relations that explain her observations.
The more accurate and detailed the model, the better. In this course, we follow Albert Einstein’s
advice: “Everything Should Be Made as Simple as Possible, But Not Simpler.” That is, the mathe-
matical model should be sufficiently detailed to suit our specific energy management goals.

Energy system model synthesis is often based on physical first principles, for instance, the
first and second laws of thermodynamics, the Lagrange equations in mechanics, Maxwell’s equa-
tions in electromagnetism, or the Navier-Stokes law in fluid mechanics. Compared to data-driven
methods (for instance, correlation methods), this approach has at least four major benefits:

• The models obtained are explanatory. In contrast to data-driven models, which seek to
match input-output predictions to data, first-principle models explain the internal dynamics.
This provides enhanced engineering insight into the energy system – a particularly nice
property when high performance of safety is critical.

• The models obtained are, in principle, able to extrapolate the system behavior. That is, they
can be useful beyond the operating conditions used in model validation.

• The models can be formulated even if the real system is not available (system still in planning
phase or too dangerous / expensive to be used for experiments).

• Once such a mathematical model exists for a first system, the adaptation of that model
to minor system modifications is relatively easy. Subsequent controller designs, which are
based on the system model, can then be carried out (almost) automatically. This time-saving
approach is critical for real-world application.
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In today’s data rich world, data-driven models (a.k.a. black-box, machine learning, or artificial
intelligence models) have received renewed interest. Examples include artificial neural networks,
deep learning networks, time series models, random forests, support vector machines, and more.
Unlike first principles models, data-driven models make no attempt to model the internal features.
Instead, they focus on matching the input-output behavior to observational data. Data-driven
models have various advantages and disadvantages, including:

• Data-driven model synthesis generally does not require one to fundamentally understand
the underlying process. This enables scalability and generalizability in a sense. However,
you are exposed to errors or misuse.

• Data-driven models can predict processes that lack well-understood first principles. Exam-
ples include human behavior, such as advertisement click rates, building plug-load power
consumption, mobility behaviors, and more. They can also predict behaviors that are difficult
to model with first principles, such as wind power generation in the presence of wind gusts,
solar power generation in the presence of clouds, etc.

• Data-driven models are trained and validated with data. As a result, there is no guarantee of
accurate predictions outside the training data regime. Thus, extrapolation is a weakness.

Note, our modeling philosophy need not be binary, i.e. pick black or white modeling. This
course promotes a “hybrid” modeling approach. Namely, utilize first principles when possible and
combine with data-driven models when necessary. In any case, a skilled energy system engineer
should have both techniques within their tool set.

2.2 Dynamical Systems Model

Figure 1 provides a block-diagram schematic of a generic dynamic system model that evolves in
time t. The system, denoted by Σ, is characterized by a set of state variables x(t). The state
variables are influenced by the input variables u(t) that represent the (controlled or uncontrolled)
action of the system’s environment on the system. The output variables y(t) represent the observ-
able or measurable aspects of the system’s response.

-
y(t)

Output variables
-

u(t)

Input variables
Dynamic System |Σ

State variables |x(t)

Figure 1: General dynamic system model.
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In this chapter, we will refine the definition of this dynamical system model further. This defini-
tion, however, is sufficient to outline five potential applications of a mathematical model:

1. Analysis. Given a future trajectory of u(t), x(0) at the present, and the system model Σ,
predict the future of y(t). This use case is most commonly called “simulation” or “prediction”.
CH1 focuses on this topic.

2. State Estimation. Given a system Σ with time histories u(t) and y(t), find x that is consistent
with Σ, u, y. This is the monitoring problem. That is, you cannot measure every state, yet
you wish to monitor every state. You wish to synthesize an algorithm that fuses the model
and measurable states to produce the unmeasurable states. CH2 focuses on this topic.

3. System Design or Planning. Given u(t) and some desired y(t), find Σ such that u(t) acting
on Σ will produce y(t). Most engineering disciplines deal with design synthesis. Traditionally,
one might create various physical prototypes to synthesize a desired system. This can,
however, be very time-consuming and expensive. In fact, generating physical prototypes
for a national electricity infrastructure, for example, is simply not possible. A mathematical
model helps automate this process by virtually synthesizing designs. CH3 focuses on this
topic.

4. Model Identification. Given time histories u(t) and y(t), usually obtained from experimental
data, determine a model Σ and its parameter values that are consistent with u and y. Clearly,
a “good” model is one that is consistent with a variety of data sets u and y. This is often called
“system identification” in the control literature or simply “modeling” in machine learning. CH4
focuses on this topic.

5. Control Synthesis. Given a system Σ with current state x(0) and some desired y(t), find u(t)

such that Σ will produce y(t). This is, put simply, the energy management problem. The
idea is to construct a series of decisions that produce a desirable flow of energy through the
system. CH5 focuses on this topic.

Using the dynamic system model in Fig. 1, you now have a formal framework to understand and
unify the entire course. The remainder of the course notes are simply details.

2.3 Stocks and Flows

When modeling any physical system, we consider two main classes of objects:

• “stocks,” for instance, thermal energy, kinetic energy, or information;

• “flows,” for instance, heat, mass, etc. transferring between the stocks.
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The notion of a stock is fundamental in system modeling, and only systems including one or more
stocks exhibit dynamic behavior. For each stock there is an associated “level” variable that is a
function of the stock’s content The term “state variable” is used for this quantity in the systems
and control community. The flows are typically driven by differences in the stock levels. Several
examples will be given below.

Armed with the stock concept, we present general guidelines to formulate a control-oriented
model. This encompasses (at least) the following seven steps:

1. precisely define the modeling objective;

2. define the system boundaries (what are the inputs? what are the outputs?);

3. identify the relevant stocks (of mass, energy, information,...) and the corresponding level (i.e.
state) variables;

4. formulate the differential equations (conservation laws) for all relevant stocks

d

dt
(stock level) =

∑
inflows−

∑
outflows; (1)

5. formulate the (sometimes nonlinear) algebraic relations that express the flows between the
stocks as functions of the level variable;

6. train the unknown system parameters from experimental data; and

7. validate the model against experimental data that was not used for model identification.

Remark 2.1. The most common mistake in modeling is skipping Step 1 above. Without a precise
objective, one has no criteria in which to evaluate which modeling features are necessary and
which modeling features are superfluous. TIP: Write down your objective. Make it precise.

Remark 2.2. The second most common mistake is poorly executing Step 2 above, in the fol-
lowing sense. Within the system boundaries, you seek to formulate mathematical equations that
describe the system’s evolution. Outside the system boundaries is the environment. You do not
seek to formulate equations that describe the environment. Instead, you seek to understand the
environment’s impact on the system. TIP: Ask yourself this question: What is within my system
boundaries? What do I consider the environment?

Example 2.1 (Room Thermal Dynamics in Buildings). Suppose you are an HVAC engineer and
you wish to consider our lecture room as a dynamic thermal system (see Fig. 2). Eventually, you
wish to regulate temperature in the room within a comfortable range, while minimizing electrical
costs, subject to time-varying changes in ambient temperature and internal heat generation (e.g.
from human occupancy or electrical devices). Our immediate objective is to formulate a mathe-
matical model for this purpose. Perform Steps 1-5 of the modeling formulation procedure. How
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would the model be expanded to consider multiple lecture halls? What role does a thermostatically
controlled HVAC unit play?

Lecture 
Room
T(t)

TA(t)

A/C

P s(t)

R

PI (t)

Figure 2: Schematic of Room Thermal Dynamics in Buildings.

Sample solution:

1. Modeling Objective: Our objective is to formulate a mathematical model that predicts how
room temperature evolves, given interactions with the outside environment and an air condi-
tioning (A/C) unit. This model will be used to design a controller that intelligently regulates
room temperature to comfortable levels, while minimizing electricity costs.

2. System Boundaries: The system outputs include room temperature T (t) and thermal
power removed by the A/C unit P (t). The system inputs include ambient environmental
temperature TA(t), internal heat generation PI(t), and the A/C mode s(t) ∈ {0, 1}, corre-
sponding to cooling or off.

3. Stock(s): The stock is thermal energy stored in the room. The level or state variable, indi-
cating the amount of stored thermal energy, is T (t).

4. Conservation Law(s): The room temperature T (t) changes due to heat transfer with the
outside environment and with the A/C unit. The First Law of Thermodynamics, in the form of
Newton’s Cooling Law, gives us:

C
d

dt
T (t) =

1

R
[TA(t)− T (t)]− s(t)P + PI(t) (2)

where parameter C is the room’s thermal capacitance [kWh/◦C] and R is the thermal resis-
tance between the room and outside [◦C/kW]. Consider the units. Note the left-hand side
gives the time derivative of thermal energy inside the room – i.e. the rate at which the stock
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level changes. The right-hand side captures thermal power flowing in/out of the room – i.e.
the flows in and out of the system.

5. Relation between Flows and Level Variable: These relations have already been ex-
pressed within the first and second terms on the right-hand side of (2). We can additionally
compute the electrical power consumed by the A/C unit as:

Pelec(t) = s(t)P/η (3)

where η represents the coefficient of performance (i.e. efficiency of electric-to-thermal power
conversion).

• Multiple Rooms: If there are multiple rooms, then we would consider heat transfer between
the rooms and between the rooms and environment.

• Thermostatically Controlled HVAC: A control law is an algorithm that actuates the HVAC
unit through control signal s(t), using measurements of room temperature T (t). A typical
thermostatic control law (assuming A/C only) is given mathematically by:

s(t) =


0 if T (t) ≤ Tsp − ∆

2

1 if T (t) ≥ Tsp + ∆
2

s(t− 1) otherwise

(4)

where Tsp is the set-point temperature and ∆ is a deadband around the set-point.

Example 2.2 (Vehicle Dynamics). Suppose you are a mobility engineer, and you wish to analyze
the energy consumption dynamics of a moving vehicle. Consider a vehicle (Fig. 3) of mass m,
receiving traction force F (t) from the engine, and a resistive force k0 + k1v

2(t) that includes rolling
friction forces and viscous aerodynamic drag. Perform Steps 1-5 of the modeling formulation
procedure.

Figure 3: Free-body diagram of a moving vehicle (focused on longitudinal dynamics).

Sample solution:

1. Modeling Objective: Our objective is to predict energy consumption in a vehicle, given its
velocity trajectory v(t).
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2. System Boundaries: The system outputs include traction force supplied by the engine
F (t), which we can map to fuel consumption given the appropriate relation. The system
inputs include its velocity trajectory v(t).

3. Stock(s): The stock is the kinetic energy of the vehicle. The level or state variable, indicating
the amount of stored kinetic energy, is v(t).

4. Conservation Law(s): The velocity v(t) changes due to forces from the engine, rolling
friction, and air drag. Newton’s second law gives us:

m
d

dt
v(t) = F (t)−

[
k0 + k1v

2(t)
]

(5)

5. Relation between Flows and Level Variable: These relations have already been ex-
pressed on the right-hand side of (5).

Remark 2.3. Students commonly make mistakes defining the system inputs and outputs. I en-
counter this difficulty when grading your midterms. The common mistake is that an input is a flow
into the system from the environment, and an output is a flow from the system into the environ-
ment. That is wrong. The inputs & outputs refer to the flow of information (signal flow), not the flow
of matter or energy. The system theoretic framework below provides clarification.

2.4 System Theoretic Framework

After the ODEs have been written, usually based on first principles, we now think carefully about
the unique roles of each variable or element, as detailed by the notation in Figure 4. To this end,
we refine the dynamic system model framework defined in Fig. 1. All symbols in Table 4 may be
scalar or interpreted as a column vector.

Figure 4: Mathematical Model Elements

Symbol Description
x State variable
u Controllable inputs
w Uncontrollable inputs
y Measurable outputs
z Performance outputs
θ Parameters

	

Energy	System	
	
	

u 

w 

y 

x 

θ 

z 

Figure 5: Block diagram of dynamic energy system.

The relationships between these variables are illustrated in Fig. 5. These six categories of
variables serve distinct purposes in the dynamic energy system.
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• The state x represents the dynamic condition of the energy system – in other words, the
stock levels. Examples include battery state-of-charge, flywheel speed, power system fre-
quency, room temperature, or financial account balance.

• The controllable inputs u represent a series of decisions we make to manage the energy
system in a desirable way. These might include driver throttle position, thermostat set points,
or wind turbine blade angles.

• The uncontrollable inputs w represent signals entering the energy system, which are not
under our control. Examples include wind speed, solar irradiation, and traffic flow.

• The measured outputs y represent physical quantities that we measure with sensors. These
might include voltage, vehicle speed, or classroom humidity.

• The performance outputs z represent quantities that we monitor, but may not measure di-
rectly with sensors. These might include fuel costs, time, or resources consumed.

• The parameters θ are a vector of scalar quantities which encapsulate physical properties of
the system that, nominally, do not evolve with time. Examples include vehicle mass, thermal
resistance of walls, or inductances of power transmission lines. These arise naturally from
the physics or design of the system.

Example 2.3 (Flywheel Energy Storage). Consider the flywheel shown in Fig. 6. The basic ele-
ment of a flywheel is a rotating inertial mass connected to an electrical machine. Depending on
which direction the machine applies torque, it converts energy between the electric and mechani-
cal (kinetic energy) domains. Let us denote the flywheel inertia as I, the angular velocity as ω(t),
a coefficient of friction as b, and the electric machine torque as T (t). Then the equation of motion
is governed by Euler’s rotation equation:

Iω̇(t) = −bω(t) + T (t), (6)

where ˙(·) denotes the derivative with respect to time. Note that ω(t) plays the role of state, T (t)

plays the role of controllable input, and the pair (I, b) play the role of parameters. If, in addition,
we measure angular velocity then ω(t) is also a measurable output: y(t) = ω(t).

Example 2.4 (RLC Circuit). We will now consider a simple series combination of three passive
electrical elements: a resistor R, an inductor L, and a capacitor C, in series with a controllable
voltage source V . Suppose we measure voltage across the resistor. This electrical system is
known as an RLC circuit.

Since this circuit is a single loop, application of Kirchoff’s current law (KCL) shows that the
current is the same throughout the circuit at any given time, i(t). Applying Kirchoff’s voltage law
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Figure 6: Main components of a typical fly-
wheel.

Figure 7: RLC circuit

(KVL) around the loop and using the sign conventions indicated in the diagram, we arrive at the
following governing equation.

V (t)− Ldi
dt

(t)−Ri(t)− 1

C

∫ t

0
i(τ)dτ = 0. (7)

Suppose we define q(t) to be the capacitor charge, such that q(t) =
∫ t

0 i(τ)dτ . Then (7) can be
written as,

V (t)− Lq̈(t)−Rq̇(t)− 1

C
q(t) = 0. (8)

Note that (8) contains a double derivative in time. We call this a “second-order” equation. In
contrast, (6) from the flywheel energy storage example is a “first-order” system. In the present
example, the pair (q, q̇) is the state, V plays the role of controllable input, and triple (R,L,C) play
the role of parameters. The measurable output is voltage across the resistor, given mathematically
as:

y(t) = Ri(t) = Rq̇(t). (9)

Example 2.5 (Automated Vehicle Platoon). Consider a platoon of two automated long-distance
freight trucks (i.e. a “micro-platoon”), as shown in Fig. 8. To reduce air drag, and therefore
fuel consumption, we seek to maintain a close distance between the two vehicles without risking
collision. Assume you can measure the distance between trucks, and may control the propulsion
of each truck. Following the same procedure as Example 2.2, we write the equations of motion
using Newton’s second law for each vehicle:

ẋ1(t) = v1(t), ẋ2(t) = v2(t), (10)

m1v̇1(t) = F1(t)− k0 − k1v
2
1(t)− Fw(t), m2v̇2(t) = F2(t)− k0 − k1v

2
2(t)− Fw(t), (11)
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F2(t)k0+k1v22(t)

h(t)

F1(t)k0+k1v12(t)

Fw(t) Fw(t)

Figure 8: Micro-platoon of two long-distance freight trucks.

where xi, vi, represents the vehicle position and velocity respectively, and i = 1, 2 indexes the ve-
hicles. Variables mi, Fi are the vehicle mass and propulsion force, respectively. Coefficients k0, k1

are constants related to rolling friction and viscous aerodynamic drag. Finally, Fw(t) is a random
headwind force. Note that (10)-(11) contain four variables with time derivatives, x1, x2, v1, v2. This
yields a fourth-order system.

Since we are specifically interested in the inter-vehicle distance, we define “headway” as h(t) =

x1(t)− x2(t). We can thus reformulate the model into a third-order system:

ḣ(t) = v1(t)− v2(t), (12)

m1v̇1(t) = F1(t)− k0 − k1v
2
1(t)− Fw(t), (13)

m2v̇2(t) = F2(t)− k0 − k1v
2
2(t)− Fw(t). (14)

The system theoretic elements are:

Symbol Description
x(t) = [h(t), v1(t), v2(t)]T State variables: headway, truck 1 velocity, truck 2 velocity
u(t) = [F1(t), F2(t)]T Controllable inputs: truck 1 propulsion, truck 2 propulsion

w(t) = Fw(t) Uncontrollable inputs: Headwind force
y(t) = [h(t), v1(t), v2(t)]T Measurable outputs: headway & velocities

z(t) = h(t) Performance outputs: headway - the variable we seek to regulate
θ = [m1,m2, k0, k1]T Parameters: truck 1 mass, truck 2 mass, rolling friction & air drag coef.

Remark 2.4. Clearly identifying the state variable is often difficult when you are first learning
about dynamical systems modeling. Indeed, this concept is subtle. Here is a tip. Write down
the differential equations first, before identifying the state variable. The variable which has a time
derivative is very often the state variable.

Next we discuss the canonical format for dynamical energy systems of any finite order, called
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the “state space representation”.

3 State-Space Representation

The state-space representation is a convenient and compact way to write the dynamics of en-
ergy systems. Put simply, it consists of a finite number of coupled first-order ordinary differential
equations (ODEs)

ẋ1(t) = f1 (t, x1(t), ..., xn(t), u1(t), ..., up(t))

ẋ2(t) = f2 (t, x1(t), ..., xn(t), u1(t), ..., up(t))

...
...

ẋn(t) = fn (t, x1(t), ..., xn(t), u1(t), ..., up(t)) (15)

where n represents the number of states, and p represents the number of controllable inputs. The
uncontrollable input, w, can be added as well, but we suppress this for simplicity at this moment.
We often use vector notation to write these equations in a compact form. Define

x(t) =


x1(t)

x2(t)
...

xn(t)

 , u(t) =


u1(t)

u2(t)
...

up(t)

 , f(t, x(t), u(t)) =


f1(t, x(t), u(t))

f2(t, x(t), u(t))
...

fn(t, x(t), u(t))

 (16)

Formally, we define vectors x(t) : R+ → Rn, u(t) :→ Rp, f(·, ·, ·) : R+ × Rn × Rp → Rn. Then
we can re-write n first-order differential equations as a single n−dimensional first-order vector
differential equation

ẋ(t) = f(t, x(t), u(t)) (17)

When q measurements are present, then we include another q−dimensional equation

y(t) = h(t, x(t), u(t)) (18)

where y(t) represents the q measured process outputs. Mathematically, y(t) : R+ → Rq. In
summary, we refer to (17) as the state equation and (18) as the output equation. When the
dynamical system does not have any control input, i.e. it runs autonomously, then we refer to it as
an autonomous system. Mathematically, this is written,

ẋ(t) = f(t, x(t)) (19)

An important fundamental concept in dynamical systems is equilibria. Roughly, the equilibrium
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of a dynamical system is the point in the state-space where the states remain constant, i.e. steady-
state. It is defined mathematically as follows:

Definition 3.1. (Equilibrium) Consider an autonomous dynamical system ẋ(t) = f(t, x(t)). The
state xeq ∈ Rn is called the equilibrium when it satisfies the following equation,

0 = f(t, xeq) (20)

For non-autonomous systems, i.e. ẋ = f(t, x, u), consider a fixed input ueq ∈ Rp. The state
xeq ∈ Rn is called the equilibrium with respect to (w.r.t.) input ueq when it satisfies the following
equation,

0 = f(t, xeq, ueq) (21)

Remark 3.1. Energy systems do not always present themselves directly as a mathematical model
in state space form, with their equilibria explicitly defined. More often, we arrive at a collection of
ODEs and algebraic equations from first principles. However, we can usually carefully select the
state variables to form a state-space representation and compute equilibria. This task arises in
the analysis of many energy systems, including tokamak plasmas for thermonuclear fusion, mul-
tiphase fluid mechanics in oil & gas drillstrings, electrochemical battery models, electromagnetic
models of AC induction motors in high-performance EVs, and more. We illustrate the computation
of equilibria with the following example.

Example 3.1 (RLC Circuit Revisited). Recall the RLC circuit studied in Example 2.4. The dynamics
are described by the following second-order differential equation,

V (t)− Lq̈(t)−Rq̇(t)− 1

C
q(t) = 0. (22)

where we defined q̇(t) = i(t). Consequently, we can re-write these second-order dynamics in
state-space form

q̇(t) = i(t) (23)

i̇(t) = − 1

LC
q(t)− R

L
i(t) +

1

L
V (t) (24)

Note that the state vector is x(t) = [q(t), i(t)]T and the control input is u(t) = V (t). Consequently,
we can re-write the above equations in vector form

d

dt

[
q(t)

i(t)

]
=

[
0 1

− 1
LC −R

L

][
q(t)

i(t)

]
+

[
0
1
L

]
V (t) (25)

or
ẋ(t) = Ax(t) +Bu(t) (26)
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with matrices A ∈ R2×2 and B ∈ R2×1 appropriately defined. Now consider a fixed voltage input
V (t) = V eq. Then the equilibrium xeq by definition must satisfy

0 = Axeq +BV eq (27)

Assuming A is invertible, xeq = −A−1BV eq.

Remark 3.2. Equation (26) is an extremely important and special case of (17). It is called a “linear
system.” The significance of (26) is that, when energy systems can be described by this format,
there exists a very large set of tools for system analysis and control design. When (26) can-
not appropriately capture the energy system dynamics, then the set of available tools decreases
dramatically. In the next section we formally introduce linear systems. Before discussing linear
systems, let us explore another example of equilibria for dynamic systems.

Example 3.2 (Microplatoon). Recall the micro-platoon from Example 2.5. The dynamics are de-
scribed by the following third-order system:

ḣ(t) = v1(t)− v2(t), (28)

m1v̇1(t) = F1(t)− k0 − k1v
2
1(t)− Fw(t), (29)

m2v̇2(t) = F2(t)− k0 − k1v
2
2(t)− Fw(t). (30)

Suppose we seek to find the steady-state forces F eq
1 , F eq

2 to achieve a steady-state headway of
heq at a fixed speed of veq1 = veq2 . Assume a constant wind force of F eq

w . The equilibrium xeq =

[heq, veq1 , v
eq
2 ]T , by definition, must satisfy:

0 = veq1 − v
eq
2 , (31)

0 = F eq
1 − k0 − k1(veq1 )2 − F eq

w , (32)

0 = F eq
2 − k0 − k1(veq2 )2 − F eq

w . (33)

The steady-state input that achieves xeq is F eq
i = k0 + k1(veqi )2 + F eq

w , for i = 1, 2. Note the
steady-state input is invariant with respect to the desired headway heq.

Example 3.3 (Pendulum, Section 1.2.1 of [1]). Consider the simple pendulum shown in Fig. 9,
where L denotes the length of the rigid massless rod, m denotes the mass of the bob, and θ

represents the rod’s angle with the vertical axis. The pendulum is free to swing within a vertical two-
dimensional plane. There are three forces acting on the bob. First, gravity acts in the downward
vertical direction. Second, a tension force acts along the rod, toward the frictionless pivot. Third,
a friction force resists the bob’s motion through the medium, which we assume to be proportional
to the bob’s speed with coefficient of friction k. It is straight-forward to derive the equation of
motion by (i) drawing a Cartesian coordinate system centered on the bob, (ii) rotating the axes to
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Figure 9: Pendulum.

be parallel and perpendicular to the rod, (iii) drawing a free-body diagram with forces aligned with
the coordinate axis, (iv) applying Newton’s second law:

mLθ̈(t) = −mg sin θ(t)− kLθ̇(t) (34)

This is a second-order system, similar to Example 3.1. Defining the state vector as x(t) =

[x1(t), x2(t)]T = [θ(t), θ̇(t)]T , we can re-write the second-order dynamics into a state-space from

ẋ1(t) = x2(t), (35)

ẋ2(t) = − g
L

sinx1(t)− k

m
x2(t). (36)

Unlike Example 3.1, this system is nonlinear due to the sinusoidal term in (36). To find the equilib-
rium points, we set ẋ1, ẋ2 = 0 and solve for x1, x2:

0 = xeq2 , (37)

0 = − g
L

sinxeq1 −
k

m
xeq2 . (38)

The equilibrium points are located at

xeq1 = nπ, for n = 0,±1,±2, · · · , xeq2 = 0. (39)

From the physical description, the pendulum has only two unique equilibrium points (0, 0) and
(π, 0), which correspond to the downward and upward positions, respectively, with zero velocity.
All other points are repetitions of these positions modulo an integer number of full swings from
the reference position. Nevertheless there are, mathematically, an infinite number of equilibrium
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points. This example hints at the general fact that a nonlinear system may exhibit, one, multiple,
or no equilibrium points.

Physical intuition suggests that equilibrium points (0, 0) and (π, 0) are quite distinct from each
other. Namely, the pendulum can indeed rest at the (0, 0) equilibrium position. However, it can
hardly remain at the (π, 0) position since any infinitesimally small disturbance will take the pendu-
lum away from this position. The difference between these two equilibrium points is in their stability
properties, a topic of enormous importance in practice and theory, which we study in Section 5.

4 Linear Systems

Linear systems are the foundation of systems and control engineering. In this section, we precisely
define a linear system.

A linear time-invariant (LTI) system is described by the following state-space model:

ẋ(t) = Ax(t) +Bu(t) (40)

y(t) = Cx(t) +Du(t) (41)

where the state, control, and output have dimensions x ∈ Rn, u ∈ Rp, and y ∈ Rq, respectively.
The matrices A,B,C,D are Rn×n, Rn×p, Rq×n, and Rq×p, respectively. The system is said to be
“time-invariant” when the matrices A,B,C,D are constant in time, e.g. Example 3.1

4.1 Linearization

No energy system is exactly linear and time-invariant. They are, in general, nonlinear and can
be described by the nonlinear ODEs (17)-(18). Nonlinear system analysis is beyond the scope of
this chapter (see [1]). However, linear approximations are often suitable for analysis and control
design. Moreover, a wealth of tools exist for linear systems. Next, we describe how to approximate
a nonlinear system by an LTI system. Recall Taylor’s theorem:

Theorem 4.1. (Taylor’s Theorem) Let k ≥ 1 be an integer. Let f be a nonlinear analytic function
that maps scalars to scalars, i.e. f : R → R, and is k times differentiable at the value x = a.
Consider the power series expansion of f(x) around x = a,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + ...+

f (k)(a)

k!
(x− a)k +Rk+1(x) (42)

where Rk+1(x) is called the remainder term. Then infinite series converges to f(x),

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k (43)
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if and only if Rk+1(x)→ 0 as k →∞. Note, this version of Taylor’s theorem applies to functions of
scalar reals, i.e. f : R→ R. Extensions exist for multivariable functions, i.e. f : Rn → R.

In our case, the utility of Taylor’s theorem is a systematic method to approximate nonlinear
systems by an LTI system. Consider the nonlinear ODE

ẋ(t) = f(x(t), u(t)), (44)

and the equilibrium xeq corresponding to ueq. Then, we can define the perturbation from the
equilibrium as x̃(t) = x(t) − xeq and ũ(t) = u(t) − ueq. Graphically, we have simply translated the
coordinate system so the origin is at (xeq, ueq). The ODE for x̃(t) is then

˙̃x(t) = ẋ(t)− ẋeq = f (x̃(t) + xeq, ũ(t) + ueq)− 0 (45)

Now we apply Taylor series expansion, where the role of x in (42) is played by the pair (x̃(t) +

xeq, ũ(t) + ueq) and the role of a in (42) is played by the pair (xeq, ueq),

˙̃x = f(xeq, ueq) +
∂f

∂x
(xeq, ueq) (x̃(t) + xeq − xeq) +

∂f

∂u
(xeq, ueq) (ũ(t) + ueq − ueq) (46)

+R2(x̃(t) + xeq, ũ(t) + ueq) (47)

Note that the first term satisfies the definition of an equilibrium and is therefore zero. Truncating
the Taylor series expansion to remove the second order and higher remainder terms results in

˙̃x(t) =
∂f

∂x
(xeq, ueq)x̃(t) +

∂f

∂u
(xeq, ueq)ũ(t) (48)

or
˙̃x(t) = Ax̃(t) +Bũ(t) (49)

where A = ∂f
∂x (xeq, ueq) and B = ∂f

∂u(xeq, ueq). Matrices A and B are called the Jacobians.
To summarize, equation (49) represents the linearized dynamics of the nonlinear dynamic

system (44), around equilibrium point (xeq, ueq). Very often, the linearized dynamics are sufficient
to study energy systems, particularly around some desired operating point.

Example 4.1 (Magnetic Levitation, Example 4-11 of [2]). Figure 10 shows the diagram of a
magnetic-ball suspension system. The objective of the system is to control the position of the
steel ball by adjusting the current in the electromagnet through the input voltage e(t). The differ-
ential equations for the system are given by

M
d2y(t)

dt2
= Mg − i2(t)

y(t)
, (50)

e(t) = Ri(t) + L
di(t)

dt
. (51)
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Figure 10: Magnetic ball suspension system.

where e(t) is the input voltage, y(t) is the ball position, i(t) is the winding current, M is the ball’s
mass, g is gravitational acceleration, R is the winding resistance, and L is the winding inductance.
Let us define the state variables as x1(t) = y(t), x2(t) = dy(t)/dt, and x3(t) = i(t). The state
equations of the system are

dx1(t)

dt
= x2(t), (52)

dx2(t)

dt
= g − 1

M

x2
3(t)

x1(t)
, (53)

dx3(t)

dt
= −R

L
x3(t) +

1

L
e(t). (54)

Find the Equilibrium: Let us linearize the system around some desired equilibrium position ydes =

xeq1 = constant. This could be ydes = 10cm, for example. The equilibrium values of the remaining
states are,

xeq2 =
dxeq1
dt

= 0,
d2xeq1
dt2

= 0 (55)

The equilibrium value of x3(t) = i(t) is determined by setting the LHS of (53) to zero, substituting
xeq1 = ydes, and solving for xeq3 . We obtain

ieq = xeq3 =
√
Mg · ydes. (56)

Finally, the equilibrium value for the control input e(t) can be found by setting the LHS of (54)
to zero, substituting xeq3 and solving for eeq. This yields eeq = R

√
Mg · ydes. To summarize, the
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equilibrium is given by: xeq1
xeq2
xeq3

 =

 ydes

0√
Mg · ydes

 , eeq = R
√
Mg · ydes. (57)

Perturbation Variables: Next we define perturbation variables: x̃1(t)

x̃2(t)

x̃3(t)

 =

 x1(t)− xeq1
x2(t)− xeq2
x3(t)− xeq3

 , ẽ(t) = e(t)− eeq. (58)

This enables us to reformulate (52)-(54) as

˙̃x1(t) = f1(x̃1(t) + xeq1 , x̃2(t) + xeq2 , x̃3(t) + xeq3 , ẽ(t) + eeq) =x̃2(t) + xeq2 , (59)

˙̃x2(t) = f2(x̃1(t) + xeq1 , x̃2(t) + xeq2 , x̃3(t) + xeq3 , ẽ(t) + eeq) =g − 1

M

(x̃3(t) + xeq3 )2

x̃1(t) + xeq1
, (60)

˙̃x3(t) = f3(x̃1(t) + xeq1 , x̃2(t) + xeq2 , x̃3(t) + xeq3 , ẽ(t) + eeq) =− R

L
[x̃3(t) + xeq3 ] +

1

L
[ẽ(t) + eeq] .

(61)

Note that the equilibrium for the (x̃1, x̃2, x̃3) system above is the origin (0, 0, 0), by definition of the
perturbation variables.

Linearization: Next we linearize the (x̃1, x̃2, x̃3) system above around the origin. The resulting
linearized system takes the standard form of (49), i.e. ˙̃x(t) = Ax̃(t) +Bũ(t), with system matrices
A = ∂f

∂x (xeq1 , x
eq
2 , x

eq
3 , e

eq) and B = ∂f
∂u(xeq1 , x

eq
2 , x

eq
3 , e

eq) defined as,

A =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3


x1=xeq

1 ,x2=xeq
2 ,x3=xeq

3 ,e=eeq

, B =


∂f1
∂e
∂f2
∂e
∂f3
∂e


x1=xeq

1 ,x2=xeq
2 ,x3=xeq

3 ,e=eeq

.

(62)
After computing each partial derivative, plugging in the equilibrium expressions, and assembling
the results into Jacobians A and B, we obtain:

A =


0 1 0

(xeq
3 )2

M(xeq
1 )2

0
−2xeq

3

Mxeq
1

0 0 −R
L

 =


0 1 0

g
ydes

0 −2
(

g
Mydes

)1/2

0 0 −R
L

 , B =

 0

0
1
L

 . (63)

Using mathematical model ˙̃x(t) = Ax̃(t) + Bũ(t), with A,B defined above, we can study the
magnetic ball dynamics around equilibrium position ydes. From here, we can use this LTI system
description to, for example:
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• Design control signal u(t) to move the ball from one position to another;

• Estimate states x1, x2, x3 from measurements of just x1;

• Learn model parameters M,R,L.

Exercise 1. Consider the pendulum dynamics from Example 3.3. Also consider a counter clock-
wise input torque τ(t) acting at the frictionless pivot. Also, assume a sensor measures the pen-
dulum angle θ. Linearize the pendulum dynamics around the two equilibrium points (0, 0), (π, 0).
What are the A,B,C,D matrices for each equilibrium?

Exercise 2. Consider the micro-platoon from Example 2.5, and state-space system (12)-(14).
Assume a sensor measures the headway h(t). Linearize the micro-platoon dynamics around the
equilibrium point xeq = [heq, veq1 , v

eq
2 ]T . What is the corresponding equilibrium control input vector

yeq = [F eq
1 , F eq

2 ]T? What are the A,B,C,D matrices?

5 Stability

Stability plays a central role in systems theory and engineering energy systems. In rough terms,
stability means the energy system does not “blow up” in some sense. Think about thermal run-
away in lithium-ion batteries, pressure buildup in steam generators, vibrations in wind turbines,
or voltages in electrical distribution circuits. Clearly, guaranteeing stability is a desirable design
criterion in the study of dynamic energy systems. The notion of stability goes beyond certifying
against catastrophe. As shown in CH2 and CH3, it’s also the critical concept for guaranteeing
convergence of algorithms.

Within the dynamical systems literature, many different kinds of stability exist. In this chapter,
we focus on the stability of equilibria in linear systems.

5.1 Definitions of Stability

Consider an autonomous LTI system, that is, a linear system with no control input,

ẋ(t) = Ax(t), (64)

with an initial condition x(0) = x0. We are now positioned to formally define stability.

Definition 5.1. (Stability) The autonomous LTI system ẋ(t) = Ax(t) is marginally stable if the solu-
tion, x(t), to the ODE is bounded, i.e. maxt |x(t)| <∞ for all initial conditions x0. The LTI system is
asymptotically stable if the solution x(t) converges asymptotically to zero, that is limt→∞ x(t) = 0

for all initial conditions x0.
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Example 5.1. Consider the scalar autonomous LTI system and initial condition

ẋ(t) = 0, x0 = 5 (65)

The solution x(t) is provided in Fig. 11. The solution remains bounded, indicating the system is
marginally stable.

0 2 4 6 8 10
4

4.5

5

5.5

6

Time [sec]

 

 

x(t)

Figure 11: Solution to ẋ(t) = 0, x0 = 5.

Example 5.2. Consider the second-order autonomous LTI system and initial condition

d

dt

[
x1(t)

x2(t)

]
=

[
0 1

−1 0

][
x1(t)

x2(t)

]
, x0 =

[
5

0

]
(66)

The solution (x1(t), x2(t)) is provided in Fig. 12. The solution oscillates, but remains bounded,
indicating the system is marginally stable.

0 2 4 6 8 10
−5

0

5

Time [sec]

 

 

x1(t)
x2(t)

Figure 12: Solution to (66).

Example 5.3. Consider the slightly modified second-order autonomous LTI system and initial con-
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dition
d

dt

[
x1(t)

x2(t)

]
=

[
0 1

−1 −2

][
x1(t)

x2(t)

]
, x0 =

[
5

0

]
(67)

The solution (x1(t), x2(t)) is provided in Fig. 13. In this case, the states clearly converge toward
zero, indicating the system is asymptotically stable.

0 2 4 6 8 10
0

1

2

3

4

5

Time [sec]

 

 

x1(t)
x2(t)

Figure 13: Solution to (67).

5.2 Tests for Stability

Although the previous definitions of stability are straightforward, it is undesirable to determine
stability by solving the ODE directly. In practice, it would be more useful if a simple condition can be
checked, without explicitly solving the ODE. For autonomous LTI systems, such a simple condition
exists. It involves the eigenvalues of system matrix A. That is, denote λi, where i = 1, ..., n the set
of eigenvalues for A.

Theorem 5.1. (LTI System Stability)

1. The LTI system ẋ(t) = Ax is marginally stable if and only if all the eigenvalues of A contain
zero or negative real parts, that is Re[λi] ≤ 0, ∀i, and eigenvalues with zero real part are
simple roots of the minimum polynomial of A1.

2. The LTI system ẋ(t) = Ax is asymptotically stable if and only if all the eigenvalues of A have
strictly negative real parts, that is Re[λi] < 0,∀i.

Let us revisit the previous three examples, to demonstrate this condition.

Example 5.4. Consider the scalar autonomous LTI system and initial condition

ẋ(t) = 0, x0 = 5 (68)
1This last condition involving simple roots is technical. For interested readers, refer to Theorem 5.4 of [7]
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The eigenvalues of the system matrix, which is trivially zero in this case, is zero. Consequently the
system is marginally stable.

Example 5.5. Consider the second-order autonomous LTI system and initial condition

d

dt

[
x1(t)

x2(t)

]
=

[
0 1

−1 0

][
x1(t)

x2(t)

]
, x0 =

[
5

0

]
(69)

The eigenvalues of the system matrix are ±1j. The real parts are zero, indicating the system is
marginally stable.

Example 5.6. Consider the slightly modified second-order autonomous LTI system and initial con-
dition

d

dt

[
x1(t)

x2(t)

]
=

[
0 1

−1 −2

][
x1(t)

x2(t)

]
, x0 =

[
5

0

]
(70)

The eigenvalues of the system matrix are −1,−1, implying the system is asymptotically stable.

Example 5.7. In this example, we illustrate a linear system with two eigenvalues at the origin that
is, in fact, unstable. Consider the autonomous LTI system and initial condition

d

dt

[
x1(t)

x2(t)

]
=

[
0 1

0 0

][
x1(t)

x2(t)

]
, x0 =

[
0

1

]
(71)

From inspection, it is easy to verify the solution is given by: x1(t) = t;x2(t) = 1. Clearly, the
system is unstable because x1(t)→∞ as t→∞. The eigenvalues of the system matrix are 0, 0,
i.e. λ(A) = 0 with multiplicity of two. Consequently, Case 1 of Theorem 5.1 does NOT apply.

Exercise 3. Consider the pendulum dynamics from Example 3.3 and the two equilibrium points
(0, 0), (π, 0). Linearize the dynamics around each equilibrium point. Determine the system matrix
A for each linearized system. Determine the stability properties. What are the eigenvalues?

Exercise 4. Consider the Room Thermal Dynamics Example 2.1. What are the equilibria when the
HVAC unit is on s = 1 and off s = 0, for fixed ambient temperature T eq

A ? What are the eigenvalues
in each case? Determine the stability properties.

Exercise 5. Consider the the Magnetically Levitated Ball from Example 4.1 with parameter values
M = 1kg, L = 100mH, R = 10 mΩ. Determine a condition for the ball position xeq1 in which the
dynamics are asymptotically stable.

Exercise 6. Consider the RLC circuit from Example 2.4. Derive a condition on the parameter R,
in terms of parameters L,C, that ensure asymptotic stability of the equilibrium corresponding to
constant voltage input V eq.
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5.3 Stability Analysis Examples for Nonlinear Systems

Example 5.8 (Thermal Runaway in Batteries). In this example, we are going to demonstrate how
stability analysis enables us to understand why lithium-ion batteries may experience thermal run-
away (c.f. the Boeing 787 battery fire in 2013, the Samsung Galaxy Note 7 fires in 2016, etc.).

R

VT

I(t)

+ _
Voc

+_

Figure 14: An equivalent circuit model for a battery cell, incorporating a constant voltage source in series
with a temperature dependent resistor. The cell temperature T (t) evolves due to heat transfer with the
ambient T∞ and ohmic heat generation from the resistor, as depicted by the dotted lines.

Consider an equivalent circuit model for the battery’s electrical dynamics, as shown in Fig. 14.
Kirchoff’s voltage law yields

VT = Voc −R(T )I(t) (72)

where VT is the voltage at the battery’s terminals, Voc is the so-called “open-circuit” voltage, and
I(t) is the electric current withdrawn from the cell (assumed positive). Both VT and Voc are as-
sumed constant. The term R(T )I(t) represents the ohmic voltage drop due to internal resistance.
The crucial modeling feature is that internal resistance R(T ) is a decreasing function of tempera-
ture T . That is, the ohmic losses become less as the battery temperature increases. Mathemati-
cally, R′(T ) < 0.

A simple lumped thermal dynamics model is given by:

CT
d

dt
T (t) = h [T∞ − T (t)] +R(T )I2(t) (73)

The state is cell temperature T (t). The parameters are as follows: CT is the thermal heat capac-
ity [J/K]; T∞ is the ambient temperature - assumed fixed in this example; h is the heat transfer
coefficient [W/K]; and the RI2 term represents internal ohmic heat generation [W].

Using (72), we can find an explicit expression for electric current I(t) in terms of temperature
T (t): I(t) = [Voc − VT ] /R(T (t)). Substituting this expression into (73) yields

CT
d

dt
T (t) = h [T∞ − T (t)] +

[Voc − VT ]2

R(T (t))
(74)

Note this ODE is nonlinear in state variable T (t), due to the 1/R(T ) term. Let us now provide

Revised April 17, 2018 | NOT FOR DISTRIBUTION Page 24



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

intuition for the ODE above. The first term, which represents heat transfer with the environment,
is stabilizing. Namely, it forces T (t) toward T∞, regardless of their relative values. The second
term, which represents ohmic heat generation, is de-stabilizing. It is always positive. Worst yet, as
T (t) increases, then R(T ) decreases and the entire second term increases further. If this positive
feedback loop overpowers the first term, then we experience thermal runaway.

Next we make this intuition mathematically precise with stability analysis. First, we find the
equilibrium temperature T eq using Definition 3.1:

0 = h [T∞ − T eq] +
[Voc − VT ]2

R(T eq)
. (75)

This is a nonlinear equation in T eq that can be solved numerically, given parameters values
h, T∞, Voc, VT and function R(·). Next, we linearize the dynamics (74) around equilibrium point
T = T eq. Define perturbation state variable: T̃ (t) = T (t) − T eq. Linearizing around this equilib-
rium, it is straight forward to show the resulting system takes the form of (49), i.e. ˙̃T (t) = AT̃ (t),
with system matrix A defined as,

A = − h

CT
− [Voc − VT ]2

CT ·R(T eq)2
·R′(T eq). (76)

Theorem 5.1 tells how the eigenvalues of A relate to stability. Since A is scalar in this case, we
need only worry about the sign of A. The first term of A is negative - creating a stabilizing effect.
The second term of A is positive. Recall that R′(T ) < 0 and Voc − VT is positive. Consequently,
we arrive at the following stability analysis conclusion:

• Thermal Runaway: The battery thermal dynamics (74) are unstable around equilibrium
temperature T eq defined by (75) if − [Voc−VT ]2

CT ·R(T eq)2
·R′(T eq) > h

CT
.

• Thermal Stability: The battery thermal dynamics (74) are marginally stable or stable i.s.L.

around equilibrium temperature T eq defined by (75) if − [Voc−VT ]2

CT ·R(T eq)2
·R′(T eq) in equal to or less

than h
CT

, respectively.

Some simulations below illustrate...

Example 5.9 (Coupled Oscillators - A concept for understanding Power System Voltage Collapse).
In this example, we explore the essence of voltage collapse in power systems via coupled oscil-
lators. Coupled oscillators, which are more fundamental and broad than power systems, are a
simple yet rich model for conceptually understanding the dynamics of synchronous generators in
power networks. This example is inspired by the work of Florian Döfler, John Simpson-Porco, and
Francesco Bullo [3].

The power grid is composed of rotating masses (i.e. generators) distributed and electrically
coupled across a network, as shown in the line diagram in Fig. 15(a). Circles indicate generators
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Figure 15: (a) Power system line diagram with synchronous generators (circles) and busses. (b) A mechan-
ical analog would be oscillators interconnected by springs & dampers. The red squares are generators; the
blue circles are busses. (c) A toy coupled oscillator with three elements.

and thick horizontal lines represent busses with loads. A mechanical analog for the transient
dynamics of the interconnected synchronous generators and loads are a network of osccilators in
Fig. 15(b). For simplicity of exposition, we consider three massless oscillators on a frictionless
ring in Fig. 15(c). Each oscillator rotates around the ring with natural frequency ωi. Each pair of
oscillators is coupled by a spring, with spring constant aij . The coupled oscillator model, known
as Kuramoto oscillator, is:

θ̇i(t) = ωi −
N=3∑
j=1

aij sin(θi(t)− θj(t)), i = 1, 2, 3 (77)

We are interested in understanding the stability properties of these coupled oscillators. This anal-
ysis is the first step toward understanding voltage collapse in large-scale power systems and even
microgrids.

First, we re-define the state vector as θij(t) = θi(t) − θj(t). Note that the absolute angular
displacement of the oscillators is not of interest. Instead, we are interested in understanding
the relative angular displacement between two oscillators. Consequently, we derive the relative
angular displacement dynamics θ̇ij(t) = θ̇i(t)− θ̇j(t), which yields:

θ̇ij(t) = ωi −
N=3∑
k=1

aik sin(θi(t)− θk(t))− ωj +
N=3∑
k=1

ajk sin(θj(t)− θk(t)), i, j = 1, 2, 3, i 6= j (78)

After expansion and simplification we get:

θ̇12(t) = ω1 − ω2 − a13 sin θ13(t) + a23 sin θ23(t), (79)

θ̇23(t) = ω2 − ω3 − a12 sin θ12(t) + a31 sin θ31(t), (80)

θ̇31(t) = ω3 − ω1 − a13 sin θ13(t) + a23 sin θ23(t). (81)

Revised April 17, 2018 | NOT FOR DISTRIBUTION Page 26



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

Let us compute the equilibrium. For simplicity, suppose ω1 = ω2 = ω3 = ω0. Also, let aij = 1.
Using Definition 3.1, the equilibria [θeq12, θ

eq
23, θ

eq
31]T must satisfy:

0 = − sin θeq31 + sin θeq23, (82)

0 = − sin θeq12 + sin θeq31, (83)

0 = − sin θeq31 + sin θeq23. (84)

Note there is an infinite number of triplets [θeq12, θ
eq
23, θ

eq
31]T that satisfy the above equations. A subset

of these equilibria include the infinite set
{

[θeq12, θ
eq
23, θ

eq
31]T ∈ R3|θeq12 = θeq23 = θeq31 = θ0, θ0 ∈ [0, 2π]

}
.

Next, we linearize the nonlinear dynamics (79)-(81) around the equilibrium point θeq12 = θeq23 =

θeq31 = θ0. We continue to assume ω1 = ω2 = ω3 = ω0 and aij = 1. Define the perturbation
variables θ̃12(t) = θ12(t)−θ0, θ̃23(t) = θ23(t)−θ0, θ̃31(t) = θ31(t)−θ0. The linearization of (79)-(81)
around the given equilibrium point is:

˙̃
θ12(t) = − cos(θ0) · θ̃31(t) + cos(θ0) · θ̃23(t), (85)
˙̃
θ23(t) = − cos(θ0) · θ̃12(t) + cos(θ0) · θ̃31(t), (86)
˙̃
θ31(t) = − cos(θ0) · θ̃23(t) + cos(θ0) · θ̃12(t). (87)

We can write these linearized dynamics in LTI form: x̃(t) = Ax̃(t) where

x̃(t) =

 θ̃12(t)

θ̃23(t)

θ̃31(t)

 , A = cos θ0 ·

 0 +1 −1

−1 0 +1

+1 −1 0

 (88)

Interestingly, A is a skew-symmetric matrix. That is, it satisfies−A = AT . The eigenvalues ofA are
eig(A) = cos θ0 · {0, 0± 1.7j}. These eigenvalues all have zero real parts. Therefore, we conclude
that the Kuramoto oscillator is marginally stable around the equilibrium point θeq12 = θeq23 = θeq31 = θ0.

The marginal stability property derived above is a consequence of assuming equal natural
frequencies ω1 = ω2 = ω3 = ω0 and homogeneous non-zero coupling aij = 1. It turns out different
assumptions can yield different stability properties. We informally summarize these results, which
can be formally derived as follows:

• Stability: |ωi − ωj | small & coupling large

• Instability: |ωi − ωj | large & coupling small

Kuramoto oscillators can be adapted to model transient dynamics in both AC power transmis-
sion networks and microgrids with DC/AC inverters. The ordinary differential equation at each
network node is:

Miθ̈i(t) +Diθ̇i(t) = Pi(t)−
∑
j

aij sin(θi(t)− θj(t)), (89)
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where Mi is the generator inertia, Di is the damping coefficient from droop control, Pi(t) is the
injected/extracted power, and aij represents the maximum power transfer between nodes i and
j. Interestingly, increased penetration of renewables (for large networks and microgrids) results in
reduced synchronous generator inertia Mi across the network and more transient power injections
Pi(t). The consequence of renewable penetration is less robust stability properties – a formidable
challenge for power system operators. This can be formally analyzed using tools from this chapter.

To learn more about Kuramoto oscillators, and how they can be used to study voltage collapse
in power networks, please read [3] and the references therein.

6 Notes

Modeling dynamical systems is an extraordinarily rich topic – a critical area of study for anyone
interested in systems and control. Several textbooks provide excellent expositions, including [4]
and [5]. Textbook [4] in particular discusses a general theory for modeling dynamic systems based
on a concept known as bond graphs. Reference [5] is rich with examples that are worth reading
to build intuition. Readers interested in a deeper understanding of linear systems theory may
consult [2,6–8]. These textbooks are typical required references for classical first-year introductory
control systems courses. Readers interested in nonlinear systems and stability should consult [1]
– the classical reference in this area.
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