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CHAPTER 3: OPTIMIZATION

1 Overview

Optimization is the process of maximizing or minimizing an objective function, subject to con-
straints. Optimization is fundamental to nearly all academic fields, and its utility extends beyond
energy systems and control.

As energy systems engineers, we are often faced with design tasks. Here are some examples:

• Determine the optimal battery energy storage capacity for a wind farm [1].

• Optimally place x–MW of photovoltaic generation capacity in Nicaragua to minimize eco-
nomic cost, yet meet consumer demand.

• Optimally place N vehicle sharing stations in an urban environment to optimally meet user
demand [2,3].

• Optimally re-distribute shared vehicles in a vehicle sharing system to minimize maintenance
cost, yet serve user demand [4].

• Design an optimal plug-in electric vehicle charging strategy to minimize economic cost, yet
meet mobility demands and limit battery degradation [5].

• Optimally manage energy flow in a smart home, containing photovoltaics, battery storage,
and a plug-in electric vehicle, to minimize economic cost [6].

• Optimally manage water flow in Barcelona’s water network to meet user demand, maintain
sufficient quality, and minimize economic cost [7].

The number of interesting optimization examples in energy systems engineering is limited only by
your creativity. These problems often involve physical first principles of an energy storage/con-
version device, user demand (a human element), and market economics. In addition, they are
almost always too complex to solve with pure intuition. Consequently, one desires a systematic
process for designing energy systems that optimizes some metric of interest (e.g. economic cost
or performance), while satisfying some necessary constraints (e.g. user demand, physical oper-
ating limits, regulations). In addition, we will find that optimization principles are the foundation of
many machine learning concepts.
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1.1 Canonical Form

Nearly all static optimization problems can be abstracted into the following canonical form:

minimize f(x), (1)

subject to gi(x) ≤ 0, i = 1, · · · ,m (2)

hj(x) = 0, j = 1, · · · , l. (3)

In this formulation, x ∈ Rn is a vector of n decision variables. The function f(x) is known as the
“cost function” or “objective function,” and maps the decision variables x into a scalar objective
function value, mathematically given by f(x) : Rn → R. Equation (2) represents m inequality
constraints. Each function gi(x) maps the decision variable to a scalar that must be non-positive
for constraint satisfaction, mathematically gi(x) : Rn → R, ∀i = 1, · · · ,m. Similarly, equation (3)
represents l equality constraints. Each function hi(x) maps the decision variable to a scalar that
must be zero for constraint satisfaction, mathematically hj(x) : Rn → R,∀j = 1, · · · , l. We often
vectorize the functions gi(x) and hj(x) as g(x) : Rn → Rm and h(x) : Rn → Rl, respectively, to
more compactly write the canonical form as:

min
x

f(x) (4)

subject to g(x) ≤ 0, (5)

h(x) = 0. (6)

We denote by x? the solution that yields the smallest value of f(x) among all the values x that
satisfy the constraints. That is, x? solves (1)-(3).

Remark 1.1. Note that one can always re-formulate a maximization problem, e.g. maxx f(x) into
a minimization problem by defining f(x) = −f(x) and solving minx f(x).

General optimization problems, without any structure beyond (1)-(3), are often very difficult to
solve. Namely, they lack analytical solutions and iterative methods involve tradeoffs. For example,
one often sacrifices either long computation times, or not finding the exact solution. However,
certain classes of (1)-(3) can be solved efficiently and reliably. Interestingly, huge swaths of prac-
tical real-world problems fall within these classes of optimization problems. The crucial skill, then,
becomes identifying these types of optimization problems in the real-world.

Several questions or issues arise:

1. What, exactly, is the definition of a minimum?

2. Does a solution even exist, and is it unique?

3. What are the different types of optimization problems?
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4. What are the properties of these optimization problems?

5. How do we solve optimization problems?

Throughout this chapter we shall investigate these questions in the context of energy applications.

1.2 Chapter Organization

The remainder of this chapter is organized as follows:

1. Mathematical Preliminaries

2. Linear Programs (LP)

3. Quadratic Programs (QP)

4. Convex Programs (CP)

5. Nonlinear Programs (NLP)

2 Mathematical Preliminaries

Our exposition of optimization begins with some important and useful mathematical concepts. This
background will provide the necessary foundation to discuss the theory and algorithms underlying
various optimization problems. The first two concepts are convex sets and convex functions.

2.1 Convex Sets

A set D is convex if the line segment connecting any two points in D completely lies in D. We
formalize this concept into the following definition.

Definition 2.1 (Convex Set). Let D be a subset of Rn. Also, consider scalar parameter λ ∈ [0, 1]

and two points a, b ∈ D. The set D is convex if

λa+ (1− λ)b ∈ D (7)

for all points a, b ∈ D.

Figure 1 provides visualizations of convex and non-convex sets. In words, a set is convex if a
line segment connecting any two points within domain D is completely within the set D. Figure 2
provides additional examples of convex and non-convex sets.
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Figure 1: Visualization of convex [left] and non-convex [right] sets.

Figure 2: Some simple convex and nonconvex sets. [Left] The hexagon, which includes its boundary
(shown darker), is convex. [Middle] The kidney shaped set is not convex, since the line segment between
the two points in the set shown as dots is not contained in the set. [Right] The square contains some
boundary points but not others, and is not convex.

2.1.1 Examples

The following are some important examples of convex sets you will encounter in optimization:

• The empty set , any single point (i.e. a singleton), {x0}, and the whole space Rn are convex.

• Any line in Rn is convex.

• Any line segment in Rn is convex.

• A ray, which has the form {x0 + θv | θ ≥ 0, v 6= 0} is convex.

• A hyperplane, which has the form
{
x | aTx = b

}
, where a ∈ Rn, a 6= 0, b ∈ R.

• A halfspace, which has the form
{
x | aTx ≤ b

}
, where a ∈ Rn, a 6= 0, b ∈ R. See Fig. 3.

• A Euclidean ball in Rn, which is centered at xc and has radius r. Think of the Euclidean ball
as a sphere in n-dimensions (See Fig. 4.). Mathematically, the Euclidean ball is

B(xc, r) = {x | ‖x− xc‖2 ≤ r} =
{
x | (x− xc)T (x− xc) ≤ r2

}
(8)
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x0

a

Figure 3: The shaded set is the halfspace given by
{x | aT (x− x0) ≤ 0} Vector a points in the outward
normal direction of the halfspace.

xc

r

Figure 4: The Euclidean Ball B(xc, r) is centered
at xc and has radius r. A two-dimensional example
is shown.

xc

Figure 5: An ellipsoid E = {xc + Pu | ‖u‖2 ≤ 1} in
two-dimensions with center xc. The semi-axes have
length given by λi where λi =eig(P ).

P
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a2
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a4

a5

Figure 6: The polyhedron P is the intersection of
five halfspaces, each with outward pointing normal
vector ai.

• An ellipsoid in Rn, which is centered at xc. Think of an ellipsoid as an ellipse in n-dimensions.
Mathematically,

E =
{
x | (x− xc)TA−1(x− xc) ≤ 1

}
(9)

where A = AT � 0, i.e. A is symmetric and positive definite. The matrix A encodes how
the ellipse extends in each direction of Rn. In particular, the length of the semi-axes for
the ellipse are given by

√
λi(A), where λi is the ith eigenvalue of A. See Fig. 5. Another

common representation of an ellipsoid, which we use later in this chapter in Ex 3.4, is:

E = {xc + Pu | ‖u‖2 ≤ 1} (10)

where P is square and positive semi-definite. The semi-axis lengths are given by λi(P ) in
this case. If we define P = A2, then this representation is equivalent to (9).

• A polyhedron is defined by the values x ∈ Rn that satisfy a finite set of linear inequalities and
linear equalities:

P =
{
x | aTi x ≤ bi, i = 1, · · · ,m, aTeq,jx = beq,j , j = 1, · · · , l

}
(11)
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See Fig. 6. By definition, a polyhedra is the intersection of a finite number of hyperplanes and
halfspaces. Thus, all halfspaces, hyperplanes, lines, rays, and line segments are polyhedra.
It is convenient to use the compact vector notation

P = {x | Ax ≤ b, Aeqx = beq} (12)

Remark 2.1. An interesting property of convex sets is that any convex set can be well-approximated
by a polyhedra (198). That is, any convex set D can be approximated by a finite set of linear in-
equalities and linear equalities. As the number of linear inequalities and equalities goes to infinity,
the approximation error for a general convex set goes to zero.

Exercise 1. Which of the following sets are convex? Draw each set for the two-dimensional case,
n = 2.

(a) A box, i.e., a set of the form {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, · · · , n}.

(b) A slab, i.e., a set of the form
{
x ∈ Rn | α ≤ aTx ≤ β

}
.

(c) A wedge, i.e.,
{
x ∈ Rn | aT1 x ≤ b1, aT2 x ≤ b2

}
.

(d) The union of two convex sets, that is D1 ∪ D2, where D1,D2 are convex sets.

(e) The intersection of two convex sets, that is D1 ∩ D2, where D1,D2 are convex sets.

Exercise 2 (Square and Disk). Define the square and disk in R2 respectively as

S =
{
x ∈ R2| 0 ≤ xi ≤ 1, i = 1, 2

}
, D =

{
x ∈ R2| ‖x‖2 ≤ 1

}
(13)

Are the following statements TRUE or FALSE:

(a) S ∪D is convex, i.e. the union of sets S and D is convex

(b) S ∩D is convex, i.e. the intersection of sets S and D is convex

(c) S D is convex, i.e. set difference of D from S is convex

Exercise 3 (Voronoi description of halfspace, [8] p. 60). Let a and b be distinct points in Rn. Show
that the set of all points that are closer (in Euclidean norm) to a than b, i.e., {x | ‖x− a‖2 ≤ ‖x− b‖2},
is a half-space. Describe it explicitly as an inequality of the form cTx ≤ d. Draw a picture.

2.2 Convex Functions

Definition 2.2 (Convex Function). Let D be a convex set. Also, consider scalar parameter λ ∈
[0, 1] and two points a, b ∈ D. Then the function f(x) is convex on D if

f(x) = f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b) (14)
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Figure 1: Convex Function 

 

 

 
  

 

Figure 2: Concave Function 

 

 

b a 

f(x) 

f(b) 

f(a) 

f(x) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0≤ λ ≤ 1 

X = λa+(1-λ)b  

f(a) 

f(b) 

f(x) 

a b 

f(x) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0≤ λ ≤ 1 

X = λa+(1-λ)b  
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Figure 2: Concave Function 
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Figure 7: Visualization of convex [left] and concave [right] function definitions.

for all points a, b ∈ D.

Definition 2.3 (Concave Function). Let D be a convex set. Also, consider scalar parameter λ ∈
[0, 1] and two points a, b ∈ D. Then the function f(x) is concave on D if

f(x) = f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b) (15)

for all points a, b ∈ D.

Figure 7 provides visualizations of the definitions given above. In words, a function is convex
if a line segment connecting any two points within domain D is above the function. A function is
concave if a line segment connecting any two points within domain D is below the function.

Exercise 4. Which of the following functions are convex, concave, neither, or both, over the set
D = [−10, 10]? You may use graphical arguments or (14), (15) to prove your claim.

(a) f(x) = 0

(b) f(x) = x

(c) f(x) = x2

(d) f(x) = −x2

(e) f(x) = x3

(f) f(x) = sin(x)

(g) f(x) = e−x
2

(h) f(x) = |x|

Convex and concave functions have several useful properties, summarized by the following propo-
sition.

Proposition 1 (Convex/Concave Function Properties). Consider a function f(x) : Rn → R and
compact set D.

1. If f(x) is convex on D, then −f(x) is concave on D.
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2. If f(x) is concave on D, then −f(x) is convex on D.

3. f(x) is a convex function on D ⇐⇒ d2f
dx2

(x) is positive semi-definite ∀ x ∈ D.

4. f(x) is a concave function on D ⇐⇒ d2f
dx2

(x) is negative semi-definite ∀ x ∈ D.

2.2.1 Examples

It is easy to verify that all linear and affine functions are both convex and concave functions.
Here we provide more interesting examples of convex and concave functions. First, we consider
functions f(x) where x ∈ R is scalar.

• Quadratic. 1
2ax

2 + bx+ c is convex on R, for any a ≥ 0. It is concave on R for any a ≤ 0.

• Exponential. eax is convex on R, for any a ∈ R.

• Powers. xa is convex on the set of all positive x, when a ≥ 1 or a ≤ 0. It is concave for
0 ≤ a ≤ 1.

• Powers of absolute value. |x|p, for p ≥ 1 is convex on R.

• Logarithm. log x is concave on the set of all positive x.

• Negative entropy. x log x is convex on the set of all positive x.

Convexity or concavity of these examples can be shown by directly verifying (14), (15), or by
checking that the second derivative is non-negative (degenerate of positive semi-definite) or non-
positive (degenerate of negative semi-definite). For example, with f(x) = x log x we have

f ′(x) = log x+ 1, f ′′(x) = 1/x,

so that f ′′(x) ≥ 0 for x > 0. Therefore the negative entropy function is convex for positive x.
We now provide a few commonly used examples in the multivariable case of f(x), where

x ∈ Rn.

• Norms. Every norm in Rn is convex.

• Max function. f(x) = max{x1, · · · , xn} is convex on Rn.

• Quadratic-over-linear function. The function f(x, y) = x2/y is convex over x ∈ R, y > 0.

• Log-sum-exp. The function f(x) = log (expx1 + · · ·+ expxn) is convex on Rn. This function
can be interpreted as a differentiable (in fact, analytic) approximation of the max function.
Consequently, it is extraordinarily useful for gradient-based algorithms, such as the ones
described in Section 4.1.
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• Geometric mean. The geometric mean f(x) = (Πn
i=1xi)

1/n is concave for all elements of x
positive, i.e. {x ∈ Rn | xi > 0 ∀ i = 1, · · · , n}.

• Log determinant. The function f(X) = log det(X) is concave w.r.t. X for all X positive
definite. This property is useful in many applications, including optimal experiment design.

Convexity (or concavity) of these examples can be shown by directly verifying (14), (15), or by
checking that the Hessian is positive semi-definite (or negative semi-definite). These are left as
exercises for the reader.

2.2.2 Operations that conserve convexity

Next we describe operations on convex functions that preserve convexity. These operations in-
clude addition, scaling, and point-wise maximum. Often, objective functions in the optimal design
of engineering system are a combination of convex functions via these operations. This section
helps you analyze when the combination is convex, and how to construct new convex functions.

Linear Combinations

It is easy to verify from (14) that when f(x) is a convex function, and α ≥ 0, then the function
αf(x) is convex. Similarly, if f1(x) and f2(x) are convex functions, then their sum f1(x) + f2(x) is
a convex function. Combining non-negative scaling and addition yields a non-negative weighted
sum of convex functions

f(x) = α1f1(x) + · · ·+ αmfm(x) (16)

that is also convex.

Pointwise Maximum

If f1(x) and f2(x) are convex functions on D, then their point-wise maximum f defined by

f(x) = max{f1(x), f2(x)} (17)

is convex on D. This property can be verified via (14) by considering 0 ≤ λ ≤ 1 and a, b ∈ D.

f(λa+ (1− λ)b) = max {f1(λa+ (1− λ)b), f2(λa+ (1− λ)b)}

≤ max {λf1(a) + (1− λ)f1(b), λf2(a) + (1− λ)f2(b)}

≤ λmax {f1(a), f2(a)}+ (1− λ) max {f1(b), f2(b)}

= λf(a) + (1− λ)f(b).
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which establishes convexity of f . It is straight-forward to extend this result to show that if f1(x), · · · , fm(x)

are convex, then their point-wise maximum

f(x) = max{f1(x), · · · , fm(x)} (18)

is also convex.

Composition with an Affine Mapping

Consider f(·) : Rn → R with parameters A ∈ Rn×m and b ∈ Rn. Define function g(·) : Rm → R as

g(x) = f(Ax+ b) (19)

If f is convex, then g is convex. If f is concave, then g is concave.

Exercise 5 (Simple function compositions). Consider function g(·) : R → R defined over convex
set D. Prove each of the following function compositions is convex or concave over D.

(a) If g is convex, then exp g(x) is convex.

(b) If g is concave and positive, then log g(x) is concave.

(c) If g is concave and positive, then 1/g(x) is convex.

(d) If g is convex and nonnegative and p ≥ 1, then g(x)p is convex.

(e) If g is convex then − log(−g(x)) is convex on {x|g(x) < 0}.

2.3 Definition of Minimizers

Armed with notions of convex sets and convex/concave functions, we are positioned to provide a
precise definition of a minimizer, which we often denote with the “star” notation as x∗. There exist
two types of minimizers: global and local minimizers. Their definitions are given as follows.

Definition 2.4 (Global Minimizer). x∗ ∈ D is a global minimizer of f(x) on D if

f(x∗) ≤ f(x), ∀ x ∈ D (20)

In words, this means x∗ minimizes f(x) everywhere in D. In contrast, we have a local minimizer.

Definition 2.5 (Local Minimizer). x∗ ∈ D is a local minimizer of f(x) on D if

∃ ε > 0 s.t. f(x∗) ≤ f(x), ∀ x ∈ D ∩ {x ∈ R | ‖x− x∗‖ < ε} (21)
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In words, this means x∗ minimizes f(x) locally in D. That is, there exists some neighborhood
whose size is characterized by εwhere x∗ minimizes f(x). Examples of global and local minimizers
are provided in Fig. 8

Figure 8: The LEFT figure contains two local minimizers, but only one global minimizer. The RIGHT figure
contains a local minimizer, which is also the global minimizer.

We now have a precise definition for a minimum. However, we now seek to understand when
a minimum even exists. The answer to this question leverages the convex set notion, and is called
the Weierstrauss Extreme Value Theorem.

Theorem 2.1 (Weierstrass Extreme Value Theorem). If f(x) is continuous and bounded on a
convex set D, then there exists at least one global minimum of f on D.

A visualization of this theorem is provided in Fig. 9. In practice, the result of the Weierstrauss
extreme value theorem seems obvious. However, it emphasizes the importance of having a con-
tinuous and bounded objective function f(x) from (1), and constraints (2)-(3) that form a convex
set. Consequently, we know a global minimizer exists if we strategically formulate optimization
problems where the objective function is continuous and bounded, and the constraint set is con-
vex.

Is the minimum unique? In general, the minimum need not be unique, as illustrated in Fig. 10.
There may be two optima or even infinite optima. The physical interpretation is that a multitude of
designs produce equally good solutions, in terms of the objective function value.

2.4 A Zoology of Optimization Programs

Armed with a background in convex sets and convex functions, we are positioned to classify differ-
ent types of optimization programs. In fact, there exists an entire zoology of optimization programs.
In this chapter, we discuss the following types:
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Figure 9: In this graph, f(x) is continuous and
bounded. The convex set is D = [a, b]. The function
f attains a global minimum at x = d and a global
maximum at x = c.

Figure 10: A local or global minimum need not be
unique.

• Linear program (LP)

• Quadratic program (QP)

• Convex program (CP)

• Nonlinear program (NLP)

These classes of optimization problems are not mutually exclusive – some sets subsume others.
For example, all LPs are CPs. Another example is that all LPs, QPs, and CPs, are NLPs. See
Fig. 11. The remainder of this chapter is dedicated to understanding properties of these various
optimization program types.

3 Convex Programming

3.1 Definition

A convex optimization problem has the form

minimize f(x) (22)

subject to gi(x) ≤ 0, i = 1, · · · ,m (23)

aTj x = bj , j = 1, · · · , l. (24)

Comparing this problem with the abstract optimization problem in (1)-(3), the convex optimization
problem has three additional requirements:
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LPQP

CPNLP
MIP

Figure 11: Optimization programs fall into various classes: linear programs (LP), quadratic programs (QP),
convex programs (CP), nonlinear programs (NLP), and mixed integer programs (MIP). In these course
notes, we focus on LP, QP, CP, and NLP.

• objective function f(x) must be convex,

• the inequality constraint functions gi(x) must be convex for all i = 1, · · · ,m,

• the equality constraint functions hj(x) must be affine for all j = 1, · · · , l.

Note that in the convex optimization problem, we can only tolerate affine equality constraints,
meaning (24) takes the matrix-vector form of Aeqx = beq.

In general, no analytical formula exists for the solution of convex optimization problems. How-
ever, there are very effective and reliable methods for solving them. For example, we can easily
solve problems with hundreds of variables and thousands of constraints on a current laptop com-
puter, in at most a few tens of seconds. Due to the impressive efficiency of these solvers, many
researchers have developed tricks for transforming problems into convex form. As a result, a
surprising number of practical energy system problems can be solved via convex optimization.
With only a bit of exaggeration, we can say that, if you formulate a practical problem as a convex
optimization problem, then you have solved the original problem. Recognizing a convex optimiza-
tion problem can be difficult, however. The challenge, and art, in using convex optimization is in
recognizing and formulating the problem. Once this formulation is done, solving the problem is
essentially an off-the-shelf technology.

Example 3.1. Are the following two problems convex programs?

minimize f(x) = x21 + x22 (25)

subject to g1(x) = x1/(1 + x22) ≤ 0 (26)
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h1(x) = (x1 + x2)
2 = 0 (27)

This is NOT a convex program. The inequality constraint function g1(x) is not convex in (x1, x2).
Additionally, the equality constraint function h1(x) is not affine in (x1, x2).

Now, an astute observer might comment that both sides of (26) can be multiplied by (1 + x22)

and (27) can be represented simply by x1 + x2 = 0, without loss of generality. This leads to:

minimize f(x) = x21 + x22 (28)

subject to g1(x) = x1 ≤ 0 (29)

h1(x) = x1 + x2 = 0 (30)

This is a convex program. The objective function f(x) and inequality constraint function g1(x) are
convex in (x1, x2). Additionally, the equality constraint function h1(x) is affine in (x1, x2).

The remainder of this chapter is dedicated to examples. First, let us discuss some properties
of convex programs.

3.2 Properties

The following statements are true about convex programming problems:

• If a local minimum exists, then it is the global minimum.

• If the objective function is strictly convex, and a local minimum exists, then it is a unique
minimum.

The implication of these properties is stunning. The first property states that you need only find a
local minimum (if it exists). In other words, if you can prove that a candidate solution x is optimal
over a local neighborhood around x, then you are done. There is no need to search elsewhere.
That local optimizer x? is globally optimal.

The second property is also important. If in addition to finding a local minimum, you observe
that the objective function is strictly convex (that is, it satisfies (14) with a strict inequality), then that
local minimum is unique. That means there exists no other local minimizer x? that does equally
well. You have found the one and only optimal solution.

Next we present a series of important types of convex programs. These examples persistently
arise in energy systems optimization, along with applications ranging from transportation, environ-
mental science & engineering, computer science, structural design, etc. The important examples
include:

• Linear programming (LP)

• Quadratic programming (QP)
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• Geometric programming (GP)

• Second order cone programming (SOCP)

• Maximum likelihood estimation (MLE)

3.3 Linear Programming

A linear program (LP) is defined as the following special case of a convex program:

minimize cTx (31)

subject to Ax ≤ b (32)

Aeqx = beq (33)

Compare with the canonical form (1)-(3). We find that f(x) must be linear (or affine, before drop-
ping the additive constant). Also, gi(x) and hj(x) must be affine for all i and j, respectively.

Appendix Section 5 provides a more detailed exposition of LPs. However, we highlight the
most important properties here. Observe that the constraint set {x ∈ Rn | Ax ≤ b, Aeqx = beq}
forms a polyhedron – one of the important convex set examples discussed in Section 2.1. An
example for n = 2 is visualized in Fig. 12. In addition, observe that the objective function is linear,
meaning the sets of equivalent cost form “isolines” across the Cartesian plane. In Fig. 12, the cost
decreases as we move from left to right.

Figure 12: The feasible set of LPs always forms a polyhedron P. The objective function can be visualized
as isolines with constant cost, visualized by the dotted lines. The optimal solution is at the boundary point
that touches the isoline of least cost.

Consequently, the visual approach to solving LPs is the following: Find the point in the feasible
set (which is a polyhedron P) that touches the isoline with least value. Visually, it is obvious the
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optimum must be bounded (if it is feasible). In other words, the minimizer x? always exists on the
boundary of the polyhedron (if it is feasible). This observation leads to the following proposition,
provided without proof.

Proposition 2 (LP Solutions). The solution to any linear program is characterized by one of the
following three categories:

• [No Solution] This occurs when the feasible set is empty, or the objective function is un-
bounded.

• [One Unique Solution] There exists a single unique solution at the vertex of the feasible set.
That is, at least two constraints are active and their intersection gives the optimal solution.

• [A Non-Unique Solution] There exists an infinite number of solutions, given by one edge
of the feasible set. That is, one or more constraints are active and all solutions along the
intersection of these constraints are equally optimal. This can only occur when the objective
function gradient is orthogonal to one or multiple constraint.

Given this foundation, we now dive into examples of LPs in energy systems optimization.

Example 3.2 (Optimal Economic Dispatch). Imagine you are the California Independent System
Operator (CAISO). Your role is to schedule power plant generation for tomorrow. Specifically, there
are n generators, and you must determine how much power each generator produces during each
one hour increment, across 24 hours. The power generated must equal the power consumed.
Moreover, you seek to contract these generators in the most economic fashion possible. The
following data is given:

• Each generator indexed i provides its “marginal cost” ci (units of USD/MW). Quantity ci

indicates the financial compensation each generator requests for providing one unit of power.

• Each generator has a maximum power capacity of xi,max (units of MW). You may not contract
more power than each generator can produce.

• The electricity demand for California isD(k), where k indexes each hour, i.e. k = 0, 1, · · · , 23.

We are now positioned to formulate a LP that can be solved with convex solvers:

minimize
23∑
k=0

n∑
i=1

cixi(k) (34)

subject to 0 ≤ xi(k) ≤ xi,max, ∀ i = 1, · · · , n, k = 0, · · · , 23 (35)
n∑
i=1

xi(k) = D(k), k = 0, · · · , 23 (36)
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Figure 13: [LEFT] Marginal cost of electricity for various generators, as a function of cumulative capacity.
The purple line indicates the total demand D(k). All generators left of the purple line are dispatched.
[RIGHT] Optimal supply mix and demand for 03:00.
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Figure 14: [LEFT] Marginal cost of electricity for various generators, as a function of cumulative capacity.
The purple line indicates the total demand D(k). All generators left of the purple line are dispatched.
[RIGHT] Optimal supply mix and demand for 19:00.

where the optimization variable is xi(k) and physically represents the power produced by generator
i during hour k. Example economic dispatch data and results are provided in Fig. 13 and 14.

Several notable properties enable an intuitive view of the solution. First, the optimization prob-
lems are independent across time. Therefore, optimal economic dispatch can be solved indepen-
dently for each time k. That is, solve for each time step k:

minimize
n∑
i=1

cixi(k) (37)

subject to 0 ≤ xi(k) ≤ xi,max, ∀ i = 1, · · · , n, k = 0, · · · , 23 (38)
n∑
i=1

xi(k) = D(k), k = 0, · · · , 23 (39)
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After solving 24 independent problems, one obtains the minimum generation cost for each hour
denoted f(x?(k)) =

∑n
i=1 cix

?
i (k). Then the minimum daily generation cost is the sum of minimal

hourly generation costs:
∑23

k=0 f(x?(k)).
Second, the LP has a specific structure that is often called a “knapsack problem” or a “water-

filling problem”. In this case, we sort the marginal costs in increasing order and compute the
cumulative power capacity of the generators. This process yields the [LEFT] plots in Fig. 13 and
14. Then we observe the electricity demand, such as 20,000 MW at 03:00 in Fig. 13. In the
cumulative capacity vs marginal cost plot, the optimal solution is to dispatch the generators to
the left of the electricity demand. For example, at 03:00 the maximum capacity of renewables,
nuclear, and coal is dispatched, and the remaining electricity is delivered by gas combined cycle
(CC) plants.

This, of course, is a stylized and simplified version of real-world optimal economic dispatch
in power systems. In real power systems, electricity is delivered over a network with various
network constraints. For example, transmission lines and transformers have power limits to ensure
safety. Real-world optimal economic dispatch includes network constraints, that incorporate up to
thousands of nodes. This renders a considerably more difficult optimization problem that is almost
never a LP. However, much recent research has focused on clever reformulations into convex
programs.

3.4 Quadratic Programming

A quadratic program (QP) is defined as the following:

minimize
1

2
xTQx+RTx+ S (40)

subject to Ax ≤ b (41)

Aeqx = beq (42)

Compare with the canonical form (1)-(3). We find that f(x) must be quadratic. However, gi(x) and
hj(x) are still restricted to be affine for all i and j, respectively.

The QP described above is not always a convex program. Please see Fig. 11. Some classes
of QPs are not convex programs. If Q is positive semi-definite, i.e. Q � 0, then the QP above
is a “convex quadratic program”. If Q is not positive semi-definite, then we call this a “nonconvex
QP”. In this section, we restrict our attention to convex QPs. Appendix Section 6 provides a more
detailed exposition of QPs.

A generalization of QPs is quadratically constrained quadratic programs (QCQPs), given by:

minimize
1

2
xTQx+RTx+ S (43)

subject to
1

2
xTQix+RTi x+ Si ≤ 0, ∀ i = 1, · · · ,m (44)
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Aeqx = beq (45)

where Q,Qi � 0 for the program to be convex. Compare with the canonical form (1)-(3). We find
that f(x) must be quadratic and now the gi(x) inequality constraint functions may be quadratic for
all i. The functions hj(x) must be affine for all j.

Example 3.3 (Markowitz Portfolio Optimization). Imagine you are an investment portfolio manager.
You control a large sum of money, which can be invested in up to n assets or stocks. At the end
of some time period, your investment produces a financial return. The key challenge, here, is this
return is not predictable. It is random.

Denote by xi the fraction of funds invested into asset i. Consequently,
∑

i xi = 1 and we
assume xi ≥ 0, meaning we cannot invest a negative amount into asset i. (Negative xi is called a
“short position”, and implies we are obligated to buy asset i at the end of the investment period.)

Assume the return on each asset can be well-characterized by a multivariate Gaussian distri-
bution. Specifically, the return is distributed according to N (µ,Σ), where µ ∈ Rn is the expected
return and Σ ∈ Rn×n is the covariance. For example, asset i may have an expected return of µi =

2% with a standard deviation of
√

Σii = 5%. In contrast, asset j might have an expected return
of µj = 5%, but a standard deviation of

√
Σjj = 50%. Would it be wise to invest everything into

asset j? Would it be wise to invest everything into asset i? What about some mix?
This is the classical portfolio optimization problem, introduced by Markowitz. It is mathemati-

cally given as:

minimize xTΣx (46)

subject to µTx ≥ rmin (47)

1
Tx = 1, x � 0 (48)

In words, we seek to minimize the return variance while guaranteeing a minimum expected return
of rmin. The final constraint is a budget constraint. This problem is clearly a QP, and can be solved
via convex solvers. Observe that we are minimizing risk, subject to achieving sufficiently high
expected return. What if we reverse these roles?

Let us consider maximizing expected return, subject to an upper bound on allowed risk. We
write:

minimize −µTx (49)

subject to xTΣx ≤ Rmax (50)

1
Tx = 1, x � 0 (51)

where Rmax represents the maximum allowable risk. Observe that this problem is a QCQP, which
follows the form in (43)-(45). This problem can also be solved by convex solvers.
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One common variation is to form a bi-criterion problem. Namely, maximize the expected return
and minimize the return variance. In math:

minimize xTΣx AND maximize µTx (52)

Of course, these two objectives cannot be achieved without tradeoffs. Therefore, one often “scalar-
izes” this bi-criterion problem to explore the tradeoff:

minimize −µTx+ γ · xTΣx (53)

subject to 1
Tx = 1, x � 0 (54)

where the parameter γ ≥ 0 is called the “risk aversion” parameter. As you increase γ, you become
more sensitive to variance in your investment returns. A value of γ = 0 classifies you as a pure
risk seeker. You ignore variances and simply pursue the highest expected return.
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Figure 15: Trade off between maximizing expected
return and minimizing risk. This trade off curve is
called a “Pareto Frontier”
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Figure 16: Optimal portfolio investment strategy, as
risk aversion parameter γ increases.

To illustrate, consider the following expected return and covariance data for a portfolio of three
assets:

µ = [1.02, 1.05, 1.04]T , Σ =

 (0.05)2 0 0

0 (0.5)2 0

0 0 (0.1)2

 (55)

Asset 1 has a 2% expected return and 5% standard deviation. In contrast, asset 2 has a larger
expected return (5%) but significantly larger volatility: 50% standard deviation. What is the optimal
investment strategy that balances expected return and risk?

Let us sweep risk aversion parameter between γ = 0 and γ = 1. (Note: one can increase γ
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beyond one). Figure 15 demonstrates the trade off between maximizing expected return versus
minimizing risk. Clearly, we seek high expected return and low risk. Therefore, solutions toward
the bottom-right are desirable. However, there is a fundamental trade off. When γ = 0, we ignore
risk. The expected return is relatively high, but also imputes high risk. Increasing γ reduces
the imputed risk, but also decreases the expected return. For example, when γ = 1 then we’ve
reduced the risk by 10X, but also reduced the expected return from 5% to 2.5%.

Let us highlight γ = 0.05 as an interesting solution. For γ = 0.05, we have an expected return
of 4.6% and risk of 0.1. Relative to the γ = 0 solution, we reduced risk by 60%, but only sacrificed
a meager 0.4% in expected return. This trade off could make excellent sense. Namely, it is
absolutely worthwhile to reduce volatility by 60% if I only sacrifice 0.4% in expected returns. This
example highlights how to use Pareto frontiers. We look for “knees” or “kinks” in the Pareto frontier
where it’s possible gain a lot in one objective while giving up little in the other.

Consider Fig. 16, which visualizes the optimal portfolio investment strategy as a function of
increasing γ. When γ = 0, we ignore risk. Consequently, the optimal solution is to invest everything
in asset 2. It has highest expected return (5%). As we increase γ, we become more sensitive to
risk. Consequently, the optimal portfolio diversifies. Initially, we invest in both asset 2 and 3. Asset
3 has the next highest expected return. For sufficiently high γ, we begin to strongly favor asset 1
because it has the lowest variance. As we increase γ → ∞, then the optimal portfolio investment
strategy would be to invest in asset 1 only, due to low variance.

3.5 Second Order Cone Programming

A second order cone program (SOCP) is defined as the following special case of a convex pro-
gram:

minimize fTx (56)

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, · · · ,m (57)

Aeqx = beq (58)

The inequalities are called second order cone constraints. Indeed, they form a special class of
convex sets called “second order cones”. While this second order cone constraint may seem
highly technical, specific, and abstract, it can be the crucial feature that enables us to study – for
example – optimal dispatch of renewable generators under uncertainty.

Example 3.4 (Robust Dispatch in a High-Penetration Renewable Grid). Let us return to the eco-
nomic dispatch problem. We must economically dispatch up to n generators to serve electricity
demand D. In this case, we consider that a large percentage of these n generators are renewable.
The challenge we face is the following. The maximum power generating capacity of these renew-
able generators is random. For example, a wind farm can produce anywhere between 0 MW and
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10 MW, depending on weather conditions. Similarly, a solar farm can produce anywhere from 0
MW to 20 MW.

To model this scenario, we write the following linear program

minimize fTx (59)

subject to RTx ≥ D (60)

0 ≤ x ≤ 1 (61)

where x ∈ Rn is the vector of power generation dispatched to the generators, as a fraction of the
generator’s rated capacity. For example, to dispatch 9 MW from the wind farm rated at 10 MW, we
set xi = 0.9. To dispatch 15 MW from the solar farm rated at 20 MW, we set xj = 0.75. Parameter
f ∈ Rn is the vector of marginal costs, and D ∈ R is the electricity demand. Parameter R ∈ Rn

represents the real-time power capacity of the generators. To convert (59)-(60) into standard form,
we define a = −R and b = −D, which yields

minimize fTx (62)

subject to aTx ≤ b (63)

0 ≤ x ≤ 1 (64)

Our primary focus is on parameter a. While parameters f and b are fixed, parameter a is
uncertain. In particular, if generator i is the wind farm, then Ri might vary between 0 MW and 10
MW (thus −10 ≤ ai ≤ 0). If generator j is the solar farm, then Rj might vary between 0 MW and
20 MW (thus −20 ≤ aj ≤ 0). Finally, if generator k is a natural gas plant with 50 MW capacity, then
Rk is always 50 MW (thus ak = −50). Mathematically, we hypothesize that vector a is known to lie
within an ellipsoid:

a ∈ E = {ā+ Pu | ‖u‖2 ≤ 1} (65)

where ā ∈ Rn is the center of this ellipsoid and P ∈ Rn×n is a positive semidefinite matrix. If
generator i is our wind farm with 0 MW to 10 MW capacity, then āi = −5. If generator j is our solar
farm with 0 MW to 20 MW capacity, then āj = −10. If generator k is our conventional natural gas
plant with fixed 50 MW capacity, then āk = −50.

Matrix P maps the unit ball ‖u‖2 ≤ 1 into an ellipse. Recall that λ(P ) provides the semi-axis
lengths. Then we can define P to be a diagonal matrix with its eigenvalues on the diagonal. For
example, the wind farm with 0 MW to 10 MW capacity would mean Pii = 5. The solar farm with
0 MW to 20 MW capacity would mean Pjj = 10. The conventional natural gas plant with fixed 50
MW capacity would mean Pkk = 0. In this case, P is positive semi-definite. In a 100% renewable
grid, then P would be strictly positive definite.
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The robust version of (59)-(60) requires us to satisfy demand in EVERY instance of a ∈ E :

minimize fTx (66)

subject to aTx ≤ b, ∀ a ∈ E (67)

0 ≤ x ≤ 1 (68)

Namely, find the optimal economic dispatch which satisfied demand D, given that real-time ca-
pacity vector a can exist anywhere in ellipsoid E . An alternative description is the following. Find
the optimal economic dispatch under the worst case scenario of real-time capacity vector a ∈ E .
Mathematically, we can reformulate the robust linear constraint (67) to examine the worst case:

max
{
aTx | a ∈ E

}
≤ b (69)

That is, we ensure adequate power generation in the face of uncertain renewable generation by
ensuring (67) is satisfied in the absolute worst case. We can re-write the left hand side of (69) as

max
{
aTx | a ∈ E

}
= āTx+ max

{
uTP Tx | ‖u‖2 ≤ 1

}
(70)

= āTx+ ‖P Tx‖2 (71)

Then the robust linear constraint can be re-expressed as

āTx+ ‖P Tx‖2 ≤ b (72)

which is a second order cone constraint. Consequently, a robust LP can be converted to a second
order cone program (SOCP) – a sub-class of convex optimization problems:

minimize fTx (73)

subject to āTx+ ‖P Tx‖2 ≤ b (74)

0 ≤ x ≤ 1 (75)

Note that the additional norm term acts as a regularization term. Namely, it prevents x from
being large in directions with considerable uncertainty.

Example 3.5 (Stochastic Dispatch in a High-Penetration Renewable Grid). In the previous exam-
ple, we optimize generator dispatch considering the worst-case scenario. One might argue this is
too restrictive. That is, instead of ensuring feasibility for all possible real-time renewable generation
capacity, we could potentially allow violations of (60). These are called “chance constraints.” In the
economic dispatch application, a separate mechanism could be employed to balance electricity
supply and demand, e.g. demand response, ancillary services, energy storage, etc.
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To formalize this approach, recall the LP

minimize cTx (76)

subject to aTx ≤ b (77)

Assume that a ∈ Rn is Gaussian, i.e. a ∼ N (ā,Σ). Then aTx is a Gaussian random variable with
mean āTx and variance xTΣx. Hence, we can express the probability that aTx ≤ b is satisfied as

Pr(aTx ≤ b) = Φ

(
b− āTx
‖Σ1/2x‖2

)
(78)

where Φ(x) = (1/
√

2π)
∫ x
−∞ e

−y2/2dy is the CDF of N (0, 1). This enables us to relax (77) into

minimize cTx (79)

subject to Pr(aTx ≤ b) ≥ η (80)

The relaxed constraint (80) is called a chance constraint. Think of it as a reliability prescription.
Namely, we require that aTx ≤ b with a reliability of η, where η is typically 0.9, 0.95, or 0.99.
Interestingly, we can use (78) to convert this stochastic LP into an SOCP as follows.

minimize cTx (81)

subject to āTx+ Φ−1(η)‖Σ1/2x‖2 ≤ b (82)

where Φ−1(·) is the inverse CDF for the Gaussian distribution. Note that we need Φ−1(·) ≥ 0 to be
a valid second order cone constraint. This is true if and only if η ≥ 1/2. Conveniently, we always
want a reliability of η ≥ 1/2 in practice.

To summarize, we can formulate a relaxed version of the robust LP problem using chance
constraints. If the random variable a has a Gaussian distribution, then this chance constrained
LP can be successfully re-formulated into a SOCP, which can be efficiently solved with convex
programming solvers.

3.6 Maximum Likelihood Estimation

Imagine someone provides you with m data points for random variable y. You seek to fit a prob-
ability distribution to this data. In energy systems, variable y could represent wind speed, solar
insolation, vehicle speed, building electricity demand, etc.

We consider a probability density function p(y; θ) for random variable y. Vector θ ∈ Rn pa-
rameterizes this density. When p(y; θ) is considered as a function of θ for fixed y, then we call
this a “likelihood function”. As we shall see, it is extremely convenient to use the logarithm of this

Revised February 28, 2018 | NOT FOR DISTRIBUTION Page 24



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

function, which we call the “log-likelihood function”, denoted:

l(θ) = log p(y; θ) (83)

Let us return to the problem of fitting a probability distribution to this data. A standard method,
called “maximum likelihood estimation (MLE)”, is to estimate θ as

θ̂ = arg max
θ

p(y; θ) = arg max
θ
l(θ) (84)

for a given data point y. In this example, the optimization variable is θ. Symbol y is problem data.
Interestingly, the MLE problem yields convex optimization problems in many common scenarios.
Specifically, (84) is a convex optimization problem if l(θ) is concave w.r.t. θ for each value of y.
One can optimally add constraints that form a convex set as well.

Example 3.6 (MLE for Linear Models). For concreteness, we consider a linear measurement
model,

yi = θTφi + vi, i = 1, · · · ,m (85)

where θ ∈ Rn is the vector of parameters to be estimated, yi ∈ R are the measured data points,
φi ∈ Rn are the regressors, and vi ∈ R are the measurement errors or noise. Assume that vi are
independent and identically distributed (IID), with density p(·). The likelihood function, given the
yi’s, is given by the products of the likelihood given each measurement yi and regressor φi.

p(v; θ) =
m∏
i=1

p(yi − θTφi) (86)

The log-likelihood function is then

l(θ) = log p(y; θ) =
m∑
i=1

log p(yi − θTφi) (87)

HINT: Recall the logarithm of a product property: log(ab) = log(a) + log(b). The MLE problem is:

maximize
m∑
i=1

log p(yi − θTφi) (88)

w.r.t. variable θ. As mentioned before, p(y; θ) is log-concave for several common probability dis-
tributions. For example, suppose that vi are Gaussian with zero mean and variance σ2. Thus
p(v) = (2πσ2)−1/2 · e−v2/(2σ2). Substituting this expression for p(·) into (87) gives the log-likelihood
function

l(x) = −m
2

log(2πσ2)− 1

2σ2
‖ΦT θ − y‖22 (89)
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where Φ = [φ1, · · · , φm] ∈ Rn×m is a concatenated matrix of regressor vectors. Consequently, we
have shown the MLE problem for a Gaussian distribution is – quite simply – the solution to the
least-squares problem

θ̂ = arg min
θ
‖ΦT θ − y‖22 (90)

How elegant!

Exercise 6. Derive the MLE optimization formulation for (85) for the following distributions for vi:

1. Laplacian noise distribution: p(v) = 1/(2a) · e−|v|/a

2. Uniform noise distribution: p(v) = 1/(2a) on [−a,+a] and zero elsewhere

Example 3.7 (Logistic Regression).

Example 3.8 (Mechanical Design w/ Geometric Programs).

3.7 Duality

4 Nonlinear Programming (NLP)

Nonlinear programming problems involve objective functions that are nonlinear in the decision
variable x. LP and QP problems are special cases of NLPs. As such, the particular structure of
LPs and QPs can be exploited for analysis and computation. In this section, we discuss a more
general class of nonlinear problems and corresponding tools for analysis and computation.

A nonlinear optimization problem has the form

min
x

f(x) (91)

subject to gi(x) ≤ 0, i = 1, · · · ,m (92)

hj(x) = 0, j = 1, · · · , l. (93)

Note the key difference is the objective function and constraints take a general form that is non-
linear in x. In this general case, we first discuss algorithms for the unconstrained case. Then we
consider constraints and present general theory on NLPs.

4.1 Gradient Descent

Gradient descent is a first-order iterative algorithm for finding the local minimum of a differentiable
function. It is applicable to unconstrained minimization problems. Starting from an initial guess, the
main idea is to step in the direction of steepest descent at each iteration. Eventually the algorithm
will converge when the gradient is zero, which corresponds to a local minimum.
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This concept is illustrated in Fig. 17, which provides iso-contours of a function f(x) that we
seek to minimize. In this example, the user provides an initial guess x0. Then the algorithm
proceeds according to

xk+1 = xk − h · ∇f(x) (94)

where h > 0 is some positive step size. The iteration proceeds until a stopping criterion is satisfied.
Typically, we stop when the gradient is sufficiently close to zero

‖∇f(xk)‖ ≤ ε (95)

where ε > 0 is some small user defined stopping criterion parameter, and the norm ‖∇f(xk)‖ can
be a user-selected norm, such as the 2-norm, 1-norm, or∞-norm.

Figure 17: Illustration of gradient descent
with step size proportional to the gradient.

Figure 18: In non-convex functions, gradient descent con-
verges to the local minimum. Consequently, different initial
guesses may result in different solutions.

Exercise 7. Minimize the function f(x1, x2) = 1
2(x21 + 10x22) with an initial guess of (x1,0, x2,0) =

(10, 1). Use a step-size of h = 1, and a stopping criterion of ‖∇f(xk)‖2 =
√
x21,k + x22,k ≤ ε = 0.01.

For non-convex problems, such as the one illustrated in Fig. 18, the gradient descent algorithm
converges to the local minimum. In other words, convergence to a global minimum is not guar-
anteed unless the function f(x) is convex over the feasible set D. In this case, one may select a
variety of initial guesses, x0, to start the gradient descent algorithm. Then the best of all converged
values is used for the proposed solution. This still does not guarantee a global minimum, but is
effective at finding a sub-optimal solution in practice.
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4.2 Barrier and Penalty Functions

A drawback of the gradient descent method is that it does not explicitly account for constraints.
Barrier and penalty functions are two methods of augmenting the objective function f(x) to ap-
proximately account for the constraints. To illustrate, consider the constrained minimization prob-
lem

min
x

f(x) (96)

subject to g(x) ≤ 0. (97)

We seek to modify the objective function to account for the constraints, in an approximate way.
Thus we can write

min
x

f(x) + φ(x; ε) (98)

where φ(x; ε) captures the effect of the constraints and is differentiable, thereby enabling usage of
gradient descent. The parameter ε is a user-defined parameter that allows one to more accurately
or more coarsely approximate the constraints. Barrier and penalty functions are two methods of
defining φ(x; ε). The main idea of each is as follows:

• Barrier Function: Allow the objective function to increase towards infinity as x approaches
the constraint boundary from inside the feasible set. In this case, the constraints are guar-
anteed to be satisfied, but it is impossible to obtain a boundary optimum.

• Penalty Function: Allow the objective function to increase towards infinity as x violates
the constraints g(x). In this case, the constraints can be violated, but it allows boundary
optimum.

To motivate these methods, consider the non-convex function shown in Fig. 19. We seek to
find the minimum within the range [0.5, 1.5]. Mathematically, this is a one-dimensional problem
written as

min
x

f(x) (99)

s. to x ≤ b (100)

x ≥ a (101)

4.2.1 Log Barrier Function

Let us define the log barrier function as

φ(x; ε) = −ε log

(
(x− a)(b− x)

b− a

)
(102)
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Figure 19: Find the optimum of the function shown above within the range [0.5, 1.5].

The critical property of the log barrier function is that φ(x; ε) → +∞ as x → a from the right side
and x→ b from the left side. Ideally, the log barrier function is zero inside the constraint set. This
desired property becomes increasingly true as ε→ 0.

4.2.2 Quadratic Penalty Function

Let us define the quadratic penalty function as

φ(x; ε) =


0 if a ≤ x ≤ b
1
2ε(x− a)2 if x < a

1
2ε(x− b)

2 if x > b

(103)

The critical property of the quadratic penalty function is that φ(x; ε) increases towards infinity as x
increases beyond b or decreases beyond a. The severity of this increase is parameterized by ε.
Also, note that φ(x; ε) is defined such that f(x) + φ(x; ε) remains differentiable at x = a and x = b,
thus enabling application of the gradient descent algorithm.

4.3 Sequential Quadratic Programming (SQP)

In our discussion of NLPs so far, we have explained how to solve (i) unconstrained problems via
gradient method, and (ii) unconstrained problems augmented with barrier or penalty functions to
account for constraints. In this section, we provide a direct method for handling NLPs with con-
straints, called the Sequential Quadratic Programming (SQP) method. The idea is simple. We
solve a single NLP as a sequence QP subproblems. In particular, at each iteration we approx-
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imate the objective function and constraints by a QP. Then, within each iteration, we solve the
corresponding QP and use the solution as the next iterate. This process continues until an appro-
priate stopping criterion is satisfied.

SQP is very widely used in engineering problems and often the first “go-to” method for NLPs.
For many practical energy system problems, it produces fast convergence thanks to its strong
theoretical basis. This method is commonly used under-the-hood of Matlab function fmincon.

Consider the general NLP

min
x

f(x) (104)

subject to g(x) ≤ 0, (105)

h(x) = 0, (106)

and the kth iterate xk for the decision variable. We utilize the Taylor series expansion. At each
iteration of SQP, we consider the 2nd-order Taylor series expansion of the objective function (104),
and 1st-order expansion of the constraints (105)-(106) around x = xk:

f(x) ≈ f(xk) +
∂f

∂x

T

(xk) (x− xk) +
1

2
(x− xk)T

∂2f

∂x2
(xk) (x− xk) , (107)

g(x) ≈ g(xk) +
∂g

∂x

T

(xk) (x− xk) ≤ 0, (108)

h(x) ≈ h(xk) +
∂h

∂x

T

(xk) (x− xk) = 0 (109)

To simplify the notation, define x̃ = x− xk. Then we arrive at the following approximate QP

min
1

2
x̃TQx̃+RT x̃ (110)

s. to Ax̃ ≤ b (111)

Aeqx̃ = beq (112)

where

Q =
∂2f

∂x2
(xk), R =

∂f

∂x
(xk) (113)

A =
∂g

∂x

T

(xk), b = −g(xk) (114)

Aeq =
∂h

∂x

T

(xk), beq = −h(xk) (115)

Suppose (110)-(112) yields the optimal solution x̃∗. Then let xk+1 = xk + x̃∗, and repeat.

Remark 4.1. Note that the iterates in SQP are not guaranteed to be feasible for the original NLP
problem. That is, it is possible to obtain a solution to the QP subproblem which satisfies the
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approximate QP’s constraints, but not the original NLP constraints.

Example 4.1. Consider the NLP

min
x1,x2

e−x1 + (x2 − 2)2 (116)

s. to x1x2 ≤ 1. (117)

with the initial guess [x1,0, x2,0]
T = [1, 1]T . By hand, formulate the Q,R,A,b matrices for the first

three iterates. Use Matlab command quadprog to solve each subproblem. What is the solution
after three iterations?

We have f(x) = e−x1 + (x2 − 2)2 and g(x) = x1x2 − 1. The iso-contours for the objective function
and constraint are provided in Fig. 20. From visual inspection, it is clear the optimal solution is
near [0.5, 2]T . We seek to find the approximate QP subproblem

min
1

2
x̃TQx̃+RT x̃ (118)

s. to Ax̃ ≤ b (119)

Taking derivatives of f(x) and g(x), one obtains

Q =

[
e−x1 0

0 2

]
, R =

[
−e−x1

2(x2 − 2)

]
, (120)

A =
[
x2 x1

]
, b = 1− x1x2 (121)

Now consider the initial guess [x1,0, x2,0]
T = [1, 1]T . Note that this guess is feasible. We obtain the

following matrices for the first QP subproblem

Q =

[
e−1 0

0 2

]
, R =

[
−e−1

−2

]
,

A =
[

1 1
]
, b = 0

Solving this QP subproblem results in x̃∗ = [−0.6893, 0.6893]. Then the next iterate is given by
[x1,1, x2,1] = [x1,0, x2,0] + x̃∗ = [0.3107, 1.6893]. Repeating the formulation and solution of the QP
subproblem at iteration 1 produces [x1,1, x2,1] = [0.5443, 1.9483]. Note that this iterate is infeasible.
Continued repetitions will produce iterates that converge toward the true solution.

SQP provides an algorithmic way to solve NLPs in energy system applications. However, it still
relies on approximations - namely truncated Taylor series expansions - to solve the optimization
problem via a sequence of QP subproblems. Next, we discuss a direct method for solving NLPs,
without approximation.
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g(x) = 0

Iterations 

of SQP

Iter. [x1, x2] f(x) g(x)

0 [1, 1] 1.3679 0

1 [0.311, 1.689] 0.8295 -0.4751

2 [0.544, 1.948] 0.5829 0.0605

3 [0.522, 1.917] 0.6002 0.0001

4 [0.521, 1.919] 0.6004 -0.0000

Figure 20 & Table 1: [LEFT] Iso-contours of objective function and constraint for Example 4.1. [RIGHT]
Numerical results for first three iterations of SQP. Note that some iterates are infeasible.

4.4 First-Order Necessary Conditions for Optimality

In calculus, you learned that a necessary condition for minimizers is that the function’s slope is zero
at the minimum. We extend this notion in this section. Namely, we discuss first-order necessary
conditions for optimality for NLPs.

4.4.1 Method of Lagrange Multipliers

Consider the equality constrained optimization problem

min f(x) (122)

s. to hj(x) = 0, j = 1, · · · , l (123)

Introduce the so-called “Lagrange multipliers” λj , j = 1, · · · , l. Then we can augment the cost
function to form the “Lagrangian” L(x) as follows

L(x) = f(x) +

l∑
j=1

λjhj(x) (124)

= f(x) + λTh(x) (125)

Note that when all constraints are satisfied, that is h(x) = 0, then the second term becomes zero.
Consequently, the Lagrangian L(x) and cost function f(x) provide identical values for all feasible
x. We now state the first-order necessary condition (FONC) for equality constrained problems:
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Proposition 3 (FONC for Equality Constrained NLPs). If a local minimum x∗ exists, then it satisfies

∂L

∂x
(x∗) =

∂f

∂x
(x∗) + λT

∂h

∂x
(x∗) = 0 (stationarity), (126)

∂L

∂λ
(x∗) = h(x∗) = 0 (feasibility). (127)

That is, the gradient of the Lagrangian is zero at the minimum x∗.

Remark 4.2. This condition is only necessary. That is, if a local minimum x∗ exists, then it must
satisfy the FONC. However, a design x which satisfies the FONC isn’t necessarily a local minimum.

Remark 4.3. If the optimization problem is convex, then the FONC is necessary and sufficient.
That is, a design x which satisfies the FONC is also a local minimum.

Example 4.2. Consider the equality constrained QP

min
1

2
xTQx+RTx (128)

s. to Ax = b (129)

Form the Lagrangian,

L(x) =
1

2
xTQx+RTx+ λT (Ax− b) . (130)

Then the FONC is
∂L

∂x
(x∗) = Qx∗ +R+ATλ = 0. (131)

Combining the FONC with the equality constraint yields[
Q AT

A 0

][
x∗

λ

]
=

[
−R
b

]
(132)

which provides a set of linear equations that can be solved directly.

Example 4.3. Consider a circle inscribed on a plane, as shown in Fig. 21. Suppose we wish to
find the “lowest” point on the plane while being constrained to the circle. This can be abstracted
as the NLP:

min f(x, y) = x+ y (133)

s. to x2 + y2 = 1 (134)

Form the Lagrangian
L(x, y, λ) = x+ y + λ(x2 + y2 − 1) (135)
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Figure 21: Visualization of circle-plane problem from Example 4.4.

Then the FONCs and equality constraint can be written as the set of nonlinear equations:

∂L

∂x
= 1 + 2λx = 0 (136)

∂L

∂y
= 1 + 2λy = 0 (137)

∂L

∂λ
= x2 + y2 − 1 = 0 (138)

One can solve these three equations for x, y, λ by hand to arrive at the solution

(x∗, y∗) =

(
±
√

2

2
,±
√

2

2

)
f(x∗, y∗) = ±

√
2

λ = ∓1/
√

2

4.4.2 Karush-Kuhn-Tucker (KKT) Conditions

Now we consider the general constrained optimization problem

min f(x) (139)

s. to gi(x) ≤ 0, i = 1, · · · ,m (140)

hj(x) = 0, j = 1, · · · , l (141)
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Introduce the so-called “Lagrange multipliers” λj , j = 1, · · · , l each associated with equality con-
straints hj(x), j = 1, · · · , l and µi, i = 1, · · · ,m each associated with inequality constraints gi(x), i =

1, · · · ,m. Then we can augment the cost function to form the “Lagrangian” L(x) as follows

L(x) = f(x) +

m∑
i=1

µigi(x) +

l∑
j=1

λjhj(x) (142)

= f(x) + µT g(x) + λTh(x) (143)

As before, when the equality constraints are satisfied, h(x) = 0, then the third term becomes
zero. Elements of the second term become zero in two cases: (i) an inequality constraint is active,
that is gi(x) = 0; (ii) the Lagrange multiplier µi = 0. Consequently, the Lagrangian L(x) can be
constructed to have identical values of the cost function f(x) if the aforementioned conditions are
applied. This motivates the first-order necessary conditions (FONC) for the general constrained
optimization problem – called the Karush-Kuhn-Tucker (KKT) Conditions.

Proposition 4 (KKT Conditions). If x∗ is a local minimum, then the following necessary conditions
hold:

∂f

∂x
(x∗) +

m∑
i=1

µi
∂

∂x
gi(x

∗) +
l∑

j=1

λj
∂

∂x
hj(x

∗) = 0, Stationarity (144)

gi(x
∗) ≤ 0, i = 1, · · · ,m Feasibility (145)

hj(x
∗) = 0, j = 1, · · · , l Feasibility (146)

µi ≥ 0, i = 1, · · · ,m Non-negativity (147)

µigi(x
∗) = 0, i = 1, · · · ,m Complementary slackness (148)

which can also be written in matrix-vector form as

∂f

∂x
(x∗) + µT

∂

∂x
g(x∗) + λT

∂

∂x
h(x∗) = 0, Stationarity (149)

g(x∗) ≤ 0, Feasibility (150)

h(x∗) = 0, Feasibility (151)

µ ≥ 0, Non-negativity (152)

µT g(x∗) = 0, Complementary slackness (153)

Remark 4.4. Note the following properties of the KKT conditions

• Non-zero µi indicates gi ≤ 0 is active (true with equality). In practice, non-zero µi is how we
identify active constraints from nonlinear solvers.
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• The KKT conditions are necessary, only. That is, if a local minimum x∗ exists, then it must
satisfy the KKT conditions. However, a design x which satisfies the KKT conditions isn’t
necessarily a local minimum.

• If problem is convex, then the KKT conditions are necessary and sufficient. That is, one may
directly solve the KKT conditions to obtain the minimum.

• Lagrange multipliers λ, µ are sensitivities to perturbations in the constraints

– In economics, this is called the “shadow price”

– In control theory, this is called the “co-state”

• The KKT conditions have a geometric interpretation demonstrated in Fig. 22. Consider
minimizing the cost function with isolines shown in red, where f(x) is increasing as x1, x2
increase, as shown by the gradient vector ∇f . Now consider two inequality constraints
g1(x) ≤ 0, g2(x) ≤ 0, forming the feasible set colored in light blue. The gradients at the
minimum, weighted by the Lagrange multipliers, are such that their sum equals −∇f . In
other words, the vectors balance to zero according to ∇f(x∗) + µ1∇g1(x∗) + µ2∇g2(x∗) = 0.

µ1∇g1
µ2∇g2

g2 

g1 

x1 

x2 

∇f 
Feasible set 

isolines 

Figure 22: Geometric interpretation of KKT conditions

Example 4.4. Consider again the circle-plane problem, as shown in Fig. 21. Suppose we wish to
find the “lowest” point on the plane while being constrained to within or on the circle. This can be
abstracted as the NLP:

min f(x, y) = x+ y (154)
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Figure 23: Spring-block system for Example 4.5

s. to x2 + y2 ≤ 1 (155)

Note this problem is convex, therefore the solution to the KKT conditions provides the minimizer
(x∗, y∗). We form the Lagrangian

L(x, y, µ) = x+ y + µ(x2 + y2 − 1) (156)

Then the KKT conditions are

∂L

∂x
= 1 + 2µx∗ = 0 (157)

∂L

∂y
= 1 + 2µy∗ = 0 (158)

∂L

∂µ
= (x∗)2 + (y∗)2 − 1 ≤ 0 (159)

µ ≥ 0 (160)

µ
(
(x∗)2 + (y∗)2 − 1

)
= 0 (161)

One can solve these equations/inequalities for x∗, y∗, µ by hand to arrive at the solution

(x∗, y∗) =

(
−
√

2

2
,−
√

2

2

)
f(x∗, y∗) = −

√
2

µ = 1/
√

2

Example 4.5 (Mechanics Interpretation). Interestingly, the KKT conditions can be used to solve
a familiar undergraduate physics example involving the principles of mechanics. Consider two
blocks of width w, where each block is connected to each other and the surrounding walls by
springs, as shown in Fig. 23. Reading left to right, the springs have spring constants k1, k2, k3.
The objective is to determine the equilibrium position of the masses. The principles of mechanics
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μ1 μ2 μ2 μ3

Figure 24: Free-body diagram of spring-block system for Example 4.5

indicate that the equilibrium is achieved when the spring potential energy is minimized. Moreover,
we have kinematic constraints that restrain the block positions. That is, the blocks cannot overlap
with each other or the walls. Consequently, we can formulate the following nonlinear program.

minimize f(x1, x2) =
1

2
k1x

2
1 +

1

2
k2 (x2 − x1)2 +

1

2
k3 (l − x2)2 (162)

subject to x1 −
w

2
≥ 0, (163)

x1 +
w

2
≤ x2 −

w

2
, (164)

x2 +
w

2
≤ l (165)

It is easy to see this problem is a QP with a convex feasible set. Consequently, we may formulate
and solve the KKT conditions directly to find the equilibrium block positions.

Consider Lagrange multipliers µ1, µ2, µ3. Form the Lagrangian:

L(x, µ) =
1

2
k1x

2
1+

1

2
k2 (x2 − x1)2+

1

2
k3 (l − x2)2+µ1

(w
2
− x1

)
+µ2 (x1 − x2 + w)+µ3

(
x2 +

w

2
− l
)

(166)
where x = [x1, x2]

T , µ = [µ1, µ2, µ3]
T . Now we can formulate the KKT conditions: We have µ ≥ 0

for non-negativity,

µ1

(w
2
− x1

)
= 0, µ2 (x1 − x2 + w) = 0, µ3

(
x2 +

w

2
− l
)

= 0 (167)

for complementary slackness, and[
k1x1 − k2 (x2 − x1)

k2 (x2 − x1)− k3 (l − x2)

]
+ µ1

[
−1

0

]
+ µ2

[
1

−1

]
+ µ3

[
0

1

]
= 0 (168)

for stationarity. Interestingly, the µi’s can be interpreted as contact forces. That is, consider the
free-body diagrams for each block shown in Fig. 24, where we denote the contact forces between
the left wall–block 1, block 1–block 2, and block 2–right wall for µ1, µ2, µ3, respectively. When
no contact exists, then the corresponding contact force is trivially zero, which also indicates the
associated inequality constraint is inactive. However, when the contact force µi is non-zero, this
indicates the corresponding inequality constraint is active.
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5 Appendix: Linear Programming (LP) in Detail

We begin our exposition of linear programming problems with the following example.

Example 5.1 (Building a Solar Array Farm). You are tasked with designing the parameters of a new photo-
voltaic array installation. Namely, you must decide on the square footage of the photovoltaic arrays, and the
power capacity of the power electronics which interface the generators to the grid. The goal is to minimize
installation costs, subject to the following constraints:

1. You cannot select negative PV array area, nor negative power electronics power capacity.

2. The minimum generating capacity for the photovoltaic array is gmin.

3. The power capacity of the power electronics must be greater than or equal to the PV array power
capacity.

4. The available spatial area for installation is limited by smax.

5. You have a maximum budget of bmax.

Using the notation in Table 2, we can formulate the following optimization problem:

min
x1,x2

c1x1 + c2x2 (169)
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Table 2: Building a Solar Array Farm

Spatial area of photovoltaic arrays [m2] x1

Power capacity of power electronics [kW] x2

Cost of square meter of PV array [USD/m2] c1

Cost of power electronics per kW [USD/kW] c2

Min PV array generating capacity [kW] gmin

Power of PV array per area [kW/m2] a1

Max spatial area [m2] smax

Maximum budget [USD] bmax

subject to: x1 ≥ 0 (170)

x2 ≥ 0 (171)

a1x1 ≥ gmin (172)

a1x1 ≤ x2 (173)

x1 ≤ smax (174)

c1x1 + c2x2 ≤ bmax (175)

where (170)-(171) encode constraint 1, and (172)-(175) respectively encode constraints 2-5. Rearranging
all inequality constraints into less-than-or-equal-to, we arrive at the so-called standard form:

min
x1,x2

c1x1 + c2x2 (176)

subject to: − x1 ≤ 0 (177)

−x2 ≤ 0 (178)

−a1x1 ≤ −gmin (179)

a1x1 − x2 ≤ 0 (180)

x1 ≤ smax (181)

c1x1 + c2x2 ≤ bmax (182)

which can be written into vector-matrix form as

min
x

cTx (183)

subject to: Ax ≤ b (184)

Revised February 28, 2018 | NOT FOR DISTRIBUTION Page 40



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

where x = [x1, x2] and

c =

[
c1

c2

]
, A =



−1 0

0 −1

−a1 0

a1 −1

1 0

c1 c2


, b =



0

0

−gmin

0

smax

bmax


. (185)

Note that the feasible set (184) is a convex set, according to Remark 2.1. Also, the objective function (183)
is linear and therefore convex. Consequently, this is a convex optimization problem. More specifically, this
falls within a special subset of convex problems, called linear programs. The optimization problem (183)-
(184) is known as a linear program (LP), and is fully characterized by matrices c, A, b. The key trait of a
LP is that the objective function and constraints are linear functions of the design variables x. Now that we
have successively formulated the Solar Array Farm problem as a LP, the problem is essentially solved. In
Matlab, one may utilize the linprog command to solve the optimization problem, given matrices c, A, b.

Remark 5.1 (Program Reduction). Sometimes constraints take the form of equalities. From Example 5.1,
suppose the power capacity of the electronics must be 1.2 times the PV array generating capacity, i.e.

x2 = 1.2 a1x1 (186)

We can replace x2 by the expression above and reduce the problem size:

min
x1

(c1 + 1.2 a1c2)x1 (187)

subject to: − x1 ≤ 0 (188)

−1.2 a1x1 ≤ 0 (189)

−a1x1 ≤ −gmin (190)

−0.2a1x1 ≤ 0 (191)

x1 ≤ smax (192)

(c1 + 1.2 a1c2)x1 ≤ bmax (193)

Note that some inequalities dominate others. For example, constraint (190) dominates (188), (189), (191)
in the sense that (188), (189), (191) are automatically verified when constraint (190) is true. Thus we can
further reduce the problem to

min
x1

(c1 + 1.2 a1c2)x1 (194)

subject to: − a1x1 ≤ −gmin (195)

x1 ≤ smax (196)

(c1 + 1.2 a1c2)x1 ≤ bmax (197)

We now formalize the notion of constraint domination with the following definition.

Definition 5.1 (Constraint Domination). Inequality constraint i dominates inequality constraint j when sat-
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isfaction of constraint j is automatically verified by constraint i.

Continuing with our example, intuition suggests we can minimize costs by selecting the spatial area x1
such that the minimum generating capacity is met exactly1. That is, at the optimal solution x∗1, constraint
(190) is true with equality. This produces the minimizer x∗1 = gmin/a1 and the minimum installation cost
(c1 + 1.2 a1 c2) gmin/a1. Note that we denote minimizers with the star notation: x∗1. Also, when an inequality
constraint is true with equality at the optimum, we call the constraint an active constraint.

Definition 5.2 (Active Inequalities). Constraint i is called an active constraint when it is true with equality at
the optimum.

5.1 General Form of LP

Linear programs can be identified as having linear objective functions and linear constraints. Suppose we
have N decision variables xi, M inequality constraints, and L equality constraints. Mathematically, this
takes the form

min c1x1 + c2x2 + . . .+ cNxN

subject to: a1,1x1 + a1,2x2 + . . .+ a1,NxN ≤ b1,

a2,1x1 + a2,2x2 + . . .+ a2,NxN ≤ b2,

...

aM,1x1 + aM,2x2 + . . .+ aM,NxN ≤ bM ,

aeq,1,1x1 + aeq,1,2x2 + . . .+ aeq,1,NxN = beq,1,

aeq,2,1x1 + aeq,2,2x2 + . . .+ aeq,2,NxN = beq,2,

...

aeq,L,1x1 + aeq,L,2x2 + . . .+ aeq,L,NxN = beq,L,

We may equivalently write this problem in “Sigma” notation as follows:

min

N∑
k=1

ckxk

subject to:
N∑

k=1

a1,kxk ≤ b1,

N∑
k=1

a2,kxk ≤ b2,

...
N∑

k=1

aM,kxk ≤ bM ,

1Naturally, this assumes the problem parameters are such that the feasible set is non-empty, that is, some solution
exists.
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N∑
k=1

aeq,1,kxk = beq,1,

N∑
k=1

aeq,2,kxk = beq,2,

...
N∑

k=1

aeq,L,kxk = beq,L

The most compact notation uses matrix-vector format, and is given by

min cTx

subject to: Ax ≤ b,

Aeqx = beq,

where

x = [x1, x2, . . . , xN ]
T

c = [c1, c2, . . . , cN ]
T

[A]i,j = ai,j , A ∈ RM×N

b = [b1, b2, . . . , bM ]
T
, b ∈ RM

[Aeq]i,j = aeq,i,j , Aeq ∈ RL×N

beq = [beq,1, beq,2, . . . , beq,L]
T
, beq ∈ RL

5.2 Graphical LP

For problems of one, two, or sometimes three dimensions, we can use graphical methods to visualize the
feasible sets and solutions. This visualization provides excellent intuition for the nature of LP solutions. We
demonstrate with the following example.

max Z = 140x1 + 160x2

s. to 2x1 + 4x2 ≤ 28

5x1 + 5x2 ≤ 50

x1 ≤ 8

x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

On a graph, one may successively plot each of the inequality constraints and divide the Cartesian space into
feasible “half-spaces.” As each half-space is identified, we retain the intersection of the remaining feasible
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set. This successive construction provides the feasible set, as shown in Fig. 25. After constructing the
feasible set, we can plot the iso-contours of the objective function. For example, the lower-left-most iso-
contour in Fig. 25 corresponds to Z = 0. Continuing towards the upper-right, the value of the objective
function increases. The intersection of the largest-valued iso-contour and the feasible set occurs when
Z∗ = 1480, at x∗1 = 6, x∗2 = 4. Consequently, we have graphically solved the LP.

Figure 25: Construction of the feasible set in a linear program [LEFT], and the objective function isolines
[RIGHT].

A feasible set can fall within one of the following three categories:

• [Bounded] The feasible set is bounded if it forms a closed subset of the Cartesian plane that does
not include infinity.

• [Unbounded] The feasible set is unbounded if it forms a subset of the Cartesian plane that includes
infinity.

• [Empty] The feasible set is empty if the intersection of all the inequality constraints forms the empty
set. In this case the problem is infeasible. That is, no solution exists.

Exercise 8. Draw examples of each of the three categories given above.

Also note that an objective function may be bounded or unbounded. We make these concepts concrete
with the following examples. Consider the feasible set defined by inequalities x2 ≥ 3, x1 + x2 ≥ 6, and
x2 ≤ 0.5x1 + 7, as shown in Fig. 26. On the left, consider the objective maxZ = 3.24x1. The iso-contours
continue towards x1 = ∞, without being bounded by the feasible set. Hence, objective function Z is
unbounded. In contrast, consider the objective minZ = x1 + 3x2. Although the feasible set is unbounded,
the iso-contours are bounded as they decrease in value. In this case, objective function Z is bounded.

This graphical analysis motivates the following proposition about LP solutions.

Proposition 5 (LP Solutions). The solution to any linear program is characterized by one of the following
three categories:

• [No Solution] This occurs when the feasible set is empty, or the objective function is unbounded.

• [One Unique Solution] There exists a single unique solution at the vertex of the feasible set. That
is, at least two constraints are active and their intersection gives the optimal solution.
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Figure 26: An unbounded [LEFT] and bounded [RIGHT] objective function.

• [A Non-Unique Solution] There exists an infinite number of solutions, given by one edge of the
feasible set. That is, one or more constraints are active and all solutions along the intersection of
these constraints are equally optimal. This can only occur when the objective function gradient is
orthogonal to one or multiple constraint.

Exercise 9. Construct graphical examples of each of the three possible LP solutions given above.

6 Appendix: Quadratic Programming (QP) in Detail

We begin our exposition of quadratic programming problems with the following example.

Example 6.1 (Linear Regression). Suppose you have collected measured data pairs (xi, yi), for i =

1, · · · , N where N > 6, as shown in Fig. 27. You seek to fit a fifth-order polynomial to this data, i.e.

y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 (198)

The goal is to determine parameters ci, i = 0, · · · , 5 that “best” fit the data in some sense. To this end,
you may compute the residual r for each data pair:

c0 + c1x1 + c2x
2
1 + c3x

3
1 + c4x

4
1 + c5x

5
1 − y1 = r1,

c0 + c1x2 + c2x
2
2 + c3x

3
2 + c4x

4
2 + c5x

5
2 − y2 = r2,

... =
...

c0 + c1xN + c2x
2
N + c3x

3
N + c4x

4
N + c5x

5
N − yN = rN , (199)
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Figure 27: You seek to fit a fifth-order polynomial to the measured data above.

which can be arranged into matrix-vector form Ac− y = r, where

A =


1 x1 x21 x31 x41 x51
1 x2 x22 x32 x42 x52
...

...
...

...
...

...
1 xN x2N x3N x4N x5N

 , c =



c0

c1

c2

c3

c4

c5


, y =


y1

y2
...
yN

 , r =


r1

r2
...
rN

 . (200)

Now we compute an optimal fit for c in the following sense. We seek the value of c which minimizes the
squared residual

min
c

1

2
‖r‖22 =

1

2
rT r =

1

2
(Ac− y)T (Ac− y) =

1

2
cTATAc− yTAc+

1

2
yT y. (201)

Note that (201) is quadratic in variable c and therefore a convex function of c. This produces another special
case of convex problems called quadratic programs. In this case the problem is unconstrained. As a
result, we can set the gradient with respect to c to zero and directly solve for the minimizer.

∂

∂c

1

2
‖r‖22 = ATAc−AT y = 0,

ATAc = AT y,

c = (ATA)−1AT y (202)

This provides a direct formula for fitting the polynomial coefficients ci, i = 0, · · · , 5 using the measured data.

Exercise 10 (Tikhonov or L2 regularization, a.k.a. Ridge Regression). Consider the fifth-order polynomial
regression model in (198). Suppose we seek the value of c which minimizes the squared residual plus a
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Figure 28: An interior optimum [LEFT] and boundary optimum [RIGHT] for a QP solved graphically.

so-called Tikhonov regularization term:

min
c

1

2
‖r‖22 +

1

2
‖Γc‖22. (203)

for some matrix Γ ∈ R6×6. Derive the QP. Solve for the minimizer of this unconstrained QP. Provide a
formula for the optimal coefficients c.

Exercise 11. Consider fitting the coefficients c1, c2, c3 of the following sum of radial basis functions to data
pairs (xi, yi), i = 1, · · · , N .

y = c1e
−(x−0.25)2 + c2e

−(x−0.5)2 + c3e
−(x−0.75)2 (204)

Formulate and solve the corresponding QP problem.

Exercise 12. Repeat the same exercise for the following Fourier Series:

y = c1 sin(ωx) + c2 cos(ωx) + c3 sin(2ωx) + c4 cos(2ωx) (205)

6.1 General Form of QP

Quadratic programs can be identified as having a quadratic objective function and linear constraints. Math-
ematically, this takes the form

min
1

2
xTQx+RTx,

subject to: Ax ≤ b,

Aeqx = beq.

Revised February 28, 2018 | NOT FOR DISTRIBUTION Page 47



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

6.2 Graphical QP

For problems of one, two, or three dimensions, it is possible to solve QPs graphically. Consider the following
QP example:

min J = (x1 − 2)2 + (x2 − 2)2

s. to 2x1 + 4x2 ≤ 28

5x1 + 5x2 ≤ 50

x1 ≤ 8

x2 ≤ 6

x1 ≥ 0

x2 ≥ 0

The feasible set and corresponding iso-contours are illustrated in the left-hand side of Fig. 28. In this case,
the solution is an interior optimum. That is, no constraints are active at the minimum. In contrast, consider
the objective function J = (x1 − 6)2 + (x2 − 6)2 shown on the right-hand side of Fig. 28. In this case, the
minimum occurs at the boundary and is unique.
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