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CHAPTER 5: OPTIMAL ENERGY MANAGEMENT

1 Overview

In this chapter we study the optimal energy management problem. Optimal energy management
involves the control of power flow between a network of generators, storage, and loads to optimize
some performance criterion. Example performance criteria include minimizing fuel consumption,
maximizing energy efficiency, minimizing electric utility costs, or minimizing carbon emissions.
Our key tool is dynamic programming (DP). Unlike the static optimization problems of CH4, we
consider energy systems which evolve dynamically in time. That is, our decisions now impact the
energy system’s future state, and therefore future decisions. Such a multi-stage process is ideal
for dynamic programming.

In this chapter, we also consider cases where the generation and/or loads are stochastic.
Specifically, we are interested in cases where generation is random (e.g. solar or wind) and/or
loads are random (e.g. building power consumption based on human behavior). In these cases,
we cannot perfectly forecast generation and/or load. However, we may be able to characterize it
statistically. In more concrete terms, we utilize a stochastic process model to describe how gen-
eration and/or load evolves in time. For this case, we introduce stochastic dynamic programming
(SDP) as our main optimization tool.

The optimal energy management problem finds application in nanogrids (e.g. hybrid vehicles
[1, 2], buses [3], and individual buildings [4, 5]), microgrids (e.g. UC San Diego campus [6] and
military forward operating bases [7]), or macro grids (i.e. distribution circuits in power systems).
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Figure 1: Setup for the energy management problem
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1.1 Problem Setup

The setup for the energy management problem is visualized in Fig. 1. Specifically, we have a se-
ries of energy generators G

1

, G
2

, · · · , GNG, a series of energy storages devices S
1

, S
2

, SNS , and
a series of energy demand nodes (i.e. consumers) D

1

, D
2

, DND. These three object classes are
interconnected via a power flow network. Ultimately, you must ensure that energy supply equals
energy demand. Observe that uncertainty often exists. Namely, uncertainty may exist in gener-
ation (e.g. renewables), demand (e.g. appliance usage in home), or even storage (e.g. electric
vehicles as storage). Moreover, there are often dynamics and/or constraints that characterize
power flow properties.

The energy management problem is fundamental. It applies across a broad range of applica-
tions, as described on the right hand side of Fig. 1. Large-scale power systems are an intuitive
application for civil, environmental, and energy engineers. Small-scale power systems are also
great applications. Consider, for example, a wireless sensor node with thermoelectric generators
that convert heat into electricity, a capacitor for storage, and a radio that transmits sensor data.
You will learn to solve the energy management problem in a general setting, allowing you to apply
the methodology broadly.

1.2 Chapter Organization

The remainder of this chapter is organized as follows:

1. Canonical Energy Management Problem

2. Optimal HEV Energy Management

3. Optimal PEV Charging Schedule

4. Dynamic Programming

5. Optimal Home Appliance Schedule

6. Stochastic Dynamic Programming

2 Canonical Energy Management Problem

The canonical energy management problem (EMP) is mathematically represented by

EMP: minimizex(k),u(k) J =

N�1X

k=0

ck(xk, uk) + cN (xN ) (1)

subject to: xk+1

= f(xk, uk), k = 0, 1, · · · , N � 1 (2)
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x
0

= xinit (3)

g(x(k), u(k))  0, k = 0, 1, · · · , N (4)

h(x(k), u(k)) = 0, k = 0, 1, · · · , N (5)

Compare to the canonical nonlinear programming problem from CH4:

NLP: minimizex f(x), (6)

subject to: g(x)  0, (7)

h(x) = 0. (8)

Note the following critical differences in the EMP relative to the NLP:

• First, the EMP explicitly includes a discrete-time dynamical system (2) and its initial condition
(3) as equality constraints. This encodes the fact that current decisions u(k) impact future
states x(k + 1), x(k + 2), · · · .

• Second, the EMP optimizes with respect to the state variables x(k) AND control variables
u(k), for all discrete times k = 0, · · · , N . Note the states and controls are coupled by the
dynamics in equality constraint (2).

• Third, the objective function (1) is comprised of the cost at each time instant denoted by
ck(xk, uk), and a terminal cost denoted cN (xN ). Note that the instantaneous and terminal
costs generally depend on the state and control.

• Fourth, the EMP includes inequality and equality constraints, similar to the NLP. However,
they are now generally given pointwise-in-time.

In the following sections we shall discover that the EMP can be solved via the static optimization
approaches of CH4, for special cases. The more general case can be solved using dynamic
programming methods, which is ideally suited for the EMP.

3 Optimal HEV Energy Management

We begin our exposition of optimal control by examining the optimal energy management prob-
lem for hybrid electric vehicles (HEVs). Namely, we demonstrate how the HEV battery dynamics
can be incorporated into an optimization formulation. The goal is to determine the optimal power
distribution between the engine and battery to meet driver power demand, such that total fuel
consumption is minimized. In this example, we consider a very simple power flow model of HEV
dynamics, which can provide a “first-order” approximation to the HEV energy management prob-
lem. Ultimately, this formulation results in a linear program.
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We also assume a priori knowledge of driver power demand. That is, we somehow have clair-
voyance and know power demand for all time steps k = 0, · · · , N beforehand. Besides simplifying
the problem formulation, this assumption has two practical implications. First, all commercially
sold vehicles are required to undergo fuel economy and emissions certification tests in which the
driving schedule is standardized. As a consequence, manufacturers have been known to develop
“cycle-beaters” that optimize HEV performance for pre-specified driving schedules. Second, the
results provide a benchmark for comparing any other sub-optimal strategy. That is, performance
can be assessed by its relative performance relative to the ideal case.

3.1 HEV Model

Consider the block digram in Fig. 2, which demonstrates power flow in a simple HEV model. (For
pedagogical purposes, we ignore efficiency losses.) Namely, the engine produces power Peng, the
battery can store or release power Pbatt, and both must provide the driver power demand Pdem to
propel the vehicle. Consequently, we have the power conservation equality constraint

Peng(k) + Pbatt(k) = Pdem(k), 8 k = 0, · · · , N � 1 (9)

where positive Pbatt corresponds to discharge power. The battery has energy storage dynamics
given by state variable E(k), which indicates the current energy (in kJ or kWh) stored in the battery.
This can be formulated as

E(k + 1) = E(k)� Pbatt(k) �t, 8 k = 0, · · · , N � 1 (10)

E(0) = E
0

(11)

where �t is the sampled time step and E
0

is the initial battery energy level. Note that (10) rep-
resents the discrete-time battery dynamics. In addition, we must ensure net-zero energy transfer
for the battery, since the battery operates as a buffer and cannot be depleted over the course of
a driving event. That is, we must ensure the battery has energy buffering capacity for the next
driving event. Mathematically, we write this as

E(N) = E(0) (12)

In reality, this will never be realized with equality exactly, so we typically relax this constraint into
the following inequalities

0.95 E(0)  E(N)  1.05 E(0) (13)
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Figure 2: Block Diagram of Power Flow in Hybrid Electric Vehicle (HEV)

In addition, we also assume the energy level E(k), battery power Pbatt(k), and engine power
Peng(k) are limited according to inequality constraints

Emin  E(k)  Emax, 8 k = 0, · · · , N (14)

Pmin

batt  Pbatt(k)  Pmax

batt , 8 k = 0, · · · , N � 1 (15)

0  Peng(k)  Pmax

eng , 8 k = 0, · · · , N � 1 (16)

Recall the objective is to minimize fuel consumption. In the example we assume that fuel con-
sumption is proportional to engine power. That is, total fuel consumption over the entire driving
schedule is computed as

J =

N�1X

k=0

↵ · Peng(k) �t (17)

where ↵ is a constant with units [g/(s-kW)], and J represents the total fuel consumption over the
entire driving schedule.

3.2 LP Formulation

Collecting all the aforementioned equations produces an optimization program.

min

Pbatt(k),Peng(k),E(k)
J =

N�1X

k=0

↵ · Peng(k) �t (18)

with equality constraints

Peng(k) + Pbatt(k) = Pdem(k), 8 k = 0, · · · , N � 1 (19)

E(k + 1) = E(k)� Pbatt(k) �t, 8 k = 0, · · · , N � 1 (20)

E(0) = E
0

(21)
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and inequality constraints

0.95 E(0)  E(N)  1.05 E(0), (22)

Emin  E(k)  Emax, 8 k = 0, · · · , N (23)

Pmin

batt  Pbatt(k)  Pmax

batt , 8 k = 0, · · · , N � 1 (24)

0  Peng(k)  Pmax

eng , 8 k = 0, · · · , N � 1 (25)

The decision variables are Pbatt(k), Peng(k), E(k), for k = 0, · · · , N � 1 which are dynamically
coupled by equality constraints (19)-(21).

At this point, one notices that Peng can be eliminated from the program by solving (19) for
Peng and substituting the expression into the remaining equations/inequalities. This produces the
reduced program

min

Pbatt(k),E(k)
J =

N�1X

k=0

↵�t · (Pdem(k)� Pbatt(k)) (26)

with equality constraints

E(k + 1) = E(k)� Pbatt(k) �t, 8 k = 0, · · · , N � 1 (27)

E(0) = E
0

(28)

and inequality constraints

0.95 E(0)  E(N)  1.05 E(0), (29)

Emin  E(k)  Emax, 8 k = 0, · · · , N (30)

Pmin

batt  Pbatt(k)  Pmax

batt , 8 k = 0, · · · , N � 1 (31)

0  Pdem(k)� Pbatt(k)  Pmax

eng , 8 k = 0, · · · , N � 1 (32)

We have now obtained a linear program (LP) of the form

min

x
cTx (33)

subject to: Ax  b (34)

Aeqx = beq (35)

where the decision variable is given by

x = [Pbatt(0), Pbatt(1), · · · , Pbatt(N � 1), E(0), E(1), · · · , E(N � 1), E(N)]

T (36)

and we have 2N + 1 decision variables. The vectors and matrices c, A, b, Aeq, beq encode the re-
maining HEV problem parameters. Consequently, our immediate goal is to formulate c, A, b, Aeq, beq
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by properly arranging (26)-(32). It is easy to see that

c = [�↵�t, · · · ,�↵�t, 0, . . . , 0]T (37)

Next we rewrite equality constraints (27)-(28) in matrix-vector form using x defined in (36).

2

66666664

�t 0 0 · · · 0 �1 1 0 · · · 0 0

0 �t 0 · · · 0 0 �1 1 · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · �t 0 0 0 · · · �1 1

0 0 0 · · · 0 1 0 0 · · · 0 0

3

77777775

2

666666666666666666666664

Pbatt(0)

Pbatt(1)

Pbatt(2)

...
Pbatt(N � 1)

E(0)

E(1)

E(2)

...
E(N � 1)

E(N)

3

777777777777777777777775

=

2

66666664

0

0

...
0

E
0

3

77777775

(38)

This provides matrices Aeq and beq. Similarly, we rewrite inequality constraints (30)-(32) in matrix-
vector form:

"
0 0 0 · · · 0 0 0 0 · · · 0 �1

0 0 0 · · · 0 0 0 0 · · · 0 1

#

2

666666666666666666666664

Pbatt(0)

Pbatt(1)

Pbatt(2)

...
Pbatt(N � 1)

E(0)

E(1)

E(2)

...
E(N � 1)

E(N)

3

777777777777777777777775


"

�0.95 E(0)

1.05 E(0)

#
(39)

,
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(40)

,

2
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2

666666666666666666666664

Pbatt(0)

Pbatt(1)

Pbatt(2)

...
Pbatt(N � 1)

E(0)

E(1)

E(2)

...
E(N � 1)

E(N)

3

777777777777777777777775



2

6666666666666664

�Pmin

batt

�Pmin

batt
...

�Pmin

batt

Pmax

batt

Pmax

batt
...

Pmax

batt

3

7777777777777775

(41)
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,

2
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2

6666666666666664

Pdem(0)
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...
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eng � Pdem(1)

...
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eng � Pdem(N � 1)

3

7777777777777775

(42)
Concatenating the matrices, we obtain A and b. Consequently, the entire HEV management
problem has been encoded into matrices c, A, b, Aeq, beq, and can be solved with any linear program
solver.

3.3 Results

We consider the power demand schedule Pdem(k), k = 0, · · · , N � 1 shown in Fig. 3, which has
been generated from the Urban Dynamic Driving Schedule (UDDS). In the UDDS cycle, there are
N = 1369 time-steps. As a result, our LP will have 2,739 decision variables. Also consider model
parameters ↵ = 0.1 g/(s-kW), �t = 1 sec., E

0

= 0.6 kWh = 2.16 MJ = 50%, Emin = 1.296 MJ =
30%, Emax = 3.024 MJ = 70% Pmin

batt = -15 kW, Pmax

batt = +15 kW, Pmax

eng = 35 kW.
The results are provided in Fig. 4. The minimum total fuel consumption is 220.8 g over the

entire UDDS cycle. The battery state-of-charge (SOC) stays between 30% and 70%. In addition,
the final SOC is nearly equal to the initial SOC. Finally, one may see how the battery is generating
most of the effort, which is intuitive since engine power consumes fuel, which is being minimized.
Moreover, both engine and battery remain within their power limits through the UDDS cycle. Fi-
nally, recall that there are 2,739 decision variables. On a MacBook Pro laptop with 2.7 GHz Intel
Core i7 with 4GB of RAM, the Matlab LP solver linprog required only 0.2 seconds.

3.4 Remarks

Readers interested to learn more about HEV/PHEV energy management may refer to [1,2,8–11]
and the references therein. This problem can be made more realistic in several respects: (i)
model power conversion efficiencies, (ii) more detailed models of HEV powertrain components
(e.g. battery, electric machines, engine), (iii) assume only statistical knowledge of the drive cycle,
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Figure 3: Power Demand for a Toyota Prius undergoing UDDS cycle.

(iv) optimize battery size, (v) optimize emissions, etc. Implementing these features will necessarily
complicate the optimization formulation, and require solvers more complex than LPs.

4 Optimal PEV Charge Scheduling

Next we examine optimal control formulations for scheduling charging of plug-in electric vehicles
(PEVs), under time-varying price signals. The objective is to determine a charging schedule that
minimizes total electricity cost, while ensuring sufficient charge is delivered to satisfy mobility
needs. We shall assume (i) advance knowledge of electricity price, and (ii) advance knowledge of
the necessary energy to satisfy mobility needs. Ultimately, this formulation results in a quadratic
program (QP).

4.1 PEV Battery Model

We consider the following discrete-time equivalent circuit model of a battery

SOC(k + 1) = SOC(k) +
�t

Qcap
I(k), k = 0, · · · , N � 1 (43)

SOC(0) = SOC
0

(44)
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Figure 4: Results of Optimal Energy Management Problem, solved via LP. [TOP] Cumulative fuel consump-
tion; [MIDDLE] Battery State-of-Charge (SOC); [BOTTOM] Battery and Engine Power.

V (k) = Voc +RintI(k) (45)

where SOC,�t, Qcap, I, SOC
0

, Voc, Rint are the battery state-of-charge, time-step, charge capacity
[A-s], current, initial SOC, open circuit voltage, and internal resistance, respectively. Consequently,
we can compute the charging power as

P (k) = I(k)V (k) = VocI(k) +RintI
2

(k) (46)

As a result, the total charging cost is given by

J =

N�1X

k=0

c(k)�tVocI(k) + c(k)�tRintI
2

(k) (47)
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where c(k) is the time-varying electricity price [USD/kWh]. In addition, we have physical limits of
the battery SOC and current

SOCmin  SOC(k)  SOCmax, k = 0, · · · , N (48)

0  I(k)  Imax, k = 0, · · · , N � 1 (49)

Finally, the schedule must deliver sufficient charge to store the energy required to meet the mobility
demands of the driver.

SOC(N) � E

QcapVoc
+ SOC

min

(50)

4.2 QP Formulation

Collecting all the aforementioned equations produces the optimization program

min

I(k),SOC(k)
J =

N�1X

k=0

c(k)�t VocI(k) + c(k)�tRint I
2

(k) (51)

with equality constraints

SOC(k + 1) = SOC(k) +
�t

Qcap
I(k), k = 0, · · · , N � 1 (52)

SOC(0) = SOC
0

(53)

and inequality constraints

SOCmin  SOC(k)  SOCmax, k = 0, · · · , N (54)

0  I(k)  Imax, k = 0, · · · , N � 1 (55)

SOC(N) � E

QcapVoc
+ SOC

min

(56)

The decision variables are I(k), SOC(k), for k = 0, · · · , N � 1 which are dynamically coupled by
equality constraints (52).
We have now obtained a quadratic program (QP) of the form

min

x

1

2

xTQx+RTx (57)

subject to: Ax  b (58)

Aeqx = beq (59)
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where the decision variable is given by

x = [I(0), I(1), · · · , I(N � 1), SOC(0), SOC(1), · · · , SOC(N � 1), SOC(N)]

T (60)

and we have we have 2N + 1 decision variables. The vectors and matrices Q,R,A, b, Aeq, beq

encode the remaining problem parameters. Consequently, our immediate goal is to formulate
Q,R,A, b, Aeq, beq by properly arranging (51)-(56).
It is easy to see that

Q = diag ([2Rint�t c(0), 2Rint�t c(1) · · · , 2Rint�t c(N � 1), 0, . . . , 0]) , (61)

R = [Voc�t c(0), Voc�t c(1) · · · , Voc�t c(N � 1), 0, . . . , 0]T . (62)

Next we write equality constraints (52)-(53) into matrix-vector form using x defined in (60).

2
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=

2

66666664

0

0

...
0

SOC
0

3

77777775

(63)
This provides matrices Aeq and beq. Similarly, we write inequality constraints (54)-(56) into matrix-
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vector form using x defined in (60).
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(64)

,
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 � E

QcapVoc
� SOCmin (66)

Concatenating the matrices, we obtain A and b. Consequently, the entire PEV charge scheduling
problem has been encoded into matrices Q,R,A, b, Aeq, beq, and can be solved with any QP solver.

4.3 Results

We consider the time-varying price c(k), k = 0, · · · , N � 1 shown in Fig. 5. In the 24 hour period,
there are N = 96 time-steps. As a result, our QP will have 193 decision variables. Also consider
model parameters �t = 15 min, Qcap = 13.8 A-hr, Voc = 363V , Rint = 1.1, SOC

0

= 0.2, SOCmin =
0.1, SOCmax = 0.9, Imax = 9.66 A, E = 14.4 MJ. In these results we also assume the PEV is only
plugged in between 16:00 and 24:00 hours.

5 Dynamic Programming

In the previous sections have we solved multi-stage decision processes via LP and QP. For these
simple problems, LP and QP formulations are tractable to solve. However, one can easily imag-
ine more complex problems that render millions of decision variables that do not have linear or
quadratic structures. Consider the famous “traveling salesmen” problem shown in Fig. 6. The goal
is to find the shortest path to loop through N cities, ending at the origin city. Due to the number
of constraints, possible decision variables, and nonlinearity of the problem structure, the traveling
salesmen problem is notoriously difficult to solve.

It turns out that a more efficient solution method exists, specifically designed for multi-stage
decision processes, known as dynamic programming. The basic premise is to break the problem
into simpler subproblems. This structure is inherent in multi-decision processes.
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Figure 5: Results for Optimal PEV Charge Schedule.

5.1 Principle of Optimality

Consider a multi-stage decision process, i.e. an equality constrained NLP with dynamics

min

x(k),u(k)
J =

N�1X

k=0

ck(xk, uk) + cN (xN ) (67)

s. to xk+1

= f(xk, uk), k = 0, 1, · · · , N � 1 (68)

x
0

= xinit (69)

where k is the discrete time index, xk is the state at time k, uk is the control decision applied at
time k, N is the time horizon, ck(·, ·) is the instantaneous cost, and cN (·) is the final or terminal
cost.

In words, the principle of optimality is the following. Assume at time step k, you know all the
future optimal decisions, i.e. u⇤(k + 1), u⇤(k + 2), · · · , u⇤(N � 1). Then you may compute the best
solution for the current time step, and pair with the future decisions. This can be done recursively
by starting from the end N � 1, and working your way backwards.

Mathematically, the principle of optimality can be expressed precisely as follows. Define Vk(xk)

Revised April 2, 2018 | NOT FOR DISTRIBUTION Page 16



CE 295 — Energy Systems and Control Professor Scott Moura — University of California, Berkeley

Figure 6: Random (left), suboptimal (middle), and optimal solutions (right).

as the optimal “cost-to-go” (a.k.a. “value function”) from time step k to the end of the time horizon
N , given the current state is xk. Then the principle of optimality can be written in recursive form
as:

Vk(xk) = min

uk

{ck(xk, uk) + Vk+1

(xk+1

)} , k = 0, 1, · · · , N � 1 (70)

with the boundary condition
VN (xN ) = cN (xN ) (71)

The admittedly awkward aspects are:

1. You solve the problem backward!

2. You solve the problem recursively!

Let us illustrate this with an example.

A

B

C

D

E

F

G

H

2

4

4

6

5

1
5

11 

4

7

1

3

2

2

5

Figure 7: Network for shortest path problem in Example 5.1.

Example 5.1 (Shortest Path Problem). Consider the network shown in Fig. 7. The goal is to find
the shortest path from node A to node H, where path length is indicated by the edge numbers.
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Let us define the cost-to-go as V (i). That is, V (i) is the shortest path length from node i to
node H. For example V (H) = 0. Let c(i, j) denote the cost of traveling from node i to node j.
For example, c(C,E) = 7. Then c(i, j) + V (j) represents the cost of traveling from node i to node
j, and then from node j to H along the shortest path. This enables us to write the principle of
optimality equation and boundary conditions:

V (i) = min

j2Nd
i

{c(i, j) + V (j)} (72)

V (H) = 0 (73)

where the set Nd
i represents the nodes that descend from node i. For example Nd

C = {D,E, F}.
We can solve these equations recursively, starting from node H and working our way backward to
node A as follows:

V (G) = c(G,H) + V (H) = 2 + 0 = 2

V (E) = min {c(E,G) + V (G), c(E,H) + V (H)} = min {3 + 2, 4 + 0} = 4

V (F ) = min {c(F,G) + V (G), c(F,H) + V (H), c(F,E) + V (E)}

= min {2 + 2, 5 + 0, 1 + 4} = 4

V (D) = min {c(D,E) + V (E), c(D,H) + V (H)} = min {5 + 4, 11 + 0} = 9

V (C) = min {c(C,F ) + V (F ), c(C,E) + V (E), c(C,D) + V (D)}

= min {5 + 4, 7 + 4, 1 + 9} = 9

V (B) = c(B,F ) + V (F ) = 6 + 4 = 10

V (A) = min {c(A,B) + V (B), c(A,C) + V (C), c(A,D) + V (D)}

= min {2 + 10, 4 + 9, 4 + 9} = 12

Consequently, we arrive at the optimal path A ! B ! F ! G ! H.

Example 5.2 (Optimal Consumption and Saving). This example is popular among economists for
learning dynamic programming, since it can be solved by hand. Consider a consumer who lives
over periods k = 0, 1, · · · , N and must decide how much of a resource they will consume or save
during each period.

Let uk be the consumption in each period and assume consumption yields utility ln(uk) over
each period. The natural logarithm function models a “diseconomies of scale” in marginal value
when increasing resource consumption. Let xk denote the resource level in period k, and x

0

denote the initial resource level. At any given period, the resource level in the next period is given
by xk+1

= xk � uk. We also constrain the resource level to be non-negative. The consumer’s
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decision problem can be written as

max

xk,uk

J =

N�1X

k=0

ln(uk) (74)

s. to xk+1

= xk � uk, k = 0, 1, · · · , N � 1 (75)

xk � 0, k = 0, 1, · · · , N (76)

Note that the objective function is not linear nor quadratic in decision variables xk, uk. It is,
in fact, concave in uk. The equivalent minimization problem would be minxk,uk � ln(uk) which is
convex in uk. Moreover, all constraints are linear. Consequently, convex programming is one
solution option. Dynamic programming is another. In general DP does not require the convex
assumptions, and – in this case – can solve the problem analytically.

First we define the value function. Let Vk(xk) denote the maximum total utility from time step k

to terminal time step N , where the resource level in step k is xk. Then the principle of optimality
equations can be written as:

Vk(xk) = max

ukxk

{ln(uk) + Vk+1

(xk+1

)} , k = 0, 1, · · · , N � 1 (77)

with the boundary condition that represents zero utility can be accumulated after the last time step.

VN (xN ) = 0 (78)

We now solve the DP equations starting from the last time step and working backward. Con-
sider k = N � 1,

VN�1

(xN�1

) = max

uN�1xN�1

{ln(uN�1

) + VN (xN )}

= max

uN�1xN�1

{ln(uN�1

) + 0}

= ln(xN�1

)

In words, the optimal action is to consume all remaining resources, u⇤N�1

= xN�1

. Moving on to
k = N � 2,

VN�2

(xN�2

) = max

uN�2xN�2

{ln(uN�2

) + VN�1

(xN�1

)}

= max

uN�2xN�2

{ln(uN�2

) + VN�1

(xN�2

� uN�2

)}

= max

uN�2xN�2

{ln(uN�2

) + ln(xN�2

� uN�2

)}

= max

uN�2xN�2

ln (uN�2

(xN�2

� uN�2

))

= max

uN�2xN�2

ln

�
xN�2

uN�2

� u2N�2

�
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Since ln(·) is a monotonically increasing function, maximizing its argument will maximize its value.
Therefore, we focus on finding the maximum of the quadratic function w.r.t. uN�2

embedded
inside the argument of ln(·). It’s straightforward to find u⇤N�2

=

1

2

xN�2

. Moreover, VN�2

(xN�2

) =

ln(

1

4

x2N�2

). Continuing with k = N � 3,

VN�3

(xN�3

) = max

uN�3xN�3

{ln(uN�3

) + VN�2

(xN�2

)}

= max

uN�3xN�3

{ln(uN�3

) + VN�2

(xN�3

� uN�3

)}

= max

uN�3xN�3

⇢
ln(uN�3

) + ln

✓
1

4

(xN�3

� uN�3

)

2

◆�

= max

uN�3xN�3

�
ln(uN�3

) + ln

�
(xN�3

� uN�3

)

2

� 
� ln(4)

= max

uN�3xN�3

ln

�
x2N�3

uN�3

� 2xN�3

u2N�3

+ u3N�3

�
� ln(4)

Again, we can focus on maximizing the argument of ln(·). It’s simple to find that u⇤N�3

=

1

3

xN�3

.
Moreover, VN�3

(xN�3

) = ln(

1

27

x3N�3

). At this point, we recognize the pattern

u⇤k =

1

N � k
xk, k = 0, · · · , N � 1 (79)

One can use induction to prove this hypothesis indeed solves the recursive principle of optimality
equations. Equation (80) provides the optimal state feedback policy. That is, the optimal policy is
written as a function of the current resource level xk. If we write the optimal policy in open-loop
form, it turns out the optimal consumption is the same at each time step. Namely, it is easy to
show that (80) emits the policy

u⇤k =

1

N
x
0

, 8 k = 0, · · · , N � 1 (80)

As a consequence, the optimal action is to consume that same amount of resource at each time-
step. It turns out one should consume 1/N · x

0

at each time step if they are to maximize total
utility.

Remark 5.1. This is a classic example in resource economics. In fact, this example represents
the non-discounted, no interest rate version of Hotelling’s Law, a theorem in resource economics
[12]. Without a discount/interest rate, any difference in marginal benefit could be arbitraged to
increase net benefit by waiting until the next time-step. Embellishments of this problem get more
interesting where there exists uncertainty about resource availability, extraction cost, future benefit,
and interest rate. In fact, oil companies use this exact analysis to determine when to drill an oil
field, and how much to extract.
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6 Smart Appliance Scheduling

In this section, we utilize dynamic programming principles to schedule a smart dishwasher ap-
pliance. This is motivated by the vision of future homes with smart appliances. Namely, internet-
connected appliances with local computation will be able to automate their procedures to minimize
energy consumption, while satisfying homeowner needs.

Consider a smart dishwasher that has five cycles, indicated in Table 1. Assume each cycle
requires 15 minutes. Moreover, each cycle must be run in order, possibly with idle periods in
between. We also consider electricity price which varies in 15 minute periods, as shown in Fig.
8. The goal is to find the cheapest cycle schedule starting at 17:00 and ending at 24:00, with the
requirement that the dishwasher completes all of its cycles by 24:00 midnight.

6.1 Problem Formulation

Let us index each 15 minute time period by k, where k = 0 corresponds to 17:00 – 17:15, and k =

N = 28 corresponds to 24:00–00:15. Let us denote the dishwasher state by xk 2 {0, 1, 2, 3, 4, 5},
which indicates the last completed cycle at the very beginning of each time period. The initial state
is x

0

= 0. The control variable uk 2 {0, 1} corresponds to either wait, uk = 0, or continue to the
next cycle, uk = 1. We assume control decisions are made at the beginning of each period, and
cost is accrued during that period. Then the state transition function, i.e. the dynamical relation, is
given by

xk+1

= xk + uk, k = 0, · · · , N � 1 (81)

Let ck represent the time varying cost in units of USD/kWh. Let p(xk) represent the power required
for cycle xk, in units of kW. We are now positioned to write the optimization program

min

N�1X

k=0

1

4

ck p(xk+1

) uk

s. to xk+1

= xk + uk, k = 0, · · · , N � 1

x
0

= 0,

xN = 5,

uk 2 {0, 1}, k = 0, · · · , N � 1

6.2 Principle of Optimality

Next we formulate the dynamic programming equations. The cost-per-time-step is given by

gk(xk, uk) =

1

4

ck p(xk+1

) uk, (82)
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=

1

4

ck p(xk + uk) uk, k = 0, · · · , N � 1 (83)

Since we require the dishwasher to complete all cycles by 24:00, we define the following terminal
cost:

gN (xN ) =

(
0 : xN = 5

1 : otherwise
(84)

Let Vk(xk) represent the minimum cost-to-go from time step k to final time period N , given the last
completed dishwasher cycle is xk. Then the principle of optimality equations are:

Vk(xk) = min

uk2{0,1}

⇢
1

4

ck p(xk + uk)uk + Vk+1

(xk+1

)

�

= min

uk2{0,1}

⇢
1

4

ck p(xk + uk)uk + Vk+1

(xk + uk)

�

= min

⇢
Vk+1

(xk),
1

4

ck p(xk + 1) + Vk+1

(xk + 1)

�
(85)

with the boundary condition

VN (5) = 0, VN (i) = 1 for i 6= 5 (86)

We can also write the optimal control action as:

u⇤(xk) = arg min

uk2{0,1}

⇢
1

4

ck p(xk + uk)uk + Vk+1

(xk + uk)

�

Equation (85) is solved recursively, using the boundary condition (86) as the first step. Next, we
show how to solve this algorithmically in Matlab.

6.3 Matlab Implementation

The code below provides an implementation of the dynamic programming equations.

1 %% Problem Data

2 % Cycle power

3 p = [0; 1.5; 2.0; 0.5; 0.5; 1.0];

4

5 % Electricity Price Data

6 c = [12,12,12,10,9,8,8,8,7,7,6,5,5,5,5,5,5,5,6,7,7,8,9,9,10,11,11,...

7 12,12,14,15,15,16,17,19,19,20,21,21,22,22,22,20,20,19,17,15,15,16,...

8 17,17,18,18,16,16,17,17,18,20,20,21,21,21,20,20,19,19,18,17,17,...

9 16,19,21,22,23,24,26,26,27,28,28,30,30,30,29,28,28,26,23,21,20,18,18,17,17,16,16];

10
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cycle power
1 prewash 1.5 kW
2 main wash 2.0 kW
3 rinse 1 0.5 kW
4 rinse 2 0.5 kW
5 dry 1.0 kW
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Figure 8 & Table 1: [LEFT] Dishwasher cycles and corresponding power consumption. [RIGHT] Time-
varying electricity price. The goal is to determine the dishwasher schedule between 17:00 and 24:00 that
minimizes the total cost of electricity consumed.

11 %% Solve DP Equations

12 % Time Horizon

13 N = 28;

14 % Number of states

15 nx = 6;

16

17 % Preallocate Value Function

18 V = inf*ones(N,nx);

19 % Preallocate control policy

20 u = nan*ones(N,nx);

21

22 % Boundary Condition

23 V(end, end) = 0;

24

25 % Iterate through time backwards

26 for k = (N�1):�1:1;
27

28 % Iterate through states

29 for i = 1:nx

30

31 % If you're in last state, can only wait

32 if(i == nx)

33 V(k,i) = V(k+1,i);

34
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Figure 9: The optimal dishwasher schedule is to
run cycles at 17:00, 17:15, 23:15, 23:30, 23:45.
The minimum total cost of electricity is 22.625
cents.
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Figure 10: The true electricity price ck can be ab-
stracted as a forecasted price plus random uncer-
tainty.

35 % Otherwise, solve Principle of Optimality

36 else

37 %Choose u=0 ; u=1

38 [V(k,i),idx] = min([V(k+1,i); 0.25*c(69+k)*p(i+1) + V(k+1,i+1)]);

39

40 % Save minimizing control action

41 u(k,i) = idx�1;
42 end

43 end

44 end

Note the value function is solved backward in time (line 26), and for each state (line 29). The
principle of optimality equation is implemented in line 38, and the optimal control action is saved
in line 41. The variable u(k,i) ultimately provides the optimal control action as a function of time
step k and dishwasher state i, namely u⇤k = u⇤(k, xk).

6.4 Results

The optimal dishwasher schedule is depicted in Fig. 9, which exposes how cycles are run in
periods of low electricity cost ck. Specifically, the dishwasher begins prewash at 17:00, main wash
at 17:15, rinse 1 at 23:15, rinse 2 at 23:30, and dry at 23:45. The total cost of electricity consumed
is 22.625 cents.
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6.5 Stochastic Dynamic Programming

The example above assumed the electricity price ck for k = 0, · · · , N is known exactly a priori. In
reality, the smart appliance may not know this price signal exactly, as demonstrated by Fig. 10.
However, we may be able to anticipate it by forecasting the price signal, based upon previous data.
We now seek to relax the assumption of perfect a priori knowledge of ck. Instead, we assume that
ck is forecasted using some method (e.g. machine learning, neural networks, Markov chains) with
some error with known statistics.

We shall now assume the true electricity cost is given by

ck = ĉk + wk , k = 0, · · · , N � 1 (87)

where ĉk is the forecasted price that we anticipate, and wk is a random variable representing
uncertainty between the forecasted value and true value. We additionally assume knowledge of
the mean uncertainty, namely E[wk] = wk for all k = 0, · · · , N . That is, we have some knowledge
of the forecast quality, quantified in terms of mean error.

Armed with a forecasted cost and mean error, we can formulate a stochastic dynamic program-
ming (SDP) problem:

min J = Ewk

"
N�1X

k=0

1

4

(ĉk + wk) p(xk+1

) uk

#

s. to xk+1

= xk + uk, k = 0, · · · , N � 1

x
0

= 0,

xN = 5,

uk 2 {0, 1}, k = 0, · · · , N � 1

where the critical difference is the inclusion of wk, a stochastic term. As a result, we seek to
minimize the expected cost, w.r.t. to random variable wk.

We now formulate the principle of optimality. Let Vk(xk) represent the expected minimum cost-
to-go from time step k to N , given the current state xk. Then the principle of optimality equations
can be written as:

Vk(xk) = min

uk

E {gk(xk, uk, wk) + Vk+1

(xk+1

)}

= min

uk2{0,1}

⇢
E

1

4

(ĉk + wk) p(xk+1

)uk

�
+ Vk+1

(xk+1

)

�

= min

uk2{0,1}

⇢
1

4

(ĉk + wk) p(xk+1

)uk + Vk+1

(xk + uk)

�

= min

⇢
Vk+1

(xk),
1

4

(ĉk + wk) p(xk + 1) + Vk+1

(xk + 1)

�
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with the boundary condition

VN (5) = 0, VN (i) = 1 for i 6= 5

These equations are deterministic, and can be solved exactly as before. The crucial detail is that
we have incorporated uncertainty by incorporating a forecasted cost with uncertain error. As a
result, we seek to minimize expected cost.

7 Stochastic Optimal Control

In renewable energy systems, such as solar, wind, and tidal power, the resource is fundamentally
intermittent. This complicates the energy management problem, since the available generator
power is unknown a priori. It is therefore impossible to achieve optimal energy management.
However, we often have statistics about the available power. With appropriate formalisms to de-
scribe these statistics, we can integrate them into the optimal control formulation.

This concept is described schematically in Fig. 11. Namely, we abstract the intermittent solar,
wind, tidal, etc. power as a random process, characterized by random state variable Xk. In Section
7.1, we introduce Markov chains as one way to model these random processes (see Ch. 12 of [13]
for an in-depth exposition). In Section 7.2, we described how to incorporate Markov chain models
into the dynamic programming formulation. This renders a so-called stochastic dynamic program
(SDP).

7.1 Markov Chain Models

A Markov chain model is a dynamic system that undergoes transitions from one state to another
on a state-space. Unlike deterministic dynamic systems xk+1

= f(xk), the process is random
and each transition is characterized by statistics. Moreover, it contains the Markov property. The
Markov property is that given the present state, the future and past states are independent. This

Random Process -Xk Deterministic System
xk+1

= f(xk, Xk, uk)
-

xk

Figure 11: Block diagram of energy system with stochastic input generated from random process.
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Figure 12: State transition diagram for
simple Markov chain.
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Figure 13: State-transition diagram for solar irradiation: High =
sunny & clear; Medium = partial clouds; Low = overcast.

can be written mathematically as

Pr [Xk+1

= ik+1

|Xk = ik, Xk�1

= ik�1

, · · · , X
0

= i
0

] = Pr [Xk+1

= ik+1

|Xk = ik] (88)

where Xk is a random variable at time-step k and ik is a value for the state. In other words, given
the sequence of states i

0

, i
1

, ·, ik, the condition probability of what Xk+1

will be depends only on
the value ik.

Markov chains are often described by state transition diagram (i.e. directed graphs), such as
Fig. 12, and probability transition matrices. Let us define the transition probability as

pij = Pr [Xk+1

= j|Xk = i] (89)

In this example, Xk 2 {0, 1}. Then pij provides the elements of the probability transition matrix,
for row i and column j. That is

P = [pij ] =

"
0.3 0.7

0.4 0.6

#
(90)

Note the row sum of a Markov chain transition matrix always sums to one. That is, the sum of all
the probabilities leaving a state must be one:

X

j

pij =
X

j

Pr [Xk+1

= j|Xk = i] = 1 (91)

Example 7.1 (Solar Irradiation). The state transition diagram in Fig. 13 represents the hypothetical
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stochastic dynamics of solar irradiation, for a photovoltaic generator. According to the figure, a
sunny & clear day is followed by another sunny & clear day 90% of the time, a partially cloudy day
7.5% of the time, and an overcast day 2.5% of the time. Labelling the state space {1 = sunny &
clear, 2 = partial clouds, 3 = overcast } the state transition matrix for this example is

P =

2

64
0.9 0.075 0.025

0.15 0.8 0.05

0.25 0.25 0.5

3

75 (92)

The distribution over states can be written as a stochastic row vector x with the relation x(k+1)

=

x(k)P . So if at time k the system is in state 2 (partial clouds), then three time periods later, at time
k + 3 the distribution is

x(k+3)

= x(k+2)P =

⇣
x(k+1)P

⌘
P (93)

= x(k+1)P 2

=

⇣
x(k)P 2

⌘
P (94)

= x(k)P 3 (95)

=

h
0 1 0

i
2

64
0.9 0.075 0.025

0.15 0.8 0.05

0.25 0.25 0.5

3

75

3

(96)

=

h
0 1 0

i
2

64
0.7745 0.17875 0.04675

0.3575 0.56825 0.07425

0.4675 0.37125 0.16125

3

75 (97)

=

h
0.3575 0.56825 0.07425

i
. (98)

In other words, if the sky is currently partially cloudy, then in three days the probability of a sunny
day is 36%, a partially cloudy day is 57%, and an overcast day is 7.4%. Using the transition
matrix it is possible to calculate, for example, the long-term fraction of days during which the sky
is partially cloudy, or the average number of days it will take to go from a overcast day to a sunny
day. Using the transition probabilities, the steady-state probabilities indicate that 62.5% of days
will be sunny, 31.25% of days will be partially cloudy and 6.25% of days will be overcast, since:

lim

N!1
PN

=

2

64
0.625 0.3125 0.0625

0.625 0.3125 0.0625

0.625 0.3125 0.0625

3

75 (99)

Reducibility: A state j is said to be accessible from state i (written i ! j) if a system started in
state i has a non-zero probability of transitioning into state j at some point. Formally, state j is
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accessible from state i if
Pr [Xn = j|X

0

= i] > 0 (100)

A state i is said to communicate with state j (written i $ j) if both i ! j and j ! i. A set of states
C is a communicating class if every pair of states in C communicates with each other, and no state
in C communicates with any state not in C. We call such communicating classes closed. A Markov
chain is said to be irreducible if its state space is a single communicating class; in other words, it
is possible to get from any state to any other state in the state-space, but it is not possible to leave
the state-space.
Stationary distribution: If the Markov chain is a time-homogeneous (i.e. time-invariant) Markov
chain, so that the process is described by a single time-independent matrix P = [pij ], then the
vector ⇡ is called a stationary distribution if 8 j 2 S it satisfies

0  ⇡j  1,
X

j2S
⇡j = 1, ⇡j =

X

i2S
⇡ipij . (101)

The last equality can be written in matrix-vector form as

⇡ = ⇡P (102)

which implies the stationary distribution ⇡ is the left eigenvector of P corresponding to the eigen-
value � = 1. Consequently, stationary distributions are automatically determined when solving for
the eigenvalues/eigenvectors of P .

7.2 Stochastic Dynamic Programming

Armed with the Markov chain modeling framework to incorporate statistics of the random process
(e.g. solar irradiation, wind speed, homeowner power demand), we can now formulate a stochastic
dynamic program (SDP). Consider the block diagram in Fig. 14. The deterministic system is
given by the upper-right block, and is characterized by state xk. The environment imposes some
random variable Xk onto the system, described by the Markov chain model in the left block. The
engineering design problem is to determine the control input uk which minimizes some objective.
The control will be synthesized as a control law. Namely, the control is the output of a mapping
that depends on the current deterministic state xk and stochastic state Xk.

We formalize this as a stochastic multi-stage decision process,

min

xk,Xk,uk

J = E
"
N�1X

k=0

gk(xk, Xk, uk) + gN (xN )

#
(103)

s. to xk+1

= f(xk, Xk = i, uk), k = 0, 1, · · · , N � 1, i 2 S (104)

x
0

= x
0

(105)
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Random Process
pij = Pr [Xk+1

= j|Xk = i]

-Xk

-

Deterministic System
xk+1

= f(xk, Xk, uk)
-

xk

�
Controller
uk = �k(xk, Xk)

-

uk

Figure 14: Block diagram of stochastic multi-stage decision process.

pij = Pr [Xk+1

= j|Xk = i] , k = 0, 1, · · · , N � 1, i, j 2 S (106)

X
0

= i
0

(107)

where k is the discrete time index, xk is the deterministic state at time k, Xk is the stochastic
state at time k, uk is the control decision applied at time k, N is the time horizon, gk(·, ·, ·) is the
instantaneous cost, and gN (·) is the final or terminal cost.

Now we define the value function. Let Vk(xk, Xk) be the expected cost-to-go from time step k

to N , given the current states are xk, Xk. The principle of optimality equation is

Vk(xk, Xk) = min

uk

{g(xk, Xk, uk) + E Vk+1

(xk+1

, Xk+1

)} , k = 0, 1, · · · , N � 1 (108)

= min

uk

{g(xk, Xk, uk) + E Vk+1

(f(xk, Xk, uk), Xk+1

)} (109)

= min

uk

8
<

:g(xk, Xk, uk) +
X

j2S
pijVk+1

(f(xk, Xk, uk), Xk+1

= j)

9
=

; (110)

where the argument of the min operator in the last line is completely a deterministic function of uk.
Moreover, the statistics of the random process are incorporated via transition probability pij . The
boundary condition is given by

VN (xN , XN ) = gN (xN ) (111)

Finally, the optimal control is saved as

u⇤k = �k(xk, Xk) = argmin

uk

8
<

:g(xk, Xk, uk) +
X

j2S
pijVk+1

(f(xk, Xk, uk), Xk+1

= j)

9
=

; (112)

As before, these equations are solved recursively going backwards in time. The critical difference
here is that Vk+1

(·, ·) must be recalled for all possible Xk+1

= j that might occur after Xk. Then
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Figure 15: Schematic of photovoltaic generator with storage interfaced with the electricity grid.

we weight that cost-to-go with the corresponding transition probability pij , utilizing the definition of
expectation [13].

Example 7.2 (Photovoltaic Generator with Storage). We seek to develop an optimal energy man-
agement strategy for a photovoltaic (PV) generator with energy storage to maximize profit from
selling energy to the grid. A schematic of this system is provided in Fig. 15. The key novelty here
is that PV power is fundamentally intermittent, meaning we do not know it exactly a priori. We may,
however, collect historical data of environmental conditions related to PV generation and develop
a Markov chain model.

Suppose we have collected historical data on the local solar irradiation S and temperature T .
Given this data, we propose Markov chain models for the stochastic evolution of each environ-
mental variable

pijk = Pr

⇥
Sk+1

= Sj |Sk = Si, k
⇤
, 8 Si, Sj 2 S, k = 0, · · · , N � 1 (113)

qlmk = Pr

h
Tk+1

= Tm|Tk = T l, k
i
, 8 T l, Tm 2 T , k = 0, · · · , N � 1 (114)

In words, the solar irradiation and temperature in the next time step are conditioned on the
current solar irradiation and temperature, and current time period. Variables Si, Sj are differ-
ent levels of solar irradiation within a set S. For example, the set S = {0, 50, 100, · · · , 1000}
W/m2. Similarly, Sl, Sm are different levels of temperature within a set T . For example, the set
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T = {0, 5, 10, · · · , 40} �C. Utilizing the photovoltaic cell model from [14], we find that PV power is
a nonlinear function of S and T , namely

Ppv,k = f(Sk, Tk) (115)

The conservation of power property for the entire system is given by the familiar power conserva-
tion equation,

Ppv,k + Pbatt,k = Pgrid,k (116)

where Pbatt,k is the battery power (positive in discharge mode) and Pgrid,k is the power supplied to
the grid. We also have the familiar battery energy storage dynamics

Ek+1

= Ek ��t · Pbatt,k (117)

where Ek is the battery energy level. Finally, we have power and energy limits

�Pmax

batt  Pbatt,k  Pmax

batt , k = 0, · · · , N � 1 (118)

Emin  Ek  Emax, k = 0, · · · , N � 1 (119)

Emin

N  EN  Emax

N (120)

We are now positioned to formulate the optimization program

max

Pbatt,k,Ek,Sk,Tk

J = E
N�1X

k=0

ck�tPgrid,k = E
N�1X

k=0

ck�t [f(Sk, Tk) + Pbatt,k] (121)

s. to Ek+1

= Ek ��t · Pbatt,k, k = 0, · · · , N � 1, (122)

pijk = Pr

⇥
Sk+1

= Sj |Sk = Si, k
⇤
, 8 Si, Sj 2 S, k = 0, · · · , N � 1 (123)

qlmk = Pr

h
Tk+1

= Tm|Tk = T l, k
i
, 8 T l, Tm 2 T , k = 0, · · · , N � 1 (124)

�Pmax

batt  Pbatt,k  Pmax

batt , k = 0, · · · , N � 1 (125)

Emin  Ek  Emax, k = 0, · · · , N � 1 (126)

Emin

N  EN  Emax

N (127)

Let the value function Vk(Ek, Sk, Tk) be defined as the expected reward-to-go from time-step k to
the end of the time horizon N , given that the current battery energy level, solar irradiation, and
temperature are Ek, Sk, Tk, respectively. Then the principle of optimality is given by:

Vk(Ek, Sk, Tk) = max

Pbatt,k2Dk

{ck�t [f(Sk, Tk) + Pbatt,k] + E Vk+1

(Ek+1

, Sk+1

, Tk+1

)}

= max

Pbatt,k2Dk

{ck�t [f(Sk, Tk) + Pbatt,k] + E Vk+1

(Ek ��t Pbatt,k, Sk+1

, Tk+1

)}
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= max

Pbatt,k2Dk

{ck�t [f(Sk, Tk) + Pbatt,k]

+

X

Sj2S

X

Tm2T
pijk qlmk Vk+1

(Ek ��t Pbatt,k, Sk+1

= Sj , Tk+1

= Tm
)

9
=

; (128)

where the maximization operator is subject to a time-varying admissible control set Dk character-
ized by

�Pmax

batt  Pbatt,k  Pmax

batt , k = 0, · · · , N � 1 (129)

Emin  Ek  Emax, k = 0, · · · , N � 1, (130)

Emin

N  EN  Emax

N (131)

Plugging the battery dynamics (117) into (129), we arrive at two pairs of inequalities that bound
Pbatt,k from above and below. At each time step, one of the upper/lower limits will dominate. It is
easy to verify that at each step, Pbatt,k is bounded according to

max

⇢
�Pmax

batt ,
1

�t
(Ek � Emax

)

�
 Pbatt,k  min

⇢
Pmax

batt ,
1

�t
(Ek � Emin

)

�
, k = 0, · · · , N � 1

(132)

max

⇢
�Pmax

batt ,
1

�t
(Ek � Emax

N )

�
 Pbatt,k  min

⇢
Pmax

batt ,
1

�t
(Ek � Emin

N )

�
(133)

which characterizes the set Dk. We also have the boundary condition

VN (EN , SN , TN ) = 0, 8 EN , SN , TN (134)

Finally, the optimal control action is saved as

P ⇤
batt,k = �k (Ek, Sk, Tk) = arg max

Pbatt,k2Dk

{ck�t [f(Sk, Tk) + Pbatt,k]

+

X

Sj2S

X

Tm2T
pijk qlmk Vk+1

(Ek ��t Pbatt,k, Sk+1

= Sj , Tk+1

= Tm
)

9
=

; (135)

To test this algorithm, we adopt measured solar irradiance data collected from the Indiana
State Climate Office from May 2014, shown in Fig. 16. For exposition purposes, we will disregard
temperature. We also adopt wholesale electricity price data adopted from CAISO, also shown in
Fig. 16. Figure 17 provides the probability mass function and cumulative mass functions for the
Indiana solar irradiance data. Not surprisingly, 50% of the time the solar irradiance is zero. All
other irradiance levels are roughly evenly distributed.

We compute the transition probabilities in (113) by simply counting the number of transitions
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Figure 16: [BLUE] Raw solar irradiance data,
adopted from Indiana State Climate Office from
May 2014. [RED] Raw wholesale electricity price
data adopted from CAISO.
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Figure 17: Probability and cumulative mass func-
tions for the solar irradiance level, computed from
raw data.

from one irradiance level to another, and dividing by the total number of transitions. This is done
for each 30min segment of the day. The resulting transition probabilities for the Markov chain are
summarized visually in Fig. 18. One clearly sees the irradiance is at the lowest level (zero) at
midnight and 4am. It transitions to the lowest level in the next 30min with probability one, and all
other levels with probability zero. This is intuitive. We can also see characteristics of sunrise and
sunset for 8am and 4pm.

After implementing the SDP algorithm described above, we arrive at an optimal control policy
P ⇤
batt,k = �k (Ek, Sk). This policy is tested on the 24 hour period shown in Fig. 19. We use the

following parameters: Emin = 0 kWh, Emax = 10 kWh, Emin

N = 4.5 kWh, Emax

N = 5.5 kWh, E
0

= 5
kWh, Pmin

batt = -10 kW, Pmax

batt = +10 kW, �t = 30 min.
The results are quite interesting, and clearly maximize profit. However, the exact solution is

not simple to guess - thus motivating model/data-based optimization. Around 1am, the battery
discharges and sells electricity to the grid to leverage relatively high price. Around 3am-4am,
the system purchases electricity from the grid at relatively low price to charge the battery - thus
performing arbitrage. As the sun rises and prices increase, the system sells electricity to the grid
and depletes the battery. Around 12noon, there are relatively low prices, so the system purchases
electricity and uses solar to charge the battery. Between 2pm-4pm, the prices increases slightly,
the system sells all available energy from solar and storage. Interestingly, after 4pm the system
uses the generated solar and purchased grid electricity to fully charge the battery. The reason to
do so is the following. In the evening, 7pm-10pm, the prices are high. The system exploits this by
selling stored battery energy during this period, even though the sun has set. Just before midnight,
the prices are relatively low so the system returns the battery energy level to near 5 kWh.
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Figure 18: Transition probabilities identified from raw solar data in Fig. 16.
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Figure 19: Sample Simulation with SDP-Optimized Control Law.
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8 Model Predictive Control

9 Notes

You can learn more about optimal control in energy systems...
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