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Abstract

Climate change will likely be the world’s greatest challenge
for upcoming generations. California is at the forefront,
aiming to address this issue with legislation and incentives
but to reach its lofty goals, significant large-scale changes are
needed. In recent years, prices for photovoltaic solar panels
as well as battery storage have decreased while the
technologies continue to improve reaching near market
competitive prices. This report investigates smart home
energy systems with photovoltaics and battery storage to see
how linear program optimization can minimize electricity
costs such that the payback times on these technologies are
reduced. This article also looks at the sensitivity to
fluctuations in the power supplied from photovoltaics and
power demanded by the home to see if the LP optimization
of averaged historical data could be a viable cost saving
solution for smart home energy management. For the smart
home detailed in this paper, fluctuations have significant
effects on cost over small timescales, but these fluctuations
drop off significantly and the mean converges after only a
few months. Therefore on the time scale of the payback time
of these technologies, the photovoltaic power and power
demand fluctuations have insignificant effect on the
electricity cost savings.

Introduction

Motivation/Background

Smart homes outfitted with photovoltaic (PV) solar panels
and a means of energy storage are able to provide a number
of benefits to the power grid and to the homeowner. At the
grid level, widely implemented energy storage systems can
potentially collectively offset peak power demands and
reduce grid stresses that arise from large power demands.
Photovoltaic electricity implemented in homes can provide
an alternative energy source, which is able to displace local
power demands, reducing the total required energy
production. Decentralization adds the benefit of redundancy
and resiliency in the grid to changes in inputs, demands, and
failures. At the home level, benefits are primarily economic:
storage allows some decoupling of power demand and

electricity withdrawal from the grid, allowing for purchase of

electricity at lower rates, whereas PV electricity provides
electricity at no cost outside of installation and maintenance.

Also, from an environmental sustainability perspective, PV
electricity is able to displace electricity from fossil fuel
sources, resulting in carbon savings, and energy storage is
able to redistribute the solar energy to demands in different
parts of the day to displace even more fossil fuel electricity
(if solar input is greater than demand at any point in time).
The simple addition of solar panels and a battery, however,
are not enough to produce all the listed benefits.

Optimization of the system must be done to maximize the
utility of the system.

Relevant Literature

Numerous studies have explored optimization of PV and
battery equipped smart homes using various techniques.
Wang et al., 2012 used mixed-integer nonlinear
programming to optimize both cost and user comfort,
allowing for flexibility in demands in accordance with
proposed user comfort levels [1]. Zhou et al., 2013, in
perhaps the most comprehensive study, developed a real-
time control strategy to both optimize energy flows and
demand scheduling with real-time updates of electricity
prices, energy inputs from solar, and uncontrollable
demands [2]. Tischer and Verbic, 2006 and Fuselli et al,,
2012 examined dynamic programming for optimization of
energy flows [3,4].

Focus of Study
In this study we examine a smart home system in Davis, CA

outfitted with a photovoltaic cell array, a second-life car
battery, and a plug-in hybrid electric vehicle (PHEV) for
energy generation and storage. It currently runs an
operation scheme based on discretely divided states, which
we believe to be suboptimal, as it does not account for the
full continuous range of states available for optimization. We
aim to simplify the system and to use linear programming to
determine a more optimal day-to-day battery operation
scheme. However, as a simplified system, a direct
comparison between our model system and the actual
system might not be possible, so instead we present our
designed system as a model that future smart homes energy
management systems may be derived from.

Technical Description

Model Formulation

For our analysis we simplify the smart home system by
removing the PHEV as a load and battery and assuming that
input PV and demand for a day are known perfectly prior to
optimization. Demand is assumed to be inflexible. Such a
formulation allows for a simple diagram to characterize the
system (see Figure 1).
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Figure 1: Full PV and Battery System Diagram



A simple energy balance (see Eqn. 2) describes the energy
flows in the system at each time step. With two of the
variables already known (Pye,,, and P, ), the energy
management system only needs to decide one unknown in
the time step (P, 4 in our case) for optimization, as the
second (P, ;) becomes a dependent variable according to
the energy balance equation. A battery dynamics equation
(Eqgn. 3) links the time steps together, explaining the
evolution of the battery’s energy level throughout the day as
it charges and discharges in accordance to the energy flows
at each time step. Battery deterioration is assumed to be
negligible. Battery energy level and power we constrain to be
within simple limits (Eqns. 5 & 6). As all constraints are
linear with respect to our decision variable Py, ;; and the cost
function is also linear at each time step, we are able to form a
simple linear program (Table 1) to minimize the economic
cost day-to-day energy consumption in the home.

Objective min_[c(k)Pyiq (k)] (@8]
Function Pgria(k)
Energy Paem (k) = Ppy (k) + Pyare (k) + Pyriq (k) (2)
Balance k=0,.. N
Battery E(k +1) = E(k) — Pygie (k)AL 3)
Dynamics

k=0,..,N

E(0) = E(N) — Ppore (k)AL C))

Battery Emin < E(k) < Emax (5)
Constraints —PRx < p(k) < PRax (6)

k=0,.,N

Table 1: LP Formulation

The time step used for this optimization was based on the
largest time step of the data we used (1 hour). This
optimization could be run for finer temporal resolutions
with some minor changes.

Battery/PV Parameters

Our Smart Home optimization is designed around a home
equipped with a 10 kWh Lithium Iron Phosphate Battery
that has a max power of 5 kW and 12 WIOSUN photovoltaic
(PV) panels, 1.3 meters x 1.0 meter each [5, 6]. These
parameters and materials were decided to match those of
the current model smart home system in Davis, CA.

Cost

To determine the cost of electricity from the grid, we decided
to use the “residential Time-of-Use rates” provided by
Sacramento Municipal Utility District’s (SMUD) option 1
(Table 2), where daily prices are differentiated based on
time of day (for on-peak and off-peak periods) as well as
season (summer or winter). For our cost function, we
assume that we can sell back electricity at the current hour’s
selling price.

On-Peak 0.2420 0.1099
($/kWh)
Off-Peak 0.1130 0.1016
($/KWh)

Table 2: SMUD electricity pricing rates

PV/Demand Data

When setting up the energy balance for the linear program,
power inputs for both demand and photovoltaics are
required for each time step. Since the hourly power demand
data is not accessible for the house in Davis, two possible
options are to take state-scale data from the California
Independent System Operator (CAISO) and scale the hourly
averages down to a home-scale level, or to take apartment-
scale data from a San Francisco Bay Area, 2 person
apartment and scale up to a slightly bigger home. Because
CAISO data is grouped together for entire regions, temporal
variations at a single residence are smoothed out with
millions of other residences.

PG&E’s “Green Button” Program allows for homeowners and
renter to download their energy-use data on an hourly
timescale and so to catch more of these temporal variations,
this option was chosen to supply hourly power demands.
Because the power demands are determined for a 2 person
apartment, to scale the demand to a slightly larger home-
scale PG&E’s residential customer monthly household
energy use average of 538 kWh is used to create a scaling
factor for the apartment data [7]. This is done by dividing a
household’s monthly average energy usage (provided by
PG&E) by the average number of days in a month to reach
the average daily household demand. This value is then
divided by the product of the total of the apartment’s hourly
demand averages and the time step to acquire a scaling
factor (see calculation below).

538 Wh_ /30,417 45

Sf — month month

bem AtEi Pdem (7)
i=123..,24
t=1hr

To get power inputs from PV, solar irradiation data was
acquired for Davis, California from the California Irrigation
Management Information System (CIMIS). Data was taken
over the time period October 1st, 1995 to May 6, 2014. This
extremely large data set (relative to that of the power
demand) is useful because of the technique later required for
the simulation of solar data (discussed later). The collected
data was originally in units of Langley/day and so
conversion to units of kW /m? is necessary. This value must
then be scaled by the total area of the house and the
efficiency factor of 18% [8].
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Simulation

From the LP optimization an ideal daily battery power
schedule can be found, which is comprised of the power that
should be released or stored at each time step in order to
minimize the daily cost. For this model, it is assumed power
demand and PV power supply (which are based on averages
over many days) are known a priori. However, if a LP is used



to form the optimal battery schedule a priori, then when
variation of power demand and PV power take place on a
daily basis, it is important to understand how well the
system performs on “non average days”. To test the
sensitivity of the optimal solution to changes in input data,
Monte Carlo simulations were run to add stochastic
properties to the input data.

Demands are assumed to be normally distributed about an
average demand with a certain standard deviation for each
hour, and the demand at each hour is considered
independent of the demands of other hours. This models an
energy user with randomly varying demand throughout a
day and between days, which can be somewhat realistic. The
demands are also considered far enough away from zero on
average for each hour so that issues of possible negativity in
the generated demand can be ignored as unlikely. As such,
daily demand data for the Monte Carlo simulation can be
generated simply by taking the average hourly distribution
(P4em) and adding a vector of randomly generated values
from the standard normal distribution, which are first
multiplied by the standard deviation at each hour. This is
depicted in (9), where x is a randomly generated number
with a range (-e0,%0) and a probability distribution ¢(x).

= Pdem + O-Pdemx
_1x2 (9)

2

V2r

For the PV data, the simple method used above in (9) would
not be appropriate. The hourly PV values are not normally
distributed about the hourly averages (Figure 2) and so
using normally distributed random numbers would not
model the physical representation of the data.

Pdem,noise

¢(x) =
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Figure 2: Non-normal PV distributions

Hourly PV values also are correlated to previous time steps
however this is assumed to be less true for power demand
(i-e. having the lights on at a specific time tells little about
whether they will be on in an hour, whereas having the sun
at full strength says a lot about the solar irradiation an hour

later). To take into account the correlation with previous
time steps while bringing randomness into the PV input data,
a discrete-time Markov chain is implemented.

Pijk = PrlSi =j | Sk-1 =ik —1] (10)
Sy € {Smin, gmin 4 1, gmax _ 1 gmax}

The set up of this Markov chain was based on 24 distinct
transition matrices, each one representing a different time, k,
throughout the day. To fill each of the transition matrices,
hourly solar irradiation data from October 1st, 1995 through
May 6th, 2014 was collected. Each hour’s transition matrix
(of which there were 24 for each season) had rows
corresponding to all possible initial solar irradiation levels
and columns corresponding to all possible final solar
irradiation levels, where initial refers to the beginning of a
time step and final refers to the end of the time step (or
equivalently the next time step). For example, the first row
would have all of the probabilities of going from the
minimum solar irradiation level (row 1) at time step k — 1 to
each possible irradiation level at time step k. Each row and
each column correspond to a different solar irradiation level
with each range spanning the minimum value in the entire
data set to the maximum value in the entire data set such
that an row index i = n and a column index j = n refer to the
same solar irradiation value.

To fill the transition matrices with probabilities coming from
data, it first required counts or tallies of each transition that
took place. This was done by looping through each hour for
each day and looking at the previous solar irradiation value
as well as the value for the current hour and then increasing
the value by 1 in the corresponding cell of the corresponding
transition matrix (each matrix was for a different hour of the
day). Once every transition for the 19-year time period had
been counted and input in the corresponding place in the set
of matrices, the rows of each matrix were divided by the
total count of each corresponding row to create a matrix of
probabilities (also known as the transition matrix) with each
row being a probability mass function (PMF).

These transition matrices are then used to create the
cumulative distribution functions for each row of each
matrix from the PMF.

Solar Irradiation CDF (Midnight)
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Figure 3: CDF of Solar Irradiation data for 12am



Using the CDFs and a uniform random number generator in
the range 0 to 1, Monte Carlo simulations can be run for the
solar data. Each time step has an initial irradiation level, and
a uniformly distributed pseudorandom number that has
been generated in the range from 0 to 1.

For the initial irradiation level, the pseudo random number
is mapped onto the CDF to find the corresponding j index
(and associated solar irradiation at the next time step). Since
the CDF is of a discrete random variable, the pseudorandom
number likely does not correspond to an indexed solar
irradiation value, S;, and so linear interpolation is used to
calculate the corresponding solar irradiation at the next
time.

Once S, is found it is used as S;,_, for the next time step.
However because this is from a discrete CDF, the value of
Si—1 likely does not have a corresponding i index and so the
nearest S;,_, value and corresponding index, i, are taken to
start the next time step. This is repeated for 24 hours and
then these values are scaled (by a previously mentioned
scaling factor, sfpy ) to represent the photovoltaic power

energy transfers to and from the grid, thus tending toward

an off-the-grid system. We explore first whether or not going
completely off-the-grid is possible by running the
optimization with the adjusted cost function, and if not, we
seek to determine what size of a solar panel may be
necessary to put the system effectively off-the-grid.
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Figure 5: “Off the grid” PV and Battery System Diagram

supply for a random day.

gl?:lecctﬁ)‘;e Pgrm,m(lg,lg;lm,am(k)[C(k)Pgrm'in () = (k) Pyyiq, 0 (k)] (12)
Now with semi-randomly generated values for PV power Energy Paem (k) = Poy (k) + Poaee (K) + Pyria,in(k) = Pyriaoue (k) | (13)
supply and home power demand, the optimized battery Balance k=0,.,N
energy flows are combined in an energy balance to find g;ﬁ;g’ics Ek +1) = E(k) = Py (k)AL (14)
the grid power for each hour of the day. k=0,..N
. E(0) = E(N) = Ppare (k)AL (15)
sim. e . — pr Batter E™" < E(k) < E™ 16
grid Pdem,nmse PPV,nmse Pbatt (11) Constr};ints _pmax < }EUZ) < ppax E17g
k=0,..,N
where: Grid Power Pyria = Pyriain — Portaout (18)
Pyemnoise is the simulated power demand Constraints Pyriaimn () = PR = (19)
levels Pyriaout () = P =0 (20)
k=0,..,N
Ppy noise 1S the simulated PV power levels Table 3: Modified Off the Grid Formulation
Pj 44t is the previously optimized battery Discussion

power inputs/outputs

P;;"i’é is the grid power for the simulation
**Note: all of these terms are 24 element
vectors

For each hour of the day electricity costs are calculated
based on grid power and then summed to get a daily energy
cost. This simulation is run for an entire season to see how in
the long run it fares in comparison to the optimal scenario.

Special Case: Pseudo-Off-the-Grid Approach

In this mode of operation, we assign the sellback price of
electricity to be $0 to disincentivize use of the battery for the
purpose of buying and selling electricity for profit. To
account for this, we separate grid power into two parts
(Pgria,in and Pyrig o¢) with non-negativity equations (Eqn.
18) and reformulate our LP (Table 3). In this way, any
withdrawal of electricity is a cost to the system without the
potential to earn money by selling the electricity back at a
higher price. This results in a system that seeks to minimize

Although adding photovoltaics and a battery system to a
home can have beneficial effects on both the grid and the
environment, commonly the deciding factor for whether or
not a system like this gets implemented by a potential user is
cost. Therefore, looking at a comparison between the PV-
Battery smart home system as described in this paper and a
base case where there is neither PV on the roof nor a battery
(see Figure 6 below) and estimating the savings, can help
determine whether or not these systems are good
investments from a financial standpoint. Strong financial
benefits would likely be needed for these types of systems to
be implemented on a larger scale.




Figure 6: "Base Case” Schematic

As shown in Figure 7 below, the smart home ideally would
have an annual savings of about $841 per year. However this
is for a case where the power demand and PV power supply
are the same every day. We also compared a Monte Carlo
simulation run for 122 “summer” days and 243 “winter” days
(which were based on the SMUD'’s seasonal electricity
pricing setup where June 1st to September 30th is
considered summer and October 1st to May 31stis
considered winter). For a single simulation of 365
independent days, we found the saving to be $826, which is
still a very significant amount.

“Base Case” On Grid, On Grid,
PV-+Batt PV-+Batt
(Optimized) (Monte Carlo)
Summer $2.78 -$1.68 -$1.64
(avg. daily
cost)
Winter (avg. $1.84 $0.62 $0.66
daily cost)
Annual Cost $786.28 -$54.30 -$39.70
Annual - $840.58 $825.98
Savings

Table 4: Daily and Annual Cost Comparison

To calculate a payback period, we use the assumption that
the 10 kWh battery is a 2nd life battery (which are
repurposed PHEV or EV batteries that no longer meet vehicle
use standards). The associated up front cost is $120/kWh
totaling $1200 [5]. We also assume that the cost per peak
watt is $3.8 [9]. Converting from cost per peak watt to cost
per meter squared (using formula 14), the cost becomes
$684/square meter. Using this information and the size of
the PV system, the total cost can be calculated to be $10260
for PV leading to a total combined capital cost of $11460.
Assuming no maintenance is required over the period of
interest, a payback period of slightly less than 14 years is
determined. This 14-year payback period is significantly less
than many homeownership periods and so if the upfront
costs can be addressed it could be a large money saver (and
even money maker) for homeowners.

When running these simulations over a large number of
days, we found that the mean daily cost (or savings) was
very close to the optimal cost (or savings). However, the
variability in the daily electricity costs were large, being of
the same order of magnitude as the daily costs themselves.
On a daily time scale, the optimization is very sensitive to
variations in input data, so monthly bills could show
significant fluctuation, however this seems to have less
significance when looking at the timescale of a payback
period or even a year.

Convergence of Electricity Costs from Simulation to the Optimal Cost
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Figure 7: Convergence of Simulation to Optimal Cost

As stated earlier, in terms of environmental sustainability,
smart homes equipped with PV and energy storage are able
to displace energy produced by fossil fuels, resulting in
carbon savings, and able to redistribute the solar energy to
demands in different parts of the day to displace more fossil
fuel electricity, should if solar power input rise above
demand at any point in time.

An interesting case to consider would be to consider what
area of photovoltaics panels are needed to effectively go off
the grid. The term effectively is used here to mean that over
long timescales, the net energy transfer between the grid and
the house would be zero. Based on this problem formulation
with the previously mentioned parameters the area of PV
required to go off the grid would be 26m? with winter being
the limiting season.
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Figure 8: "Off the Grid” external power requirements



Future Direction

Future steps for analysis can include a large number of
options. The first would be to increase the complexity of our
system to match that of the original system in Davis, CA,
accounting for the role of a PHEV as well as adding more
constraints and/or costs to account for battery health. This
would allow for a direct comparison of the performances of
the two-operation schema.

Other options for expansion include the directions that
researchers have already covered. This may include allowing
for flex loads to affect optimization, accounting for heating
and cooling to adjust to ambient temperatures, and exploring
dynamic programming and real-time optimization
approaches for system operation. Optimization for
minimizing carbon emissions, accounting for transmission
costs, and performing higher temporal resolution analysis
are yet further directions for possible analysis. A more
complete model for a system with these considerations may
look like Figure 9.
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Figure 9: Expanded Model System Diagram

Summary

In summary, we have determined that our simple LP system
is able to create significant savings for the smart home
owner, >$800 per year for a home with the specifications
used in our study. Even with a system programmed to run a
single operation schematic for each day for each of summer
and winter seasons, over a long time frame, predicted
savings can be quite robust despite possibly large day-to-day
fluctuations. Many options exist for expanding our model
and accounting for other factors to increase accuracy, but we
believe our simple model to be a useful base for a simple
optimization of smart home energy management systems as
well as a useful tool for estimation of the performance of
such systems over specified timescales.
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