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Abstract 

 
We have developed a hybrid (First Principles/Data Driven) model to predict the instantaneous air and mass 

temperatures of a classroom in the La Escuelita Education Center (LEEC), located in Oakland, CA. The building’s 

primary mode of cooling is night flushing: the use of forced ventilation at night with the combination of thermal 

mass walls and floors, allowing radiant cooling to take place during the day when the building is occupied. We 

have obtained trends of the airflow, mass temperature, room temperature, and outdoor air temperature from the 

school’s building management system (BMS) for the months of June to November (the cooling season). With the 

BMS data set and our prediction model, we have developed a control strategy for the ventilation system to 

minimize energy and maintain comfortable temperatures. 

 
Introduction 

 
Buildings in the U.S. consume about 40% of the primary energy, where a large percentage goes into HVAC and 

lighting systems of the building [1]. A strategy that has the potential to reduce energy consumption and peak 

demand is through thermal storage capacity. There are two versions of building thermal capacity, active and 

passive. Active building thermal capacity refers to thermal energy storage systems that mechanically create and 

store chilled water or ice for later use. On the other hand, a passive building thermal storage capacity refers to the 

use of the building’s envelope, internal construction, and furniture to help cool the building throughout the day 

[2]. Simulation exercises have shown to have an energy reduction potential of 0-35% and a demand peak 

reductions of up to 15% through the use of this strategy [3]. For this project, we will investigate a semi-passive 

building thermal storage capacity in which ventilation rates are increased throughout the cooler temperatures of 

the night to precool the building during summer days. This strategy is commonly known as “night flushing” and 

has the greatest savings potential when the mass of the building is large and night time ambient temperatures are 

low [2], [4].  

 

This strategy, along with other passive strategies, are becoming more common as Net Zero Energy Buildings 

(NZEBs) become more prevalent. That being said, not many data sets from buildings that use night flushing 

currently exist. This provides a unique opportunity to investigate and optimize its performance in the La Escuelita 

Education Center Building. This education building is 21,470 ft2 in size with 10 classrooms that use night flushing. 

The current controls of the building’s night flushing strategy are not optimized resulting in a required morning 

warmup of the building, preventing the temperatures of thermal mass surfaces from getting too low and making 

occupants feel thermally uncomfortable. Thus, eliminating the morning warmup of the building will reduce the 

building’s energy consumption and yield greater energy savings. 

 

There will be some challenges in optimizing this building’s strategy because there are not many systems like this in 

the field in which we can reference. Design engineers of the building had to set the control strategy with many 

assumptions. A positive is that there are laboratory studies and simulation studies that have addressed these 

issues. For example, Kintner-Meyer and Emery (1994), Braun (2003), and Lui and Henze (2005) established cost 

functions based on the costs of electricity and demand charges to optimize night flushing strategies and active 

building thermal capacity strategies [2], [4], [5]. A similar approach will be taken when optimizing the number of 

night flushing hours for this project. In addition, we do not know which parameters are important to build a first 

principles model. That is, we do not know if ventilation flow rates or occupancy will be important to build a 

model. Another challenge in creating a first principles model will be how to take into account the thermal mass of 

the classroom surfaces. Furthermore, the design team has logged various data that can help with the model, but 

we are unsure of how to incorporate it. 

  



Technical Description 
 
Methodology 

 

System Modeling 
 

Our first modeling objective was to determine the relationship between supply temperature and ventilation rate 

with indoor air temperature and mass temperature for a classroom using mechanical night flushing.  Our second 

modeling objective was to determine how this relationship can be used to predict instantaneous air temperature 

and mass temperature.  

 

To achieve our modeling objective, two different models were created and trialed for parameter identification.  

Model version 1 directly takes air flow and supply temperature into account.  Model version 2 estimates the 

power from the ventilation system using a conditional state function based on ventilation rate.  Details of each 

model can be seen below.  A schematic of model 2 can be seen in figure 1. 

 
Table 1: Description of parameters & variables in dynamical equations 
Symbol Description Units  Subscript Description 

T Temperature [°F]  z Zone 

R Thermal Resistance [°F-hr/BTU]  a Ambient 

C Thermal Capacitance [BTU/°F]  w Wall 

V Ventilation Rate [ft3/hr]  f Floor 

s Ventilation State [0/1]  v Supply 

ρ Density [lb/ft3]    

c Specific Heat [BTU/lb-°F]    

P Ventilation Power [BTU]    

 

 
Figure 1: Schematic of model 2 

 



Model Version 1 

Controllable Inputs: V(t), TV(t) 

Uncontrollable Inputs: TA(t) 

Outputs: Tz(t), Tw(t), Tf(t) 

Parameters: RAZ, RWZ, RFZ, RAW, CZ, CW, CF, ρc 

 
The following are the dynamical equations, state definitions, and input definitions chosen for model 1. 

𝐶𝑍𝑇̇𝑍(𝑡) =
1

𝑅𝐴𝑍
[𝑇𝐴(𝑡) − 𝑇𝑍(𝑡)] +

1

𝑅𝑊𝑍
[𝑇𝑊(𝑡) − 𝑇𝑍(𝑡)] +

1

𝑅𝐹𝑍
[𝑇𝐹(𝑡) − 𝑇𝑍(𝑡)] + 𝜌𝑐𝑉(𝑡)[𝑇𝑉(𝑡) − 𝑇𝑍(𝑡)]       (1) 

𝐶𝑊𝑇̇𝑊(𝑡) =
1

𝑅𝐴𝑊
[𝑇𝐴(𝑡) − 𝑇𝑊(𝑡)] +

1

𝑅𝑊𝑍
[𝑇𝑍(𝑡) − 𝑇𝑊(𝑡)]            (2) 

𝐶𝐹𝑇̇𝐹(𝑡) =
1

𝑅𝐹𝑍
[𝑇𝑍(𝑡) − 𝑇𝐹(𝑡)]                 (3) 

[

𝑥1

𝑥2

𝑥3

] = [

𝑇𝑧(𝑡)

𝑇𝑤(𝑡)

 𝑇𝑓(𝑡)
]                   (4) 

[

𝑢1

𝑢2

𝑢3

] = [

𝑇𝐴(𝑡)
𝑉(𝑡)
 𝑇𝑉(𝑡)

]                  (5) 

 

Because equation 1 is non-linear in the inputs & states (4th term), we had to linearize around equilibrium.  We 

chose the first points in our data set as equilibrium points for simplicity.  These points were 𝑇𝑧 = 69.5°𝐹, 𝑇𝑊 =

68.9°𝐹, 𝑇𝐹 = 67.0°𝐹, 𝑇𝐴 = 74.0°𝐹, 𝑉 = 0 𝑐𝑓𝑚, and 𝑇𝑉 = 71.6°𝐹.  To linearize the system, we used equation 6, 

which produces new dynamical equations, 7, 8 and 9. 

𝑓(𝑥, 𝑢) ≈ 𝑓(𝑥𝑒𝑞 , 𝑢𝑒𝑞) + ∑
𝜕𝑓

𝜕𝑥𝑖
(𝑥𝑒𝑞 , 𝑢𝑒𝑞) ∗ (𝑥𝑖 − 𝑥𝑖

𝑒𝑞
)3

𝑖 + ∑
𝜕𝑓

𝜕𝑢𝑖
(𝑥𝑒𝑞 , 𝑢𝑒𝑞) ∗ (𝑢𝑖 − 𝑢𝑖

𝑒𝑞
)3

𝑖          (6) 

𝐶𝑍𝑥̇1 =
1

𝑅𝐴𝑍
[𝑢1

𝑒𝑞
− 𝑥1

𝑒𝑞
] +

1

𝑅𝑊𝑍
[𝑥2

𝑒𝑞
− 𝑥1

𝑒𝑞
] +

1

𝑅𝐹𝑍
[𝑥3

𝑒𝑞
− 𝑥1

𝑒𝑞
] + 𝜌𝑐 𝑢2

𝑒𝑞
[𝑢3

𝑒𝑞
− 𝑥1

𝑒𝑞
]          (7) 

−(
1

𝑅𝐴𝑍
+

1

𝑅𝑊𝑍
+

1

𝑅𝐹𝑍
+ 𝜌𝑐 𝑢2

𝑒𝑞
) ∗ (𝑥1 − 𝑥1

𝑒𝑞
) +(

1

𝑅𝑊𝑍
) ∗ (𝑥2 − 𝑥2

𝑒𝑞
) +(

1

𝑅𝐹𝑍
) ∗ (𝑥3 − 𝑥3

𝑒𝑞
)  

+(
1

𝑅𝐴𝑍
) ∗ (𝑢1 − 𝑢1

𝑒𝑞
) +(𝜌𝑐 [𝑢3

𝑒𝑞
− 𝑥1

𝑒𝑞
]) ∗ (𝑢2 − 𝑢2

𝑒𝑞
) +(𝜌𝑐 𝑢2

𝑒𝑞
) ∗ (𝑢3 − 𝑢3

𝑒𝑞
)  

𝐶𝑊𝑥̇2 =
1

𝑅𝐴𝑊
[𝑢1 − 𝑥2] +

1

𝑅𝑊𝑍
[𝑥1 − 𝑥2]               (8) 

𝐶𝐹𝑥̇3 =
1

𝑅𝐹𝑍
[𝑥1 − 𝑥3]                 (9) 

 

When we set up the dynamical equations into state space form, we see that almost all of the terms of equation 7 

that do not contain a state or an input (i.e. the terms that are constant) disappear, with the exception of one 

term.  Because 𝑢2
𝑒𝑞

 = 0, this final term also disappears.  Matrix A and B are seen below in equations 10 and 11. 

𝐴 =

[
 
 
 
 −

1

𝐶𝑍
(

1

𝑅𝐴𝑍
+

1

𝑅𝑊𝑍
+

1

𝑅𝐹𝑍
+ 𝜌𝑐 𝑢2

𝑒𝑞
)

1

𝐶𝑍𝑅𝑊𝑍

1

𝐶𝑍𝑅𝐹𝑍

1

𝐶𝑊𝑅𝑊𝑍
−

1

𝐶𝑊
(

1

𝑅𝐴𝑊
+

1

𝑅𝑊𝑍
) 0

1

𝐶𝐹𝑅𝐹𝑍
0 −

1

𝐶𝐹𝑅𝐹𝑍]
 
 
 
 

         (10) 

𝐵 =

[
 
 
 

1

𝐶𝑍𝑅𝐴𝑍

1

𝐶𝑍
(𝜌𝑐 (𝑢3

𝑒𝑞
− 𝑥1

𝑒𝑞
))

1

𝐶𝑍
(𝜌𝑐 𝑢2

𝑒𝑞
)

1

𝐶𝑊𝑅𝐴𝑊
0 0

0 0 0 ]
 
 
 
           (11) 

 
  



Model Version 2 
Controllable Inputs: s(t) 

Uncontrollable Inputs: TA(t) 

Outputs: Tz(t), Tw(t), Tf(t) 

Parameters: RAZ, RWZ, RFZ, RAW, CZ, CW, CF, P 

 
The following are the dynamical equations, state definition, and input definitions chosen for model 2.  Model two 

is linear and does require any further linearization.  In this model, the final term of the first dynamical equation is 

replace by the function s(t).  This function is equal to 0 whenever the air flow rate falls below 400 cfm and equal 

to 1 whenever the air flow rate falls above 400 cfm. 

𝐶𝑍𝑇̇𝑍(𝑡) =
1

𝑅𝐴𝑍
[𝑇𝐴(𝑡) − 𝑇𝑍(𝑡)] +

1

𝑅𝑊𝑍
[𝑇𝑊(𝑡) − 𝑇𝑍(𝑡)] +

1

𝑅𝐹𝑍
[𝑇𝐹(𝑡) − 𝑇𝑍(𝑡)] + 𝑃𝑠(𝑡)           (12) 

𝐶𝑊𝑇̇𝑊(𝑡) =
1

𝑅𝐴𝑊
[𝑇𝐴(𝑡) − 𝑇𝑊(𝑡)] +

1

𝑅𝑊𝑍
[𝑇𝑍(𝑡) − 𝑇𝑊(𝑡)]          (13) 

𝐶𝐹𝑇̇𝐹(𝑡) =
1

𝑅𝐹𝑍
[𝑇𝑍(𝑡) − 𝑇𝐹(𝑡)]               (14) 

[

𝑥1

𝑥2

𝑥3

] = [

𝑇𝑧(𝑡)

𝑇𝑤(𝑡)

 𝑇𝑓(𝑡)
]                 (15) 

[
𝑢1

𝑢2
] = [

𝑇𝐴(𝑡)
𝑠(𝑡)

]                (16) 

 

Matrix A and B are seen below in equations 10 and 11. 

𝐴 =

[
 
 
 
 −

1

𝐶𝑍
(

1

𝑅𝐴𝑍
+

1

𝑅𝑊𝑍
+

1

𝑅𝐹𝑍
)

1

𝐶𝑍𝑅𝑊𝑍

1

𝐶𝑍𝑅𝐹𝑍

1

𝐶𝑊𝑅𝑊𝑍
−

1

𝐶𝑊
(

1

𝑅𝐴𝑊
+

1

𝑅𝑊𝑍
) 0

1

𝐶𝐹𝑅𝐹𝑍
0 −

1

𝐶𝐹𝑅𝐹𝑍]
 
 
 
 

              (17) 

𝐵 =

[
 
 
 

1

𝐶𝑍𝑅𝐴𝑍

𝑃

𝐶𝑍

1

𝐶𝑊𝑅𝐴𝑊
0

0 0 ]
 
 
 
                   (18) 

 
Parameter Identification 
 
Although model versions 1 and 2 were both tested for parameter identification, model 2 produced more accurate 
results, so methodology for model 2 is shown below. The following are the dynamical equations expressed in 
theta-phi form. 

ϕ1 =

[
 
 
 
𝑇𝐴(𝑡) − 𝑇𝑍(𝑡)

𝑇𝑊(𝑡) − 𝑇𝑍(𝑡)

𝑇𝐹(𝑡) − 𝑇𝑍(𝑡)

𝑠(𝑡) ]
 
 
 
               (19) 

ϕ2 = [
𝑇𝐴(𝑡) − 𝑇𝑊(𝑡)

𝑇𝑍(𝑡) − 𝑇𝑊(𝑡)
]               (20) 

ϕ3 = [𝑇𝑍(𝑡) − 𝑇𝐹(𝑡)]               (21) 

θ1 = [
1

𝐶𝑍∗𝑅𝐴𝑍

1

𝐶𝑍∗𝑅𝑊𝑍

1

𝐶𝑍∗𝑅𝐹𝑍
𝑃]             (22) 

θ2 = [
1

𝐶𝑊∗𝑅𝐴𝑊

1

𝐶𝑊∗𝑅𝑊𝑍
]              (23) 

θ3 = [
1

𝐶𝐹∗𝑅𝐹𝑍
]                (24) 

 



Once the dynamical equations were in theta-phi form, we loaded the training data and calculated the persistence 
of excitation.  Our training data is from one classroom (room 110) in the LEEC that is using night flushing as its 
primary cooling method.  Our full data set is from June 30th to October 16th.  We used only the first ten days of 
data, June 30th to July 9th, as our training data.  The following persistence of excitation results were produced:  PE 
level for ϕ1 is 0.0326, PE level for ϕ2 is 1.1084, and PE level for ϕ3 is 4.2929.  All three PE levels are above zero, 
which indicates that the parameters are identifiable. 
 
To identify the parameters, our first strategy was to use the gradient update law.  We started by randomly 
choosing initial conditions for theta and a value for gamma, and then compared the final simulation to the 
training data.  We iterated this process until we found initial conditions and a gamma that produced a simulation 
that was fairly representative of the training data.  The best iteration was a result of the initial conditions and 
gamma seen in equations 25 through 28.  These results can be seen in figures 2 through 5. 
𝜃1𝑖 = [0.2 0.2 0.2 0.2]                    (25) 
𝜃2𝑖 = [0.2 1.0]                     (26) 
𝜃1𝑖 = [0.2]                      (27) 
Γ = 0.01 ∗ 𝐼                      (28) 
 

 
Figure 2: a) Progression of theta_hat over training data with gamma = 0.1, b) Progression of theta_hat over training data with gamma = 
0.01 
 

Parameter identification was unstable with a gamma of 0.1, as shown in figure 1a, by the spikes in theta_hat 
throughout the gradient update. 
 

 
Figure 3: Predicted (from gradient descent) and true indoor air temperature over training data 
 



 
Figure 4: Predicted (from gradient descent) and true mass wall temperature over training data 
 

 
Figure 5: Predicted (from gradient descent) and true mass floor temperature over training data 
 
Although these were the best results from the gradient descent, they were still not yet close enough to training 
data set to be a representative model.  It was therefore decided to use an alternative estimation approach, known 
as the least square (LSQ) non-linear function.  This method minimizes the square error between the simulation 
results and the training data.  To begin the LSQ non-linear method, we input the final theta values from the 
gradient descent as initial estimates for theta.  The function does 100 iterations for each parameter, so in this case 
700 iterations.  Once a set of 700 iterations was complete, we replaced the initial estimates for theta with the 
final values from the previous iteration.  This process was done about 10 times until the simulations produced no 
further improvements in reducing the error.  The results can be seen in figures 6 through 8 and the final values of 
theta can be seen in equations 29 to 31. 
 



 
Figure 6: Predicted (from LSQ least-squares) and true indoor air temperature over training data 
 

 
Figure 7: Predicted (from LSQ least-squares) and true mass wall temperature over training data 
 

 
Figure 8: Predicted (from LSQ least-squares) and true mass floor temperature over training data 



θ̂1 = [−2.6356 −11.0377 0.1790 −0.9339]           (29) 

θ̂2 = [−8.7703 45.5929]              (30) 

θ̂3 = [0.0430]                (31) 
 

It should be noted that the final parameters probably do not represent real physical characteristics because they 

were developed using a non-linear black box function. 

 

Parameter Validation 
 
Validation using Test Data 
Our model was validated using two sets of test data, both from the same classroom as the training data, but from 
different dates.  The first set of test data is from July 17th to July 25th.  During this time span, the s(t) function 
remains constant at 0.  The second set of test data is from September 4th to September 11th.  During this time 
span, the s(t) function is both 0 and 1.  The simulation results from both test data sets can be seen in the results 
section.  It should be noted that our model produced better results for test data set 2. 
 
Validation using Real Parameters 
An alternative method to validate the model is to compare the model parameters to the “real” parameters.  To 
find the real parameters, we first had to determine the physical properties of the room and room construction.  
To find these values, we used the mechanical and architectural construction documents.  These properties can be 
seen in tables 2 and 3.  Equations 32 through 39 show how each parameter was calculated. 
 
Table 2: Description of room and material properties 
Symbol Description Units  Subscript Description 

ρ Density [lb/ft3]  Conc Concrete 

c Specific Heat [BTU/lb-°F]  Cem Cement 

t Thickness [in]  Ceil Ceiling 

L Length [ft]  Air Air 

W Width [ft]  room Room 

H Height [ft]  film, in Inside air film 

Rei Thermal Resistance per Inch [°F-ft2-hr/(BTU-in)]  film, out Outside air film 

Re Thermal Resistance [°F-ft2-hr/BTU]  ins Insulation 

 
  



Table 3: Values of room and material properties 
Variable Value 

Lroom 38 

Wroom 49.5 

Hroom 10 

tconc 4 

tcem 2 

tceil .5 

ρconc 145 

ρcem 95 

ρair 0.0749 

cconc 0.23 

ccem 0.37 

cair 0.2403 

Reiconc 0.07 

Reicem 0.26 

Reiceil 0.45 

Reins 20 

Refilm,in 0.68 

Refilm,out 0.17 

 
 

𝑅𝐴𝑍 =
𝑅𝑒𝑖𝑐𝑒𝑖𝑙∗𝑡𝑐𝑒𝑖𝑙+𝑅𝑒𝑓𝑖𝑙𝑚,𝑖𝑛+𝑅𝑒𝑓𝑖𝑙𝑚,𝑜𝑢𝑡

𝐿𝑟𝑜𝑜𝑚∗𝑊𝑟𝑜𝑜𝑚
                (32) 

𝑅𝐹𝑍 =
𝑅𝑒𝑖𝑐𝑜𝑛𝑐∗𝑡𝑐𝑜𝑛𝑐

𝐿𝑟𝑜𝑜𝑚∗𝑊𝑟𝑜𝑜𝑚
                  (33) 

𝑅𝑊𝑍 =
(𝑅𝑒𝑖𝑐𝑒𝑚∗𝑡𝑐𝑒𝑚+𝑅𝑒𝑓𝑖𝑙𝑚,𝑖𝑛)

2∗(𝐿𝑟𝑜𝑜𝑚+𝑊𝑟𝑜𝑜𝑚)∗𝐻𝑟𝑜𝑜𝑚
                 (34) 

𝑅𝐴𝑊 =
(𝑅𝑒𝑖𝑛𝑠+𝑅𝑒𝑓𝑖𝑙𝑚,𝑜𝑢𝑡)

(𝐿𝑟𝑜𝑜𝑚+𝑊𝑟𝑜𝑜𝑚)∗𝐻𝑟𝑜𝑜𝑚
                 (35) 

𝐶𝑍 = 𝜌𝑎𝑖𝑟 ∗ 𝑐𝑎𝑖𝑟 ∗ (𝐿𝑟𝑜𝑜𝑚 ∗ 𝑊𝑟𝑜𝑜𝑚 ∗ 𝐻𝑟𝑜𝑜𝑚)              (36) 

𝐶𝐹 = 𝜌𝑐𝑜𝑛𝑐 ∗ 𝑐𝑐𝑜𝑛𝑐 ∗ (𝐿𝑟𝑜𝑜𝑚 ∗ 𝑊𝑟𝑜𝑜𝑚 ∗
𝑡𝑐𝑜𝑛𝑐

12
)              (37) 

𝐶𝑊 = 𝜌𝑐𝑒𝑚 ∗ 𝑐𝑐𝑒𝑚 ∗ (2 ∗ (𝐿𝑟𝑜𝑜𝑚 + 𝑊𝑟𝑜𝑜𝑚) ∗ 𝐻𝑟𝑜𝑜𝑚 ∗
𝑡𝑐𝑒𝑚

12
)            (38) 

 
The parameter of P represents the power of the ventilation system at maximum airflow.  Therefore, we first had 
to determine what the maximum airflow was during our training data, and then find the time at which this airflow 
occurred.  This time is designated as 𝑡∗. 
 
𝑃 = 𝜌𝑎𝑖𝑟 ∗ 𝑐𝑎𝑖𝑟 ∗ 𝑉(𝑡∗) ∗ [𝑇𝑎(𝑡∗) − 𝑇𝑧(𝑡

∗)]              (39) 
 
Finally, the “real” thetas can be seen in the results section.  It should be noted that thetas from our model vary 
substantially from the thetas below.  It should also be noted that simulations using the “real” thetas do not match 
the data, indicating that our dynamical equations may be too oversimplified to use real parameters in the model. 
 
 

Optimization 
 
The current setpoints in the actual building are causing the night flushing to overcool the room.  Because the 

temperature of the room must fall within a specified comfort range during occupied hours, the system is doing a 

morning warmup before any occupants enter the building.  This preheating is unnecessarily consuming energy 

that can be avoided through optimization.  Figure 9 shows a sketch of the current control of the system in red.  



You will see a new variable below for operative temperature (TOP), which is a function of zone temperature, wall 

temperature, and floor temperature, as calculated in equation 40. 

 

 
Figure 9: Operative temperature under current and ideal ventilation controls over a 24 hour period 
 

𝑇𝑂𝑃(𝑡) =
1

3
(𝑇𝑍(𝑡) + 𝑇𝑊(𝑡) + 𝑇𝐹(𝑡))                    (40) 

 

The objective function and constraints of our optimization try to fix this overcooling problem.  Our objective is to 

reduce (or even eliminate) preheating, therefore we want the operative temperature to be very close to the 

minimum bound of the comfort range when occupancy begins.  Because there are different temperature and 

ventilation requirements for occupancy, it is necessary to break down the constraints by occupied and unoccupied 

times.  For our simulation, we are establishing the following occupancy schedule: occupied from 8AM-5PM and 

unoccupied from 5PM-8AM.  Tables 4 and 5 show the optimization variables.  Although our objective is to 

eliminate preheating, we are using the model that does not take supply temperature into account.  Therefore, we 

had to come up with an objective function based only on the ventilation state variable.  This translated to 

minimizing the cost associated with the ventilation system.  Because it is assumed that the cost per unit energy is 

constant, the objective function is simply to minimize ventilation state at each time step.  Equation 41 shows the 

objective function, and equations 42 through 49 show the equality and inequality constraints, which are based on 

the ASHRAE comfort zone. 
 

Table 4: Description of optimization variables 
Symbol Description Units  Subscript Description 

T Temperature [°F]  Occ Occupied 

s Ventilation State [0/1]  Unocc Unoccupied 

    Max Maximum 

    Min Minimum 

    OP Operative 

 
  



Table 5: Values of optimization variables 
Variable Value 

𝑠𝑀𝑎𝑥,𝑂𝑐𝑐 0 

𝑠𝑀𝑎𝑥,𝑈𝑛𝑜𝑐𝑐 1 

𝑠𝑀𝑖𝑛,𝑂𝑐𝑐 0 

𝑠𝑀𝑖𝑛,𝑈𝑛𝑜𝑐𝑐 0 

𝑇𝑂𝑃,𝑀𝑎𝑥,𝑂𝑐𝑐 78 

𝑇𝑂𝑃,𝑀𝑎𝑥,𝑈𝑛𝑜𝑐𝑐 85 

𝑇𝑂𝑃,𝑀𝑖𝑛,𝑂𝑐𝑐 69 

𝑇𝑂𝑃,𝑀𝑖𝑛,𝑈𝑛𝑜𝑐𝑐 60 

 

𝑚𝑖𝑛
𝑠(𝑡)

 [𝑠(𝑡)]                    (41) 

𝑠𝑂𝑐𝑐 = 𝑠𝑀𝑎𝑥,𝑂𝑐𝑐                    (42) 

𝑠𝑈𝑛𝑜𝑐𝑐 ≤ 𝑠𝑀𝑎𝑥,𝑈𝑛𝑜𝑐𝑐                    (43) 

𝑠𝑂𝑐𝑐 ≥ 𝑠𝑀𝑖𝑛,𝑂𝑐𝑐                    (44) 

𝑠𝑈𝑛𝑜𝑐𝑐 ≥ 𝑠𝑀𝑖𝑛,𝑈𝑛𝑜𝑐𝑐                    (45) 

𝑇𝑂𝑃,𝑂𝑐𝑐 ≤ 𝑇𝑂𝑃,𝑀𝑎𝑥,𝑂𝑐𝑐                    (46) 

𝑇𝑂𝑃,𝑈𝑛𝑜𝑐𝑐 ≤ 𝑇𝑂𝑃,𝑀𝑎𝑥,𝑈𝑛𝑜𝑐𝑐                    (47) 

𝑇𝑂𝑃,𝑂𝑐𝑐 ≥ 𝑇𝑂𝑃,𝑀𝑖𝑛,𝑂𝑐𝑐                    (48) 

𝑇𝑂𝑃,𝑈𝑛𝑜𝑐𝑐 ≥ 𝑇𝑂𝑃,𝑀𝑖𝑛,𝑈𝑛𝑜𝑐𝑐                    (49) 

 

As a first step, we decided to see where operative temperature falls in the training data set and both test data 

sets, based on the results of our model.  These plots can be seen in the results section.  While the model was 

doing a good job at predicting operative temperature, unfortunately it was not predicting temperatures above the 

minimum comfort criteria during occupied hours.  Because the model was predicting operative temperature 

below the minimum comfort bound even with a continuous ventilation state of zero (see plot for test data set 1), 

we determined it would be nearly impossible to optimize this system.  That being said, we laid out the 

methodology for optimization, if the model were to be offset and predict an operative temperature that falls 

within the comfort bounds or if the comfort bounds were to be adjusted downward. 

 

To implement this optimization, we would use model predictive control.  To begin this process, a simulation 

would be run over a period of 15 hours, from 5PM, the start of unoccupied hours, to 8AM, the end of unoccupied 

hours, with the ventilation state being equal to 0.  We would then establish the boundary condition of the 

principle of optimality, seen in equation 50.  Using dynamic programming, we would iterate backwards through 

each time step of the 15 hours to ensure that the operative temperature and ventilation state remained within 

their given bounds.  Once the 15 hour period was optimized, we would move on to the next 15 hour period of 

unoccupied hours, using the final temperatures from the last occupied hour as initial conditions. 

𝑉𝑁 = {
0
∞

|
𝑇𝑜𝑝 = 𝑇𝑂𝑃,𝑀𝑖𝑛,𝑂𝑐𝑐

𝑇𝑜𝑝 ≠ 𝑇𝑂𝑃,𝑀𝑖𝑛,𝑂𝑐𝑐
}                    (50) 

  



Results 
 
The follow 3 figures are simulation results from the parameter validation using test data. 

 
Figure 10: a) Predicted and true indoor air temperature over test data set 1, b) Predicted and true indoor air temperature over test data set 
2 
 

 
Figure 11: a) Predicted and true mass wall temperature over test data set 1, b) Predicted and true mass wall temperature over test data set 
2 
 

 
Figure 12: a) Predicted and true mass floor temperature over test data set 1, b) Predicted and true mass floor temperature over test data set 
2 



The following are the thetas from parameter validation using real room and material properties. 

θ1 = [5.1661 4.3057 19.8342 2786.2955]             (51) 
θ2 = [0.0042 0.1422]                (52) 
θ3 = [0.3213]                  (53) 
 

The follow figures are simulation results of operative temperature from the training data and the two test data 

sets. 

 

 
Figure 13: Outdoor air temperature and predicted and true operative temperature over training data set with comfort bounds 
 



 
Figure 14: Outdoor air temperature and predicted and true operative temperature over test data set 1 with comfort bounds 

 

 
Figure 15: Outdoor air temperature and predicted and true operative temperature over test data set 2 with comfort bounds 
 

  



Discussion 
 

System Modeling 
 

After conducting analysis for model version 1 and model version 2, we were first very surprised that version 1 

performed worse, as version 2 contained less information in its inputs.  One possible reason for model 2 better 

predicting the temperature is that it was already linear and did not require any linearization, which is in itself an 

estimation of the true dynamical equations.  In addition to the two models discussed in the paper, we also tried a 

third model, which was identical to version 2, but the ventilation state variable was allowed to exist in 3 states: 0 

if the air flow was below 200 cfm, 1 if the airflow was between 200 and 400 cfm, and 2 if the airflow was above 

400 cfm.  The second state represented normal code-required ventilation and the third state represented night 

flushing.  Although this model performed better than version 2 after the gradient descent, the 3 state model 

diverged during the non-linear least squares method as soon as the data entered night ventilation mode. 

 

Although we were able to find a fairly predictive model, our dynamical equations definitely are not perfect.  The 

model does not take any of the following into account: 

1. Heat transfer between the ground and the floor 

2. Windows in the walls 

3. A classroom on the second story between the ceiling and the outside air 

In addition to these inaccuracies, the temperatures we used for the floor and walls were from sensors embedded 

within the mass, but the model really should have used surface temperatures.  Unfortunately, there were no 

surface temperature sensors installed in the building.  Finally, our equation for operative temperature was 

oversimplified and in reality, we would need to first calculate the mean radiant temperature.  These discrepancies 

in our model might explain why the “real” parameters did not successfully predict temperature when 

implemented in the model. 

 

Parameter Identification 
 

In the end, we were able to identify parameters that fit our model fairly well.  The errors between true and 

predicted data for indoor air temperature, mass wall temperature, mass floor temperature, and operative 

temperature are all small enough to consider our model to be a success.  Both the gradient descent method and 

non-linear least squares method were essential in finding the final versions of our parameters.  When we tried 

only using the gradient descent method, the parameters did not converge.  If we increased the value of gamma to 

make the values converge, the model was unstable.  While we were able to get a stable model with parameters 

that converged using the non-linear least squares method, this technique is unfortunately completely black-box.  

Therefore the values we got for our final parameters are definitely not representative of the real parameters.  In 

other words, these parameters have no physical meaning, but they are simply numbers that fit our training data.  

This is yet another reason why the “real” parameters do not match the final parameters of our model. 

 

Optimization 
 

As previously mentioned, in almost all circumstances, the operative temperature during occupied hours falls 

below the lower bound of the comfort zone.  Because this is true even when the ventilation state is continuously 

at 0, it is likely that the building might have an over cooling problem simply due to its construction, without even 

considering the ventilation system.  For optimization purposes, we considered shifting the comfort zone down, 

forcing the operative temperature to fall within the comfort zone.  However, based on results from the comfort 

tool developed by the Center for the Built Environment (CBE), as seen in figure 16, it is clear that the lower bound 



for comfort is even higher than our original value of 69°F.  Therefore, we could not justify lowering the comfort 

bound even further.  Another method could be optimizing the system using version 1 of the model.  This would 

allow for taking supply temperature into account.  The cost function of this optimization would have to change to 

incorporate the cost of energy from heating.  Because the room seems to be too cold even without ventilation, it 

is likely that energy would significantly increase from heating. 

 

 
 
Figure 16: Comfort zone based on Center for the Built Environment comfort tool 

 
 
Summary 
 
The La Escuelita Education Center, in Oakland, CA, is using night flushing as its primary cooling method.  Because it 
is typically difficult to forecast temperature when thermal mass is involved, we set an objective to create a model 
that predicts indoor air temperature and mass temperature.  We developed two different models using dynamical 
equations, one with controllable inputs of supply temperature and ventilation rate, and the other with a 
controllable input of ventilation state.  Using the model with ventilation state, we identified the parameters, first 
using the gradient descent method, and then using the non-linear least squares method.  We then validated our 
model using test data and compared our final parameters to values calculated from real material and room 
properties.  Finally, we laid out the methodology for optimization of the ventilation controls to eliminate 
overcooling, using model predictive control and dynamic programming. 
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