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Abstract—Lithium ion battery is a popular type of clean
energy storage that is widely used in industry. In this project,
we study the observer and controller design of a cylindrical
electro-thermal lithium ion battery model. The model, consisting
of a two-state equivalent circuit model and a two-state thermal
model, captures the state of charge (SOC), terminal voltage and
the battery core temperature. We first study the observability
of the model and present two observer designs, namely an
Extended Kalman Filter (EKF) observer and an Ensemble
Kalman Filter (EnKF) observer, to estimate the core temperature.
The second part of the project is to implement three controllers
on fast-charging.Controllers are Dynamic Programming and two
tracking controllers, sliding mode and feedback linearization,

Index Terms—Observer, optimal control, nonlinear control,
Lithium battery.

I. INTRODUCTION

A. Motivation & Background
Battery technology is growing rapidly in our daily life. From

consumer electronics to Electric Vehicles (EV), we are taking
advantage of the benefits of batteries. As an example, lithium
ion batteries are widely used in Hybrid electric vehicles (HEV)
and plug-in electric vehicles (PHEV). They are considered as
a promising solution to carbon emission in the automotive
industry. They are not only better alternatives for gasoline-
based vehicles, but also widely used in vehicle-to-grid (V2G)
type of application to generate clean electricity. Due to the
high demand, batteries have been a subject under active
research.

Among all types of batteries, lithium ion batteries are the
most widely used due to their advantages in energy/power
density and charge efficiency. One of the most important char-
acteristics of a battery is lifetime, which is mostly constrained
by the charging and discharging cycles. In V2G applications,
frequent charging and discharging are expected, which may
greatly reduce the battery life. Thus, optimizing the charging
and discharging control strategy is essential to lengthen the
battery endurance.

Two important factors for charging and discharging the
batteries are 1) Making sure the core temperature is within the
desired limits and 2) charging the battery to a desired State
Of Charge (SOC). The core temperature is important to not
only because of safety concerns, but also since excessive heat
can damage and shorten the battery life. However, we can’t
obtain the battery core temperature by direct measurements.

To address this issue, we first built non-linear observers
to estimate the missing core temperature, and compare the
estimates with the true values. To test the robustness of the
observer design, the measurements will be contaminated with

Fig. 1: The three-state equivalent circuit model.

white Gaussian noise. Secondly we will implement multiple
controller designs to achieve a desired SOC.

B. Relevant Literature
The electro-thermal dynamic model is adopted from [1].

For observer design, extended Kalman filter (EKF) [2] and en-
semble Kalman filter (EnKF) [3] will be explored. For control
design, we first try optimal control via dynamic programming
[4]. In addition, nonlinear control methods such as feedback
linearization and sliding control will also be investigated [5],
[6].

C. Focus of this Study
The purpose of this project is to study the observability,

non-linear observer design, and control strategies on a Li-ion
battery model. We implement observer designs on estimating
the core temperature of the battery to prevent overheating.
Secondly we design non-linear controlers to control the SOC
of the battery while keeping a reasonable charging and dis-
charging rate.

II. TECHNICAL DESCRIPTION

A. Modeling
As mentioned earlier, we are using a coupled electro-

thermal model. We will discuss a 3-state electrical model, a
two-state thermal model, and finally combine them into a five-
state coupled model.

1) Electrical Model: The schematic of an equivalent circuit
model (electrical model) [1] is shown in Figure 1.

The state equation for the State of charge (SOC), z, is given
by:

ż = − 1

Qbat
I (1)
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Fig. 2: The two-state thermal model.

where Q is the nominal capacity of battery. The current I is
assumed to be positive for discharging. The voltage dynamics
of the RC pairs are calculated by

V̇1 = − 1

R1C1
V1 +

1

C1
I

V̇2 = − 1

R2C2
V2 +

1

C2
I

(2)

where states V1 and V2 are voltages indicated in Figure 1.
The measured output is the terminal voltage VT .

VT = VOCV (z)− V1 − V2 − IRs

VOCV (z) = p0 + p1z + p2z
2 + p3z

2 (3)

where VOCV (z) represents the open circuit voltage and is
a function of SOC.

Note that in the coupled electro-thermal model, the parame-
ters R1, C1, R2, C2, and Rs are functions of SOC or average
temperature Tm defined later in the thermal model. Please refer
to the Appendix for detail. The battery temperature is driven
by the heat generation Q defined as:

Q = I(VOCV − VT ) (4)

2) Thermal Model: The schematic of the thermal model [1]
is shown in Figure 2. In the model, the input Tf is the inlet air
coolant temperature and Q is shown in (4). Cc and Cs are the
thermal capacitance of the core and the surface, respectively.
Rc and Rs are the conduction resistances between the core
and the surface of the cell and around the cell, respectively.
The model is described in [1] in more detail.

The dynamics of the thermal model can be defined as the
following:

CcṪc = Q+
Ts − Tc
Rc

CsṪs =
Tf − Ts
Ru

− Ts − Tc
Rc

(5)

where Tc and Ts represent the core and surface temperatures
respectively. The measured output is Ts.

Fig. 3: The five-state electro-thermal model.

The temperature Tm is the average of Tc and Ts. It is used
to parametrize the electrical parameters in the coupled model
in the next section.

Tm =
Ts + Tc

2
(6)

3) Coupled Model: The coupled electro-thermal model is
shown in Figure 3. The heat generation Q from the electrical
model, in equation (4), is an input to the thermal model. The
thermal model takes Q and Tf as its input and updates Tc
and Ts, as well as Tm dynamically. The electrical model uses
Tm and z to update the appropriate electrical parameters (R1,
R2, Rs, C1 and C2) [1]. The measured outputs ym = h(x)
are the terminal voltage VT and the surface temperature Ts.
The state information for SOC and core temperature could
not be measured and thus could only be estimated. Here is a
summary of the state-space model.

ẋ = f(x,u) =


ż

V̇1
V̇2
Ṫc
Ṫs

 =


− 1

Qbat
I

− 1
R1C1

V1 + 1
C1
I

− 1
R2C2

V2 + 1
C2
I

V1I+V2I+RsI
2

Cc
+ Ts−Tc

RcCc
Tf−Ts

RuCs
− Ts−Tc

RcCs



ym = h(x,u) =

[
VT
Ts

]
=

[
VT = VOCV (z)− V1 − V2 − IRs

Ts

]
(7)

where

x =
[
z V1 V2 Tc Ts

]T
u =

[
I Tf

]T
B. Observer Design

As mentioned before, the goal of the observer design is
to enable access to SOC and core temperature, since there
are no direct measurements available. To do so, we first
studied the observability of the model. Secondly, two non-
linear observers, namely EKF and EnKF, are designed and
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implemented. Lastly we briefly discuss a Lyapunov-based
nonlinear observer known as the Thaus method.

Due to the nonlinear nature of the electro-thermal model,
it is hard to verify the correctness of the observer design.
Therefore, we designed observers progressively for three mod-
els, namely a 3-state electrical model, a 5-state parameter-
decoupled model, and a 5-state parameter-coupled model. The
non-linearity increases respectively.

The 3-state electrical model is self-explanatory. In the 5-
state parameter-decoupled setup, all parameters stay constant.
Therefore, the electrical model parameters are not affected by
the thermal model. In the 5-state parameter-coupled model,
the electrical parameters are temperature (Tm) and SOC de-
pendent.

We implemented EKF on all three models, and EnKF on
the 5-state parameter-coupled model.

1) Observability Analysis: Before designing an observer,
we first need to check observability. For a nonlinear model,
local observability is checked by calculating the observability
matrix O in equation (8).

O =
∂

∂x


L0
f (VT ) L0

f (Ts)

L1
f (VT ) L1

f (Ts)

L2
f (VT ) L2

f (Ts)

L3
f (VT ) L3

f (Ts)

L4
f (VT ) L4

f (Ts)


x=x0

(8)

The observability matrix was evaluated in MuPad at the
initial condition x(0) = x0. The resulted matrix is quite
lengthy, but the rank of matrix O was found to be 5, which is
the same as the number of states. It indicates that the system
is locally observable from the initial condition.

The observability is also checked at each time step for the
linearized (A,C) pair. The linearized (A,C) pair for the 5-
state coupled model are calculated in equation (12).

2) Extended Kalman Filter (EKF): EKF is essentially
applying a Kalman filter to the linearized model about the
current state estimate at every time step. The three battery
models mentioned before (3-state, 5-state decoupled and 5-
state coupled) were created in MATLAB. We implemented an
Extended Kalman Filter (EKF) on each of the three to ensure
the correctness of the observer.

Consider a non-linear dynamic system model as in (9),

ẋ(t) = f(x, u) + w

x̂(0) = x̄0

ym(t) = h(x, u) + n

(9)

with w and n being process noise and measurement noise,
respectively. Both are stationary Gaussian white noise. In KF,
w and n are assumed to be mutually uncorrelated. Their
covariance matrices are W and N respectively. W and N
in the EKF were tuned to achieve an acceptable convergence.

The general formulation of the EKF is provided in equation
(10).

˙̂x(t) = f(x̂, u) + L(t) [y(t)− h(x̂, u)]

x̂(0) = x̄0
(10)

The observer gain L is updated by Σ(t), which is solved
by Riccati equation (11):

L(t) = Σ(t)CT (t)N−1

Σ̇(t) = Σ(t)AT (t) +A(t)Σ(t) +W

− Σ(t)CT (t)N−1C(t)Σ(t)

Σ(0) = Σ0

(11)

with A(t) = ∂f
∂x (x̂(t), u(t)) and C(t) = ∂h

∂x (x̂(t), u(t)). The
A and C matrices for the 5-state coupled model are shown
in equation (12). The parameters Rs, R1,R2,C1 and C2 are
functions of either z or Tm. Their parametrization is shown in
the Appendix. Note that in the 5-state decoupled model, the
parameters are constants.

A =


0 0 0 0 0
A21 − 1

R1C1
0 A24 A25

A31 0 − 1
R2C2

A34 A35

0 I
Cc

I
Cc

A44 A45

0 0 0 1
RcCs

− 1
RuCs−RcCs


C =

[
C11 −1 −1 C14 C15

0 0 0 0 1

]
(12)

where

A21 =
V1

R2
1C1

(R11∗ + 2R12∗z)e
TrefR1∗

Tm−TshiftR1∗

+
( V1

R1
− I)[C11∗ + 2C12∗z + (C14∗ + 2C15∗)Tm]

C2
1

A24 = A25 = − V1TrefR1∗

2R1C1(Tm − TshiftR1∗)2

+
( V1

R1
− I)(C13∗ + C14∗z + C15∗z

2)

2C2
1

A31 =
V2

R2
2C2

(R21∗ + 2R22∗z)e
TrefR2∗

Tm

+
( V2

R2
− I)(C21∗ + 2C22∗z + (C24∗ + 2C25∗)Tm)

C2
2

A34 = A35 = −V2TrefRs∗

2R2C2T 2
m

+
( V2

R2
− I)(C23∗ + C24∗z + C25∗z

2)

2C2
2

A44 = − I2RsTrefRs∗

2Cc(Tm − TshiftRs∗)2
− 1

RcCc

A45 = − I2RsTrefRs∗

2Cc(Tm − TshiftRs∗)2
+

1

RcCc

C11 = p1 + 2p2z + 3p3z
2

C14 = C15 =
IRsTrefRs∗

2(Tm − TshiftRs∗)2

3) Ensemble Kalman Filter (EnKF): The EnKF is dif-
ferent from the EKF in the way it generates the covariance
matrices. In EnKF, Gaussian random noise is added to the
initial condition (IC) and generate an ensemble of N slightly
different IC samples. Then all samples go through a prediction
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update and a correction update. After that the covariance
matrices are calculated from the updated samples. Unlike EKF,
EnKF is commonly implemented in discrete time. Equation
(13) and (14) shows the general formulation of EnKF.

prediction step :

x̂i(k + 1|k) = f(x̂i(k|k), u(k))

x̄(k + 1|k) =
1

N

N∑
i=1

x̂i(k + 1|k)

x̃i(k + 1|k) = x̂i(k + 1|k)− x̄i(k + 1|k)

Ex(k + 1) = [x̃1(k + 1|k) ... x̃N (k + 1|k)]

ŷi(k + 1|k) = h(x̂i(k|k), u(k))

ȳ(k + 1|k) =
1

N

N∑
i=1

ŷi(k + 1|k)

ỹi(k + 1|k) = ŷi(k + 1|k)− ȳi(k + 1|k)

Ey(k + 1) = [ỹ1(k + 1|k) ... ỹN (k + 1|k)]

P̂xy(k + 1) =
1

N − 1
Ex(k + 1)ET

y (k + 1)

P̂yy(k + 1) =
1

N − 1
Ey(k + 1)ET

y (k + 1)

(13)

correction step :

L̂(k + 1) = P̂xy(k + 1)P̂−1
yy (k + 1)

x̂i(k + 1|k + 1) = x̂i(k + 1|k)

+ L̂(k + 1)
(
ym(k + 1)− ĥ(x̂i(k + 1|k))

)
x̄(k + 1|k + 1) =

1

N

N∑
i=1

x̂i(k + 1|k + 1)

(14)

4) Lyapunov-Based Nonlinear Observer: Another non-
linear observer studied was a Lyapunov-based nonlinear ob-
server known as the Thaus Method. This is a deterministic
approach in contrast to the stochastic EKF. Thaus Method
assumes that we can write the dynamic model in three terms
ẋ = Ax + g(t,u,y) + f(x), with y = Cx being the
measurements. This formulation assumes that the measure-
ments are linear and g(t, u, z) is known exactly and thus
could be canceled completely in the observer. However after
formulating this observer, we observed that g(t, u, z) depends
on the state estimates, and therefore we were not able to
completely cancel this term. In addition our measurements are
non-linear. An effort was made by using the estimated states
to evaluate g(t, u, z), as well as linearizing the measurements.
However since the conditions on the method are not satisfied,
convergence is not guaranteed. This observer design was
therefore not satisfactory and is not included in this paper.

C. Controller Design
Three controllers are implemented for fast-charging. The

first approach is optimal control using dynamic programming.
The other two approaches are non-linear controllers using
feedback linearization and sliding control. The goal is to

achieve a constant desired SOC from some initial condition,
without overheating the battery core. The parameters are either
chosen or controlled to make sure that the core temperature is
within the satisfied regime. The following sections will briefly
explain the formulation of the controllers.

1) Dynamic Programming: The optimization problem is
written in equation (15). The cost function is the total non-
charging time. 1 (I(k) = 0) is an indicator function. It eval-
uates to 1 when I(k) = 0 and 0 otherwise. The reason is
to penalize the system when the battery is not charging. The
terminal cost VN (z) is infinity when z > zdesired and zero
otherwise (17), since we don’t want any more current when
the desired SOC is reached. x(k + 1) = fd(x(k), u(k)) is
the discretized dynamics using Runge-Kutta method, which is
achieved by calling ode45 in MATLAB. The coolant tempera-
ture is constant (Tf0) throughout. All the other state variables
are bounded accordingly.

Although the terminal SOC, z(N), should be equal to
zdesired eventually, two other constarints may overwrite this
constraint if the time horizon N is not long enough. First, the
core temperature should not exceed a maximum temperature
Tc,max. Second, the largest current is limited to Imax. These
two constraints have priority over the z(N) constraint. It could
be easily achieved by taking the smallest current magnitude
of the three when performing dynamic programming.

min
N,z(k),I(k)

J =

N−1∑
k=0

∆t 1 (I(k) = 0) + VN (z)

s.to : x(k + 1) = fd(x(k), u(k)), k = 0, ..., N − 1

x(0) = x0

Tf (k) = Tf0

zmin ≤ z(k) ≤ zmax, k = 0, ..., N

V1(k) ≤ 0, k = 0, ..., N

V2(k) ≤ 0, k = 0, ..., N

Ts,min ≤ Ts(k) ≤ Ts,max, k = 0, ..., N

Tc,min ≤ Tc(k) ≤ Tc,max, k = 0, ..., N

−Imax ≤ I(k) ≤ 0, k = 0, ..., N

and possibly :

z(N) = zdesired

(15)

Let Vk(x(k)) denote the total non-charging time from step
k to the terminal step N , then the principle of optimality
equation can be written as:

Vk(x(k)) = min
N,z(k),I(k)

∆t 1 (I(k) = 0) + Vk+1(x(k + 1))

(16)

with the terminal constraint:

VN (x(N)) =

{
∞, z(N) ≥ zdesired
0, otherwise

(17)

Now, we can solve the DP problem backward in time. Note
that since the goal is fast-charging, the time-horizon N is also
a minimizer, although there is no direct way to incorporate
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this in DP. The best we can to is to choose a long enough
time horizon to include all initial conditions. It turns out that
this is a time-consuming process. Without reducing the state
space, the DP process takes over 14 hours for a time horizon
of 200 steps.

2) Feedback linearization: Feedback linearization is an
exact state transformation and feedback method. The idea is
to transform a non-linear systems dynamics into a fully or
partially linear one and use linear methods for control. For
our non-linear model, the objective is to control SOC to a
desired state. Assume that SOC could be estimated from our
observer, then we can differentiate the SOC until the control
term appears:

y = z

ẏ = ż = − I

Qbat
= v

(18)

The control term I appears in the first derivative. Therefore
the relative degree of output with respect to input is r = 1
which equates the order of the system, n = 1. Since n = r,
there are no internal dynamics and the input/output lineariza-
tion is stable. Defining the desired dynamics for the synthetic
input v to be:

v = −λ(z − zdes) (19)

Solving for the control law we receive:

I = −λQbat(z − zdes) (20)

3) Sliding Control: The second nonlinear control approach
is sliding control. This part consists of three sub-sections,
namely sliding mode (SM) control on SOC, sliding control
on SOC with a smoothing function, and a secondary sliding
surface to control both SOC and Tc.

a) Sliding Mode (SM) Control on SOC:
Define the sliding surface to be

S =

(
d

dt
+ λ

)n−1

(z − zdes) (21)

which simplifies to S = (z − zdes). The chosen sliding
surface satisfies two conditions:

• If S = 0, then the tracking error goes to zero;
• Ṡ is an explicit function of the control I
Next, we calculate the derivative of the sliding surface and

equating it to a switching function.

Ṡ = − I

Qbat
= −ηsgn(S) (22)

Solving for controller I we get:

I = ηQbatsgn(S) (23)

b) Sliding control on SOC with smoothing function:

An extension to the SMC method is sliding control with a
smoothing function. Smoothing is done to prevent chattering
in the input I . We replace the signum function, sgn(S), with
a saturation function , sat(S/φ).

I = ηQbatsat(S/φ) (24)

c) A secondary sliding surface on controlling both SOC and
Tc:

Next we defined a different sliding surface where it looks at
two state errors that we care about the most, SOC as before and
additional term for core temperature with a different sliding
surface.

Define the sliding surface to be

S =

(
d

dt
+ λ

)n−1

(z − zdes) + α

(
d

dt
+ λ

)n−1

(Tc − Tcdes)

(25)

α is a weighting factor on how much we would like the
error term of temperature to affect the sliding surface.

Ṡ = ż + αṪc = −ηsgn(S) (26)

Which after plugging in the values for ż and Ṫc from
equation (7), it could be simplifies to

(
αRs

Cc

)
I2 +

(
− 1

Qbat
+ α

V1 + V2
Cc

)
I

+

(
α
Ts − Tc
RcCc

+ ηsat

(
S

φ

))
= 0

(27)

Solving this polynomial for I , we receive two solutions
where we choose the negative one for charging.

III. DISCUSSION

A. Observer Results
The EKF observers on 3-state model and 5-state decoupled

model successfully estimate the states and is satisfactory. Both
the estimated SOC and the core temperature Tc converges
to the same values as the true model. The observer was
also checked with a small amount of measurement noise and
the results are still acceptable. Figure 4 shows the 5-state
decoupled results. The thin black lines indicates the error
bounds within one standard deviation. All time are in second,
and temperatures are in degree Celsius.

The results from the 5-state coupled model, however, wasn’t
as satisfactory (Figure 5). The model tracks the SOC and
temperature perfectly with correct initial guess. If the initial
estimate is not correct, the SOC estimate exhibits a constant
offset and does not converge (Figure 5a). The same conclusion
could be made in the case with measurement noise (Figure 5b).

In general, EKF does not guarantee convergence. This
is especially true when the model gets too non-linear. The
coupled model is highly nonlinear compared to the decoupled
model, and therefore the linearized dynamics in the EKF could
not represent the model dynamics correctly. Even a little error
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(a) perfect measurement

(b) noisy measurement

Fig. 4: EKF results for the 5-state decoupled model.

in the initial guess results in permanent error residuals in the
estimated state trajectory. Our conclusion is that EKF cannot
estimate the coupled electro-thermal model correctly.

Then we tried the EnKF. However, the results are not
very stable. We tried to increase the number of samples
gradually. Good results show up most of the time. Figure
6 shows the best result with 100 Gaussian random samples.
The SOC estimate looks better in this case, although the core
temperature converges slower compared to EKF. Note that for
systems with a large number of states, EnKF is more efficient.
However, for our small five-state system, it is much slower
than EKF due to the large random samples required for good
convergence.

B. Controller Results
Since the observers are not successful in estimating the

SOC, we assume that we know all the states when design-
ing the controllers. We successfully implemented all three
controllers. The optimal controller is the most effective in

(a) perfect measurement

(b) noisy measurement

Fig. 5: EKF results for the 5-state coupled model.

Fig. 6: EnKF results for the 5-state coupled model.
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Fig. 7: Fast-charging results from dynamic programming.

constraining battery core overheating. In addition, feedback
linearization and sliding control both achieve acceptable SOC
tracking, with sub-optimal temperature constraints.

1) Dynamic Programming: The battery fast-charging re-
sults via dynamic programming is shown in Figure 7. Since
the simulation is slow, I put an unrealistic maximum current
of 25A to speed up the process. In addition, states V1 and V2
are set to constants (V1 = −0.20V and V2 = −0.06V ) and
not gridded when setting up the DP in MATLAB. The black
dash line indicates the SOC and Tc thresholds to be 0.7 and
30◦C, respectively.

Three initial SOC’s are tested. The blue line indicates
z(0) = 0.3, the dominant constraint is the core temperature.
To prevent overheating, the current is reduced to ensure not
exceeding the core temperature threshold, and the desired SOC
is not reached within 100sec. The red line starts at z(0) = 0.4
indicates that the system eventually reaches the desired SOC at
about t = 100sec without compromising the core temperature
threshold. The green line with z(0) = 0.6 indicates that once
the curre

2) Feedback linearization: Figure 8 shows the tracking
result using feedback linearization.

There are some shortcomings along with this method.
Although it achieves the desired SOC, we have no direct
control over the core temperature. In this case, the temperature
is indirectly bounded by tuning λ. In addition, we don’t have

Fig. 8: Fast-charging results from feedback linearization.

control over the maximum current limits. The initial current
is huge, about 30A. Lastly, feedback linearization assumes a
perfect model, and thus not robust. Sliding Control, on the
other hand, can account for model uncertainties.

3) Sliding Control: In order to keep the organization in the
same order, we will present the result in three subsections as
before.

a) Sliding Mode Control (SMC) on SOC:
Using sliding mode control, we can guarantee that the

sliding surface S goes to zero in finite time. Although we
can get better temperature behavior by tuning η , chattering
is an issue. Chattering is the discontinuous infinite frequency
control signal presented after reaching the sliding surface, due
to the discontinuity in the sgn(S) function.

With η = 0.5, we can observe that the SOC converges to
the desired set-point almost instantaneously and then chatters
around the desired SOC. Also we can observe the temperature
goes much higher than the acceptable range. Decreasing η
slows down the convergence to the desired SOC and leads
to a much more controlled temperature as seen in Figure 9. It
shows the result of a tuned SMC as well as the chattering issue.
Again, we don’t have direct control over the core temperature.

b) Sliding Control with smoothing on SOC:
To resolve the chattering issue, we used a smoothing

function, sat(S/φ) to replace sgn(S). Although chattering is
eliminated, we can only guarantee that S converges to a non-
zero boundary layer in a finite time. The fast-charging result
is shown in red in Figure 10. We can observe that chattering
goes away in the current I . However, the core temperature is
still out-of-control.

c) Sliding surfaces on both SOC and Tc:
To gain control over the core temperature, we combine the

SOC sliding surface and a new Tc sliding surface with relative
weighing factors. The result is shown in blue in Figure 10.
Now, the Tc is well-behaved. The maximum core temperature
only exceeds the threshold (25◦C) by a little. In addition, by
a slight tuning, we were able to reduce the large initial current
to be less than 10A. The overall performance is close to DP.
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Fig. 9: Fast-charging results from sliding mode control, with
a zoom-in on SOC Chattering.

Fig. 10: Fast-charging results from smoothed sliding control,
with or without the secondary Tc sliding surface.

IV. SUMMARY

In this project, we examined the observer and controller
design of a cylindrical electro-thermal lithium ion battery
model.

Observers are designed to estimate the SOC and core
temperature. The EKF observer worked well on the 3-state
and 5-state decoupled models. However both EKF and EnKF
observers were unable to converge on the 5-state coupled
model if the initial state estimates were incorrect. EKF failed
due to the model non-linearity, and EnKF failed due to its
inherent randomness and the system non-linearity. For the
EKF observers, we also tested their robustness with noise-
contaminated measurements.

In addition, three controllers were implemented. An opti-
mal control strategy via dynamic programming was used to
efficiently perform fast-charging while preventing overheating.
Feedback linearization on SOC was successful, but it has
issues on robustness and temperature control. Lastly, multiple
sliding control strategies were discusesed. A sliding control
method, with two weighted sliding surfaces taking both the
core temperature and the SOC into account, was proven
successful. MATLAB simulations are provided for the non-
linear model, the observer design, and the controller design.

Given the unsuccessful state estimates, it is essential to
simplify the existing non-linear model to achieve full-state
feedback control.
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V. APPENDIX

A. Temperature-Varying Parameters for the Electrical Model

Rs =

{
Rsd, I ≥ 0 (discharge)
Rsc, I < 0 (charge)

Rs∗ = Rs0∗exp

(
TrefRs∗

Tm − TshiftRs∗

)

Rs0d Rs0c TrefRsd TrefRsc TshiftRsd
TshiftRsc

0.0048 0.0055 31.0494 22.2477 −15.3253 −11.5943

TABLE I: Parametric Rs function parameters

R1 =

{
R1d, I ≥ 0 (discharge)
R1c, I < 0 (charge)

R1∗ =
(
R10∗ +R11∗(SOC) +R12∗(SOC)2

)
exp

(
TrefR1∗

Tm − TshiftR1∗

)

R10d R10c R11d R11c R12d

7.1135e−4 0.0016 −4.3865e−4−0.0032 2.3788e−4

R12c TrefR1d TrefR1c TshiftR1d
TshiftR1c

0.0045 347.4707 159.2819 −79.5816 −41.4548

TABLE II: Parametric R1 function parameters
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R2 =

{
R2d, I ≥ 0 (discharge)
R2c, I < 0 (charge)

R2∗ =
(
R20∗ +R21∗(SOC) +R22∗(SOC)2

)
exp

(
TrefR2∗

Tm

)

R20d R20c R21d R21c

0.0288 0.0113 −0.073 −0.027

R22d R22c TrefR2d
TrefR2c

0.0605 0.0339 16.6712 17.0224

TABLE III: Parametric R2 function parameters

C1 =

{
C1d, I ≥ 0 (discharge)
C1c, I < 0 (charge)

C1∗ =
(
C10∗ + C11∗(SOC) + C12∗(SOC)2

)(
C13∗ + C14∗(SOC) + C15∗(SOC)2

)
Tm

C10d C10c C11d C11c

335.4518 523.215 3.1712e+3 6.4171e+3

C12d C12c C13d C13c

−1.3214e+3
−

7.5555e+3
53.2138 50.7107

C14d C14c C15d C15c

−65.4786 −131.2298 44.3761 162.4688

TABLE IV: Parametric C1 function parameters

C2 =

{
C2d, I ≥ 0 (discharge)
C2c, I < 0 (charge)

C2∗ =
(
C20∗ + C21∗(SOC) + C22∗(SOC)2

)(
C23∗ + C24∗(SOC) + C25∗(SOC)2

)
Tm

C10d C20c C21d C21c

3.1887e+4 6.2449e+4 −1.1593e+5−1.055e+5

C22d C22c C23d C23c

1.0493e+5 4.4432e+4 60.3114 198.9753

C24d C24c C25d C25c

1.0175e+4 7.5621e+3 −9.5924e+3−6.9365e+3

TABLE V: Parametric C2 function parameters


