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Abstract

The prevalent soda vending machine industry in the US could yield reductions in energy consumption by addressing operational use.
A study by the National Renewable Energy Laboratory estimates that each of the 4.6 million vending machines in the US consumes
between 7 and 13kWh per day.l') Currently, soda vending machines keep their products at a consistent temperature regardless of the time
of day. Although no formal soda vending machine usage patterns have been observed, we hypothesize that usage patterns primarily follow
time of day with high utilization during midday and afternoon and low utilization during the night and morning. However, soda is
generally non-perishable and does not need to be refrigerated during periods of low to no soda demand. In this report, we construct a
thermodynamic, state space refrigerator model and integrate a hypothetical soda demand schedule in order to optimize the operation of a
soda vending machine that minimizes energy and carbon impact while maximizing the delivery of the appropriately chilled soda.

I. INTRODUCTION

cupies a reasonably large portion of the total energy

usage in the United States. The U.S. Department of
Energy estimates that refrigeration accounts for approxi-
mately 7% of total commercial building energy usage. The
bygone era of cheap and plentiful electricity provided little
incentive to push for more efficient refrigerators in both the
home and commercial installations. Gradually, the energy
consumption per refrigerator unit increased, outpacing the
rate at which the physical size of each refrigerator unit was
growing (Figure[I). Regulations at both the state and federal
level were enacted which finally required steady reductions
in the energy usage of these appliances; refrigerator en-
ergy consumption began to decline dramatically afterwards.
Clearly, without any incentive to increase efficiency, little
technological improvements were made in the refrigerator
sector.

REfrigeration, and space conditioning in general, oc-

The commercial, soda vending machine sector faces an
economic obstacle that hinders the incentives for increased
energy efficiency. Most vending machines are owned by a
vending or beverage company which contracts with build-
ing managers to have a machine placed on their premises.
This arrangement sets an economic disconnect between the
owner of the machine (the vending company) and the payer
of the electrical bill (the building manager). The vending
company is not incentivized to improve the energy effi-
ciency of their equipment since they do not pay for the
energy consumption. Also, no Energy Star rating is cur-
rently established for soda vending machines, although
there is some movement to establish one.[3]

Refrigerated devices have gained significant interest for
dynamic demand management in the power utility sector
as these devices are viewed as a flexible, energy storage
resource. Refrigerated systems can help stabilize power
demand fluctuations in the grid by advancing or retard-
ing their cooling cycles while still staying within a desired
temperature band. Large thermal ballasts inside the refriger-
ated areas help to keep the temperature more stable during
periods when it may be desirable to turn off the compressor
for grid-related reasons.[1]

While these special "ancillary” services for reliability
management are of interest for all thermostatically con-
trolled loads, soda vending machines are of unique interest
because soda has a much wider, acceptable temperature
range. While most commercial refrigeration units must
keep perishables below 40°F, soda has no storage tempera-
ture restriction except to serve the product acceptably cold
the moment it is sold. Currently, vending machines operate
to keep soda cold at all times in case someone wants to pur-
chase one. The energy consumption of vending machines
can be significantly reduced by regulating the compressor
based on a thermal model of the vending machine and soda
demand throughout the day.

II. TeEcHNICAL DESCRIPTION

1. Testbed and Data Acquisition

The testbed for this project consists of a mini-fridge, an
Arduino microcontroller, four temperature sensors, and one
current sensor connected to the fridge compressor (Figure
[2). The temperature sensors measure the main refrigerator
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Figure 1: Refrigerator Energy Use Over Time [3]

compartment temperature, soda bottle temperature, water
bottle temperature, and ambient room temperature. The
microcontroller also controls the actuation of the refrigera-
tor compressor, receiving commands to maintain a setpoint
temperature within the bounds of a specified deadband
width. In order to better simulate a well-mixed environ-
ment such as in a commercial vending machine, a fan was
added inside the fridge cavity.

The microcontroller performs two main functions: tem-
perature data logging and deadband control. The temper-
ature readings from each sensor are logged at one-minute
intervals and stored on a memory card for later analysis. In
order to adapt this model to a commercial machine, a sepa-
rate temperature data set would need to be acquired from
a test unit and analyzed. However, this setup can serve as
a proof of concept for these methods. Only in this test ma-
chine is there a need for more than one sensor; a commercial
unit would only monitor the fridge temperature.

Deadband control is also performed by the microcon-
troller, keeping the fridge temperature within a certain
bounds. The target setpoint is programmable on an hourly
basis for a 24-hour period. This setpoint schedule would
eventually be used in a commercial unit, possibly receiving

daily values from a remote server. During our test phase,
this schedule was adjusted several times to collect a range
of data for more accurate results.

2.  Nomenclature

Cs = Thermal Capacitance of Soda
Cs = Thermal Capacitance of Refrigerator Air
Rs = Thermal Resistance of Soda Container
Ry = Thermal Resistance of Refrigerator Wall
Q¢ = Compressor Heat Power

Ts = Temperature of Soda
Ty = Temperature of Refrigerator Air
To = Temperature of Ambient Air

s = Compressor State (1 = On, 0 = Off)

e = Rate Schedule for Electric Power

¢ = Carbon Intensity of Electric Power

A = Cost Function Weighting Factor

P = Power Consumption of Compressor
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Figure 2: Data Acquisition Equipment

3. Modeling

The modeling objective is to understand how the soda tem-
perature behaves given the temperature of the refrigerator
which is influenced by ambient temperature and refrigera-
tor compressor. The temperature dynamics of the soda and
refrigerator is governed by the heat transfer between the
soda, refrigerator air, ambient air outside the refrigerator,
and heat removed by the compressor. Mathematically, the
refrigerator and soda temperature evolve according to the
following equations:

dTs 1

Csﬁ = E(Ts(t) - Tf(t)) 1)
dr

gt = (B0 - TH0) @

1

—I—RS

(Ts(8) = T¢(£)) + Qes(t)

The states, Ts; and Ty, are to be estimated given the
uncontrollable input, T,, and controllable input, s. The un-
known parameters of this model are C;, C fr Rs, R fr Q¢ and
assumed to be independent.

4. Parameter Estimation and Results

The target states evolve according to the following equa-
tions:

1 1
: — 3
X R.C, x1 R.C. X 3)
1 1
X R;C; uq R;C; X2 4)

PR S S
RsCy RsCy Cy

Where x; and x; are the soda and referigerator states
respectively and u; and u; are the ambient temperature and
compressor state inputs respectively.

With the following parameter assignments, equations
3 and 4 can be arranged in the following matrix form in
preparation for identification:

1 1 1 _ Qe
P=Re, "TRG PTRC PTG
. X1 — X2
0 0
2]l 3R]
2 pr p2 Pp3 iy
or
z(t) = 079 (6)

From equation 6, the normalized recursive gradient up-
date law is applied to identify parameters.
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0(t) =Tog(t)e’ (t) 7)
0(0) = by
z(t) — 6Tp(t)
) === ®)
m*(t) =1+ ¢ ()g(t) 9)

Where the update gain, I', is a non-negative matrix of the
same size as 0, €(t) is the normalized prediction error, and
m?(t) is the normalization signal. The Hadamard product
is denoted by o, which is an element-wise multiplication of
two matrices of the same size. The update gain matrix is
adjusted to have appropriate gain for each corresponding
parameter estimate in the § matrix.

Soda temperature, refrigerator temperature, ambient
temperature, and current (which was used to determine
compressor state) was measured from the test bed at one
minute intervals for one week. Two different control
schemes were tested during the week as seen in the one
day examples in Figure|3| The first control scheme was a
standard, refrigerator temperature control scheme based on
a fixed set point temperature and dead-band. The second
control scheme involved deactivating the compressor for an
extended period of time then implementing rapid cooling
to simulate a potential, overnight vending machine control
strategy.

The recursive gradient update law was implemented
in Python, and the parameter values converged quickly to
steady state values as seen in Table

5. State Estimation and Results

Although our test bed is capable of measuring soda tem-
perature, vending machines do not typically measure this
state. In order to emulate this limitation, the soda temper-
ature is estimated using our thermodynamic state space
system with the identified parameters, process noise w(t),
and sensor noise n(t):

= el
X P11 —P1— P2 X2

+[O OHul}ﬂu (10)
p2 P3 U

x =0 1]{2]4—71 (11)

or

X(t) = Ax(t) + Bu(t) + w(t) (12)
ym() = Cx(t) + n(t) (13)

The noise terms are assumed to be Gaussian around a
zero mean with covariances W and N for processor and
sensor noise respectively. N is additionally assumed to be
positive definite.

The states of our linear, thermodynamic system are esti-
mated using the Kalman filter algorithm:

%= A%(t) + Bu(t) + L(t)(ym — C%) (14)

£(0) = %o

L(t) = Z(H)C(H)N"L, vt >0 (15)

X(t) = Z(H)AT + AX(t) + W (16)
—2(HCTN~ICE(b) (17)

2(0) =X

Equation 15 is the observer gain of the system, and equa-
tion 16 is the Riccati differential equation that solves for
().

The Kalman Filter algorithm was implemented in
Python, and the soda temperature state was estimated over
refrigerator temperature, ambient temperature, and current
measurements taken over a span of 4 days. These mea-
surements are different than the data used for parameter
identification. Soda temperature was also measured but
was not used as feedback in the Kalman Filter algorithm.
The soda temperature measurements are used to evaluate
the estimation error as seen in Figure

6. Model Discretization

In preparation for the optimization program, equation 12,
which is continuous in the time domain, is discretized using
the exponentiation formulation. [2]

s

Where At is 1 minute, the desired timestep of the
discrete-time equations, and A, and B; are the discretized
matrices of A and B respectively. Using the parameters
identified in Table |1} equation 12 is discretized as follows:

0 I

Ui
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Figure 3: Compressor and Ambient Temperature Inputs (Left: Custom Control, Right: Normal Control)
Table 1: Parameter Estimates
Parameters
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Figure 5: Left: State Estimation Results, Right: Input States)

N-1
min (Ac(k) + (1 —A)e(k))Ps(k)  (22)
Ts (k + 1) = Ad,ll Ts (k) + Ad,lZTf (k) (18) s(k), Tr(k), Ts (k) 1=
Tr(k+1) = Ago1Ts(k) + Ag2 Ty (k) 19) Subject to:
+ By To (k) + Bypos(k) Ts(k+1) = Ag1 Ts(k) + Ag 12Ty (k) (23)
A [099 0010 20) Tr(k+1) = Aan Ts(k) + Ag22Tr (k) (24)
disc = 10,005  0.993 + By 21 To (k) + By p05(k)
~ [100x107° —7.76 x 1074 Ty minon < Ts(i) < Tsmaxon (25)
Biise = 1206 x 103 ~159 x 10! @ o N<T
’ ’ Ts,min,off <Ts (]) < Ts,max,off (26)
T¢(0) = Ty, 27)
Ts (0) - Ts,o (28)
0<s(k—5)+s(k—4)+s(k—3) (29)
7. Optimization Problem +s(k—2) —4s(k—1) +5s(k) <5
s(k) = [0,1] (30)
Assuming soda beverage demand is particular to the time of
. . . . Vk=0,..,N—1
day, vending machines can leverage this consumer behavior ‘ R
to optimize refrigeration of their soda beverages. Namely, i €k=10am,..., 4pm
vending machines can chill their contents at certain times of j€k=4pm,..10am
the day in order to minimize the cost of electricity and emis-
sions of carbon dioxide (CO;) while dispensing the soda Equation 22 describes the minimization of the normal-

beverage at the appropriate temperature. This refrigeration  ized sum of electricity cost and associated carbon emission
operation optimization can be mathematically constructed over the time period, N — 1. The relative importance of
with the following formulation: electricity cost and carbon emissions can be adjusted with A.
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Figure 6: Optimal Control Results: Left A = 0.2, Right A = 0.8

A A value of 0 indicates full electricity cost influence, and a
A value of 1 indicates full carbon emission influence. The
refrigerator compressor is assumed to draw 0.1kW while
operating.

The optimization is constrained by the discretized model
of soda and refrigerator dynamics (23 & 24) with initial con-
ditions 27 and 28. The inequalities 25 and 26 implement a
simple scheme to integrate consumer behavior into refrig-
eration operation. If the time step corresponds to the time
period between 10am and 4pm, soda temperature is con-
strained to a dispensable soda temperature range, 0°C - 5°C
(25). Outside this time period, soda temperature can float in
a wider temperature range, 0°C - 15°C (26). Additionally, to
avoid rapid on-and-off cycling of the compressor, inequality
29 ensures that the compressor state does not change more
than once in any 5 minute period. The mathematical formu-
lation of this constraint is accomplished through creating a
separate variable, int, which has the following property:

5, ifsg_y=0and s, =1
if Sk—1 = 1 and Sk = 0 (31)
0, else

inty =< =5,

We can accomplish this with the formula:
inty = —5s;_1 + 5s¢ (32)
This variable is only non-zero during the timestep when

the compressor turns on or off. This variable in conjunc-
tion with the last 5 states of the compressor creates two
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inequality constraints:
k=5
0<intp+ Y s <5 (33)
i=k—1

The key to this method is that the constraints will fail only
at the timestep where the compressor decides to change
state, if all the previous timesteps are not the same value.
Since these constraints must be valid for all timesteps, then
this will limit our compressor cycles to a minimum of 5
minutes. Equations [32| and [33| can be substituted to form
inequality 29| This method can easily be adapted to work
for other minimum cycle lengths.

This Mixed Integer Linear Program (MILP) can be suc-
cinctly summarrized as follows:

min f Tx (34)
Subject to:

Ax <b (35)
Aegx = beg (36)
Vs € x ={0,1} 37)

Where f is a vector that contains the carbon and elec-
tricity costs for all time steps, x is a vector that contains the
decision states, Ts(k), Tf(k), s(k), and A, B, Ay, Beg are ma-
trices that describe the inequality and equality constraints.
The MILP is solved using the open source lpsolve package
with Python.

The electricity rate schedule is based on Pacific Gas and
Electric’s (PGE) A6: "Small General Time of Use" summer
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rate schedule. Electricity rates are converted to a per kW
basis in the optimization problem by adjusting the values
by the 1 minute sampling rate of the test bed.

Peak $0.61173/kWh | 12:00pm-6:00pm
Part Peak | $0.28551/kWh | 8:30am-12:00pm
6:00pm-9:30pm
Off Peak | $0.15804/kWh | 9:30pm-8:30am

A carbon emissions forecast is queried from the Watt-
Time Impact API for the California ISO region, and an
ambient temperature forecast is queried by the Weather
Underground APIL The MILP is simulated 36 hours into the
future. If the carbon emission forecast is not available for
the entire time horizon, the last value is sustained until the
end of the program.

III. REesuLts

Figure [6| demonstrates optimal refrigeration control with
a 20% carbon emission, 80% electricity cost influence and
vice versa. When A = 0.2 (20% carbon emission influence),
the compressor operates for a longer duration in the early
morning to chill the soda in order to avoid compressor us-
age during peak hours. The total simulated energy cost and
CO; emissions for this optimization are $0.06 and 0.28 Ibs
respectively. When A = 0.8 (80% carbon emission influence).
The compressor turns on as needed while maintaining the
soda temperature closer to its maximum allowed value.
The total simulated energy cost and CO; emissions for this
optimization are $0.07 and 0.27 Ibs respectively. Figure [/]
illustrates the total, simulated range of carbon emissions
and electricity costs for the range of weighting schemes.

In California, the carbon intensity of electricity is fairly
constant around 0.9 Ib CO,/kWh, providing little variance
in carbon-based compressor optimization. In other ISO
operating regions, carbon intensities may have more vari-
ance and provide more unique results for carbon-based
compressor optimization.
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Figure 7: Total Range of Carbon Emissions and Electricity Costs

IV. SuMMARY

The current operation of soda vending machines can realize
significant reductions in energy costs and CO; emissions
by integrating information about when consumers access
these machines. Current vending machine operation contin-
ually and unnecessarily chills non-perishable sodas during
periods of low to no demand, creating an opportunity for
energy and cost savings. A thermodynamic, state space
model was created by gathering data from a refrigerator,
a proxy to a vending machine, in order to understand the
temperature dynamics of the sodas when the refrigerator
compressor is running or is idling. Using a soda demand
schedule of 6 hours per day, our models show up to a 68%
reduction in electricity costs and up to 50% reduction in car-
bon footprint as compared to the reference models. These
values represent a significant increase in efficiency with-
out any additional thermal or mechanical changes. Scaling
these gains up to a typical commercial unit that draws on
average 7kWh/day would see savings of about $650 and
1100 pounds of CO, per year for a single machine. If an
Energy Star rating system was created for commercial vend-
ing machines similar to that which applies to consumer
appliances, legislative pressure could realize large gains in
efficiency for these units. Although this application is only
a small sector of overall demand, the same optimizations
could be applied to a wider range of appliances that would
make them more responsive to both demand of service and
electricity costs.
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