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Abstract—The era of fully autonomous, electrified taxi fleets is
rapidly approaching, and with it the opportunity to innovate myr-
iad on-demand services that extend beyond the realm of human
mobility. This project envisions a future where autonomous EV
fleets can be dispatched as both as a taxi service and a source of
on-demand power serving customers during power outages. We
develop a PDE-based scheme to manage the optimal dispatch
of an autonomous fleet to serve passengers and electric power
demand during outages as an additional stream of revenue. We
use real world power outage and taxi data from San Francisco
for our case study, modeling the optimal dispatch of several fleet
sizes over the course of one day; we examine both moderate
and extreme outage scenarios. In the moderate scenario, the
revenue earned serving power demand is negligible compared
with revenue earned serving passenger trips. In the extreme
scenario, supplying power accounts for between $1 and $2 million,
amounting to between 32% and 40% more revenue than is
earned serving mobility only, depending on fleet size. While the
overall value of providing on-demand power depends on the
frequency and severity of power outages, our results show that
serving power demand during large-scale outages can provide a
substantial value stream, comparable to the value to be earned
providing grid services.

I. INTRODUCTION

A. Motivation and Background

Fully autonomous plug-in electric vehicles (PEVs) have
tremendous potential to change the future of mobility. In
particular, fleets of autonomous vehicles providing on-demand
mobility services will likely play a major role in transportation
systems [1]. While the impact of these changes on travel
demand is uncertain, it is clear that safety, energy efficiency,
and cost of travel will be substantially improved in the future.
It is also clear that autonomous on-demand fleets of PEVs
will require continued innovation in methods for systems
optimization and control.

Autonomous PEV fleets could play an important role in
providing flexibility services to the future electric grid. Another
potential source of ancillary value provided by these vehicles
is supplying electricity to buildings during power outages,
when occupants are willing to pay more for energy to avoid
damages associated with lack of electric service. The current
work examines the additional revenue attained by a fleet of
autonomous electric vehicles providing both a mobility-on-
demand service and backup power during outages.

B. Relevant Literature
The current personal vehicle ownership paradigm involves

gross under-utilization of vehicles, as personal vehicles sit
idle for most of the day. This under-utilization makes grid-
connected PEV batteries an excellent source of load flexibility
by charging or discharging as needed while vehicles are not in
use. Numerous studies examine the capabilities [2], [3], [4],
[5] and economics [6], [7], [4] of using electric vehicles to
provide grid services. However, Sheppard and Bae conclude
that privately owned vehicles can earn only about $100 per
year (on average) providing ancillary services [7].

Furthermore, technology development and gradual deploy-
ment of semi-autonomous safety features suggest that the
future of transportation is autonomous. Once autonomous
vehicles are deployed at scale, the current paradigm of personal
vehicle ownership is likely to change [1]. Although a right-
sized, autonomous, commercially operated fleet is likely to be
much less flexible than privately owned vehicles, centralized
control can increase the magnitude and reliability of aggregate
response when price signals for battery charging or discharging
are adequate.

C. Focus of this Study
We propose a PDE-based approach, described in [2], to

simulate the optimal dispatch of autonomous on-demand PEVs
serving time varying, spatially distributed demand for trips
and backup power. The fleet is dispatched to maximize profit
earned from serving both trips and power. The revenue earned
for each trip serviced or kWh provided depends on the origin
and destination of the trip, and the location of the power
outage. We consider several fleet sizes, examining differences
in vehicle dispatch, state of charge, revenue earned, and
unserved demand for trips/power. Key contributions of this
work include the geospatial modeling of vehicle mobility,
charging & discharging, and inclusion of backup power as an
ancillary revenue stream.

II. TECHNICAL DESCRIPTION

A. Modeling Aggregations of Autonomous Electric Vehicles
We adopt and extend the scheme developed by [2] for

tracking and controlling an aggregation of electric vehicles.
The core advantage of the scheme is the recognition that in an
autonomous PEV fleet, only the location of vehicles and their
state of charge are critical to know at any point in time. Instead
of representing individual vehicles explicitly and developing a
combinatorial approach to control, we aggregate all vehicles in
a node and represent the aggregate distribution of vehicle state
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TABLE I. NOMENCLATURE

Symbol Description
x PEV Battery SOE (dx = 0.2)
t Time (dt = 10min)
Nn Number of nodes (3)
Nb Number of spatial bins
Emax Battery energy capacity (10kWh)
η Power conversion efficiency during charging (0.86) [8]
ui(x, t) Density of charging PEVs in node i
vi(x, t) Density of idle PEVs in node i
wi(x, t) Density of discharging PEVs in node i
σIi→Ci

(x, t) Flow of PEVs in node i from Idle to Charging
σIi→Di

(x, t) Flow of PEVs in node i from Idle to Discharging
σo
Ii→Ij

(x, t) Flow of PEVs from Idle state of node i to Idle state of node j
without passengers

σ′
Ii→Ij

(x, t) Flow of PEVs from Idle state of node i to Idle state of node j with
passengers

qC(x, t) Instantaneous charging power
qD(x, t) Instantaneous discharging power
Z Set of Transportation Network Nodes (I, II, IV)
T Time horizon of the optimization (50min)
ρdis(i) Price of servicing load during power outages by node($/kWh)
ρmob(i, j) Price of servicing mobility demand from node i to node j

($/trip/minute)

of energy (SOE). Vehicles in any node i can be in one of three
states: charging, idle, or discharging, which we represent by the
state variables ui(x, t), vi(x, t), and wi(x, t), respectively. The
system is then characterized by the following coupled partial
differential equations (see Table I for further nomenclature):

∂ui
∂t

(x, t) = − ∂

∂x
[qC(x)ui(x, t)] + σIi→Ci(x, t)

∂vi
∂t

(x, t) =
∑
j∈Z

[
σ′Ii←Ij (x, t) + σoIi←Ij (x, t)

−σ′Ii→Ij (x, t)− σoIi→Ij (x, t)
]

− σIi→Ci
(x, t)− σIi→Di

(x, t)
∂wi
∂t

(x, t) = − ∂

∂x
[qD(x)wi(x, t)] + σIi→Di

(x, t)

Where:

qC(x) =
7

Emax
η

1

60

qD(x) =
−7

Emax

1

60

The equations make use of an advection term (when the
time derivative is linearly related to the spatial derivative)
to represent how SOE changes over time for vehicles in the
charging or discharging states, with SOE advecting toward 1
or 0, respectively. The model is spatially disaggregated, so the
three PDEs are repeated for every node in the system and
indexed by i.

Flow terms σIi→Ci
(x, t) and σIi→Di

(x, t) capture the trans-
port of vehicles between the three distributions within each
node. Additional flow terms capture transport between the Idle
curves of distinct nodes. For a given node i and any other

node j, four separate terms are used to represent trips with
and without passengers (σ′ and σo respectively) and departing
trips versus arriving trips (σIi→Ij and σIj←Ii respectively).

The inter-nodal flow terms are then constrained through the
optimization scheme such that departures from a node i to
node j are equivalent to the arrivals of vehicles from i to j
at a future time and with a lower SOE, corresponding to the
travel time and energy requirements of that trip. The distinction
between trips with and without passengers becomes critical in
the context of the economic optimization that places monetary
value on transporting people over moving empty vehicles.

B. Optimization Formulation
1) Objective: The objective of the optimization is to max-

imize the operational profit of dispatching the fleet of au-
tonomous on-demand PEVs:

max
σIi→Ci
σIi→Di
σIi→Ij

K =
∑
i∈Z

∫ T

t=0

[
ρdis(i)

60
Qdis,i(t)+

∑
j∈Z

ρmob(i, j)Qmob,i,j(t)−
C

60
Qch,i(t)

 dt
Qdis,i(t) =

∫ 1

0

7wi(x, t)dx

Qch,i(t) =

∫ 1

0

7ui(x, t)dx

Qmob,i,j(t) =

∫ 1

0

(
σ′Ii→Ij (x, t)

)
dx

Where ρmob(i, j), ρdis(i), and C are the fares charged to
passengers, the price charged to serve load during outages,
and the cost to purchase electricity from the grid, respectively.
The constant 60 converts kWh to kW-minutes and the constant
7 is the charging and discharging rate of each vehicle.

2) Constraints: The equations of state are discretized using
a first-order upwind scheme for numerically solving hyperbolic
PDEs. They appear in the formulation as a set of equality
constraints. In addition to the equations of state there are other
constraints on the flows which we use to enforce realistic trans-
port between nodes and the overall conservation of vehicles in
the system.

Firstly, we constrain the size of the flows between states u,
v, and w to be no greater than the number of vehicles in those
states:

−σIi→Ci
(x, t) ≤ ui(x, t)/∆t

{σIi→Ci(x, t) + σIi→Di(x, t)

+σ′Ii→Ij (x, t) + σoIi→Ij (x, t)

−σ′Ii←Ij (x, t)− σoIi←Ij (x, t)
}
≤ vi(x, t)/∆t

−σIi→Di
(x, t) ≤ wi(x, t)/∆t

We also require that as charging vehicles reach an SOE of 1 or
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as discharging vehicles reach an SOE of 0, they immediately
flow to the Idle state.

−σIi→Ci
(1, t) = ui(1, t)/∆t

−σIi→Di(0, t) = wi(0, t)/∆t

Next, we require that trips be conserved between origin-
destination pairs, where arrivals are shifted to a later time step
and a lower SOE, based on the time (∆t) and energy (∆x)
requirements of the trip.

σ′Ii→Ij (x, t) = σ′Ij←Ii(x−∆xi,j , t+ ∆ti,j)

σoIi→Ij (x, t) = σoIj←Ii(x−∆xi,j , t+ ∆ti,j)

{(i, j) ∈ Z× Z}

The values of ∆x and ∆t for each node (I, II and IV) are
derived empirically based on real San Francisco taxi fare
data collected over the course of a month in June 2012. We
assume a decline in personal vehicle ownership accompanies
deployment of autonomous vehicles. We account for increasing
reliance on mobility-on-demand services by scaling travel
demand by a factor of 10 relative to 2012. We averaged the
measured trip durations and trip distances for trips from each
node i to each node j, scaling the average distance by 5.05
km/kWh to derive ∆xi,j and taking the average time as ∆ti,j .
The derived values are shown in Table II.

TABLE II. FLOW CONSTRAINTS

Node Flows (i → j) Derived ∆x (kWh) Derived ∆t (s)
I→I 0.42 476
I→II 0.82 792
I→IV 0.93 1000
II→I 0.84 760
II→II 0.38 489
II→IV 0.77 698
IV→I 0.93 956
IV→II 0.77 725
IV→IV 0.37 403

Vehicle dispatch is constrained such that the number of
vehicles servicing passenger trips or power demand cannot
exceed mobility and power demand at that time step.

Qdis,i(t) ≤ Ddis,i(t)

Qmob,i,j(t) ≤ Dmob,i,j(t)

The demands Ddis,i and Dmob,i,j are exogenously defined;
derivation of Ddis,i is described below. The choice of inequal-
ity constraints when constraining Qdis,i and Qmob,i,j serves
three purposes: 1) it allows the solution of the optimization
to prioritize between serving the two types of demand; 2) it
enables simulations where the fleet of vehicles is not sized
to meet the peak demand in the system; and 3) it allows the
system to be used in an application where power outages occur
spontanteously and without foresight.

Finally, we require that the vehicles have sufficient state of
energy to make trips:

σ′Ii→Ij (x, t) = 0, x < ∆xi,j

σoIi→Ij (x, t) = 0, x < ∆xi,j

C. Application
1) Spatial Discretization: We have divided the City of San

Francisco, CA into a highly simplified 4-zone, equal-area
network (Figure 1). As described above, we analyzed taxi
data to characterize the constraints realted to mobility and the
prices used in the objective. Below we describe how power
outages are characterized from real world data. We observe
very little demand for mobility and few outages in Node III;
due to additional computational complexity of modeling a four
node system, we exclude Node III from the current analysis.

Fig. 1. We divide San Francisco into 4 equal-area nodes. Origins and
destinations of taxi trips over one month (June 2012) are plotted as red dots.

2) Demand for Backup Power: We estimate the magnitude
and location of power outages using real outage data collected
from the Pacific Gas & Electric Company website. These
data report the number and spatial distribution of outages
in the region; we aggregate outages spatially by node. We
estimate the magnitude of unserved load based on the number
of customers affected, expected distribution by customer type
(i.e., residential, commercial, industrial), and average power
demand by customer type (as reported in EIA form 861). We
use local population and economic census data to estimate
the distribution of customer types affected by outages in each
node.

We examine two days of outage data, including one extreme
outage scenario (December 31, 2014) and one moderate outage
scenario (September 29, 2014). Figure 2 shows the estimated
power demand at each node for both scenarios. We highlight
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that demand in the Extreme outage scenario exceeds demand
in the Moderate outage scenario by two orders of magnitude.

Fig. 2. Power demand at each node (I, II, IV) in the Moderate (left)
and Extreme (right) outage scenarios, reprsented by September 29, 2014 and
December 31, 2014, respectively. For readability, demand is presented in kWh
in the Moderate scenario, and in MWh in the Extreme scenario.

Finally, we estimate the value of providing backup power on
demand. To do so, we compute the cost of damages incurred
due to outages in each node for both outage scenarios using the
ICE Calculator [9], a tool commonly used by electric utilities
to estimate the economic benefits of measures to improve
reliability. Inputs for the damage calculations include: time
of day/year, the type and size of the affected customers, and
the duration of the outage. Table III gives the estimated value
of backup power in each node for the two outage scenarios
in $ per unit energy delivered (kWh) and $ per time step
(10 minutes). Although power demand is much higher in the
Extreme outages scenario, the cost per kWh is greater in the
Moderate outages scenario.

TABLE III. COST OF POWER OUTAGES IN EACH NODE FOR EXTREME
AND MODERATE OUTAGE SCENARIOS PER KWH DELIVERED, AND PER

TIME STEP (10 MINUTES).

Node (i) Extreme Moderate
($/kWh) ($/time step) ($/kWh) ($/time step)

I 20 23 14 16
II 9 11 32 37
IV 15 18 46 54

For comparison, Table IV lists the fares associated with
passenger trips to and from each node in terms of dollars
per unit energy consumed (or $ per time step). These fares
are empirically derived from the San Francisco taxi data. The
value earned per kWh serving passenger trips is remarkably

similar to the value earned per kWh of power demand served.

TABLE IV. COST OF PASSENGER TRIPS PER UNIT ENERGY AND PER
UNIT TIME FOR EACH ORIGIN-DESTINATION PAIR.

Origin Destination Cost
$/kWh $/time step

I I 25 11
I II 19 8
I IV 20 9
II I 18 8
II II 26 10
II IV 19 7
IV I 20 9
IV II 19 7
IV IV 24 9

III. RESULTS

We present simulation results for the two outage scenarios
with various fleet sizes, including 7,500, 10,000 and 15,000 ve-
hicles for the Moderate outage scenario, and 7,500, 15,000 and
40,000 vehicles for the Extreme outage scenario. The following
sections detail the results. We highlight the revenue earned in
different scenarios, and differences in dispatch among different
fleet sizes.

A. Revenue
Figure 3 presents the revenue earned in each scenario by

the entire fleet and per vehicle. Contributors to overall revenue
include: the cost to charge (G2V), revenue earned serving trips
(Trips), and revenue earned serving power demand (V2B). The
total revenue earned (Total) in each scenario and maximum
possible revenue (Max) are also shown. The maximum possible
revenue includes servicing all passenger trips and all power
demand, with no charing costs.

Charging costs are almost negligible compared with the
revenue earned because the cost of charging (0.25 $/kWh) is
small compared with the revenue earned serving power and
trip demand (see Tables III and IV).

Next we consider the revenue earned at each node serving
power and mobility demand in the Extreme outages scenario,
shown in Figure 4. Very little revenue is earned at Node
I; this is attributable to limited demand for trips and low
power demand. Nodes II and IV have higher demand for
passenger trips, and experience power outages in the afternoon
and morning, respectively.

The revenue peaks at Nodes II and IV, coincide with the
power outages at those nodes (see Figure 2). At Node II,
the revenue earned per unit time serving power demand ($11
per 10 minute interval) is marginally higher than the revenue
earned per unit time serving passenger trips. Trips are primarily
within node II, and provide $10 per 10 minute interval. Thus
there is only a marginal increase in revenue for the 7,500
vehicle fleet during the outage at Node II. We do see a
significant increase in revenue during the same outage in the
over-sized fleets (15,000 and 40,000 vehicles). At Node IV, the
revenue earned serving power demand is $18 per 10 minute
interval, which is considerably more than the revenue to be
earned serving passenger trips.
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Fig. 3. Revenue earned by entire fleet (left) and per vehicle (right) in the
Moderate (top) and Extreme (bottom) outage scenarios. Revenue components
include: cost to charge (G2V), revenue earned serving passenger trips (Trips),
and revenue earned serving power demand (V2B). The total revenue (Total)
and maximum possible revenue (Max) are also shown.

N/A - Excluded from Optimization

Fig. 4. Revenue earned at each node serving power and mobility demand in
the Extreme outages scenario with 7,500, 15,000 and 40,000 vehicle fleets.

B. Fleet Size and Vehicle Dispatch
Next we consider the benefits and drawbacks of different

fleet sizes. Nearly all demand for mobility and power can be
served with a 40,000 vehicle fleet in the Extreme scenario, and
a 15,000 vehicle fleet in the Moderate scneario. Figures 5 and
6 show the number of vehicles in each state in the Extreme out-
ages scenario with 40,000 and 7500 vehicles. States include:
in transit with and without passengers, charging, discharging,
and idle.
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Fig. 5. Number of vehicles in each state at each time step in the Extreme
outages scenario with a 40,000 vehicle fleet. States include: in transit with
and without passengers, charging, discharging, and idle.
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Fig. 6. Number of vehicles in each state at each time step in the Extreme
outages scenario with a 7500 vehicle fleet. States include: in transit with and
without passengers, charging, discharging, and idle.

Figure 5 reveals that a 40,000 vehicle fleet spends most of
the simulation in the idle state; the fleet is only fully utilized
between 800 and 900 seconds when power demand peaks.
Low revenue per vehicle in Figure 3 provides further evidence
that the 40,000 vehicle fleet is under-utilized. On the other
hand, the 7,500 vehicle fleet in Figure 6 earns less revenue
overall, but spends very little time in the idle state. In fact,
the vehicles spend more time charging than in any other state;
faster charging infrastructure would increase fleet utilization,
and should be evaluated as an alternative to increasing the fleet
size.

In Figure 4, the 7,500 vehicle fleet earns less revenue at
Node II than the larger fleets for almost the entire simulation.
This result suggests that the 7,500 vehicle fleet is under-sized.
Figure 7 shows the dispatch of a 15,000 vehicle fleet serving
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mobility only in the Moderate outages scenario. The results
indicate that with charging constraints, upwards of 15,000
vehicles are needed to meet all of the demand for mobility.
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Fig. 7. Number of vehicles in each state at each time step in the Moderate
outages scenario with a 15,000 vehicle fleet. States include: in transit with
and without passengers, charging, discharging, and idle.

IV. DISCUSSION

The fundamental question underlying the current work is
whether on-demand backup power provides a substantial value
stream for the fleet. To answer that question, we must consider
the relative frequency of Extreme and Moderate outage days,
and the marginal increase in revenue associated with serving
power demand in addition to passenger trips.

We consider several scenarios for the number of Extreme
verses Moderate outage days in a year. We then compute
the marginal annual revenue earned serving both power and
mobility demand, compared with serving mobility only. We
treat the Moderate outages scenario as a mobility-only case,
as the revenue earned serving power demand in that scenario
is negligible.

We calculate the marginal revenue earned serving power
demand by taking the difference between a year with Extreme
outages and a year with only Moderate outages for equivalent
fleet sizes. The results, summarized in Table V, suggest that
fleet operators can earn $1,400-$3,400 (or ∼1-3%) more
revenue per vehicle per year serving power demand during
outages, depending on fleet size and the number of major
power outages.

TABLE V. INCREASE IN ANNUAL REVENUE FROM SERVING
POWER DEMAND IN ADDITION TO MOBILITY FOR 7,500 AND 15,000

VEHICLE FLEETS WITH A RANGE OF SCENARIOS REGARDING THE
NUMBER OF EXTREME OUTAGE DAYS IN THE YEAR.

Extreme
Days

New Revenue ($/year/vehicle) Percent Increase (%)
7,500 15,000 7,500 15,000

10 1400 2000 0.9 1.6
12 1700 2300 1.0 1.8
14 2000 2600 1.2 2.0
16∗ 2200 2800 1.4 2.2
18 2500 3100 1.5 2.4
20 2800 3400 1.7 2.6
∗ Actual number of days with major power outages in the Pacific Gas

and Electric Company service territory in 2014 [10].
These results are sensitive to numerous assumptions in our

analysis, including but not limited to: outage cost, outage

frequency/duration, vehicle battery size, battery discharge rate,
optimization window, and foresight into demand for power and
passenger trips.

A. State of Energy
Figure 8 shows the aggregate SOE of the fleet with respect

to time for the various fleet sizes and outage scenarios. We
initialize the fleet with an aggregate SOE of 0.5. For all fleet
sizes, the aggregate SOE then drops to below 5% before any
charging occurs. Figures 5 and 6 show that charging begins
at about 250 and 50 minutes for the 40,000 and 7,500 vehicle
fleets, respectively. The entire fleet operates at a very low SOE,
cycling out of charging before vehicles reach full SOE.

The fleet operates at a low SOE because the current model
dispatches the fleet based on a planning horizon of only 50
minutes. We assume no knowledge of demand for trips or
power more than 50 minutes ahead of time, and assign no
penalty for entering the next planning horizon with low SOE.
Thus the fleet is dispatched to maximize profit within each
50 minute window, and vehicles spend only as much time
charging as is needed to serve near-term demand for trips
and power. Furthermore, when vehicles are not needed or
have insufficient charge to meet demand within the planning
horizon, charging is less cost effective than remaining idle (at
zero cost) with low SOE.

Future work will examine more realistic assumptions around
vehicle charing. Examples could include a penalty for failing
to achieve some minimum SOE at the end of each planning
horizon, or a fee charged upon entry into the charging state,
incentivizng vehicles to charge until reaching full SOE.

Fig. 8. Aggregate fleet state of charge over time for 7,500, 10,000, and
15,000 vehicle fleets in the Moderate outages scenario and 7,500, 15,000 and
40,000 vehicle fleets in the Extreme outages scenario.

V. SUMMARY

We demonstrate a method for simulating a fleet of au-
tonomous PEVs in San Francisco dispatched to serve mobility
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and electricity demand during power outages throughout the
city. We use a PDE-based approach to model the aggregate
state of energy of the fleet as vehicles charge, discharge, and
travel throughout the system. We optimize vehicle dispatch
over a 50 minute planning horizon, assuming perfect foresight
into both mobility and power demand within that time frame.
We consider two outage scenarios, including both Moderate
and Extreme outages based on real outage data for San Fran-
cisco. Finally, we compute the revenue earned in each scenario
with various fleet sizes, ranging from 7,500 to 40,000 vehicles.
We find that serving power demand increases fleet revenue
by $1,400-$3,400 per vehicle, or 30-40%, in the Extreme
outages scenario. Given that power outages are rare, these
results translate to ∼1-3% more revenue per year, depending
on the number of major power outages in a year.
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