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Abstract

Batteries will play a major role in the future of the electric grid to address demand
constraints, replace traditional grid capacity infrastructure, promote the penetration
of intermittent renewable generation, and increase grid reliability flexibility, and re-
siliency. Currently, batteries are an expensive technology to provide energy storage
services. We conduct a case study on numerous building loads on the University of
California, Berkeley campus using Pacific Gas & Electric’s commercial time-varying
tariff, E-19S, and market-based battery pricing based on Tesla’s Powerpack. A linear
program was developed to optimize battery sizing and operation based on time-varying
electricity tariffs and market-based battery costs. Implementation of the program in
Python using the Pyomo open-source optimization package and the GLPK solver was
efficient and results show that large-scale commercial buildings can generate positive
net savings, as high as 26.5%, with optimally sized batteries and operation. The bulk
of the savings come from peak demand shaving, with reductions of up to 61% on pre-
optimization demand costs. Energy pricing arbitrage using the battery, in contrast,
generates reductions of up to 15% of the pre-optimized energy costs. Future work
can incorporate other revenue streams generated from energy storage services, such as
ancillary services, resource adequacy, critical load backup, and utility dispatch.

1 Introduction

1.1 Motivation and Background

A changing grid. The electric grid is in a state of transition, both in terms of financial and
physical topology. The traditionally centralized, unidirectional grid structure is becoming
increasingly distributed and meshed in nature. Aggregation of distributed energy resources
(DERs) and operation as virtual power plants (VPPs) is expected to make the grid more
efficient, offsetting the need for additional peaker plants and infrastructure upgrades. DERs
will play an increasingly important role in providing customers with the clean, flexible, and
efficient energy they seek, reshaping the grid in the process.

The role of batteries. The current electric grid operates by instantaneously meeting
supply and demand. It is economically founded as a commodity market that utilizes exten-
sive capital-intensive infrastructure to do so. Peaker plants, spinning reserves, and ancillary
services must be on call to ensure reliability and power quality requirements are met. The
fundamental operation of the electric grid would change, however, with large-scale penetra-
tion of a means to temporally arbitrage energy. Many types of energy storage technologies
are emerging, from flywheels to supercapacitors to electric vehicles to batteries. Each tech-
nology has its strengths and limitations, and batteries appear to be some of the most versatile
forms of energy storage.
Batteries as an energy storage service for the electric grid are currently very expensive tech-
nologies, yet their versatility allows them to take advantage of multiple revenue streams. For
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behind-the-meter batteries, energy and demand charge arbitrage of a customer’s electricity
tariff provides an opportunity for significant cost savings. In order for arbitrage opportunities
to be present, the tariff must have time-varying charges, typically in the form of time-of-
use or real-time pricing. Dynamic charges allow batteries to temporally arbitrage between
high cost peak periods and low cost off-peak periods. For large commercial and industrial
customers, utilities typically impose demand charges based on the customers peak monthly
demand corresponding to various time-of-use periods. Such costs are justified by the high
price the utility must pay to procure sufficient capacity during system-wide peak use periods.
Demand charges present large revenue opportunities for behind-the-meter batteries, helping
justify the high capital costs of such energy storage.

Project Goal Our project aims to optimally size behind-the-meter batteries to minimize
electricity costs (maximize net savings) based on cost arbitrage of time-of-use electricity
tariffs and current market-based battery prices. Linear programming and non-linear pro-
gramming methods are explored to optimize the operation of a behind-the-meter battery
for actual commercial loads. This project is conducted in parallel with our CE264 Behav-
ioral Modeling project where we studied potential financial policy subsidies and incentives
necessary to increased the market adoption of batteries. Based on our stated preferences
survey and multinomial logit discrete-choice model, we observed interest in market adoption
of batteries and estimated a forecast of battery adoption based on varying percentage-based
cost reductions through policy incentives. Results are presented in Figure 1

Figure 1: Forecasted demand for battery purchase, rent and no-adoption v.
policy incentive.

As mentioned, high capital costs of batteries can be justified by stacking multiple revenue
streams. Although our project is primarily focused on tariff cost arbitrage, future work can
incorporate optimization of other services, such as resource adequacy, ancillary services, or
wholesale market pricing arbitrage. Furthermore, long term objectives can be geared towards
cost-optimization of a spatially distributed portfolio of loads as a VPP responsive to utility
dispatch signals based on system-wide peak demand, nodal congestion, or high temperatures.
Such aggregate dispatch could also include optimization based on grid-level greenhouse gas
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emissions or offsetting the need for investment in traditional grid infrastructure. As a case
study, actual commercial loads on the UC Berkeley campus are cost-optimized under Pacific
Gas & Electric (PG&E) time-of-use tariffs for optimal battery sizing and operation.

1.2 Relevant Literature

Demand response (DR) is a change in the power consumption of an electric utility customer
to better match the available power supply. The use of batteries to flatten load profiles and
reduce costs has been extensively studied as a form of DR. An example of DR is Direct Load
Control (DLC) using a Home Energy Controller (HEC) provided the pricing scheme of the
utility is a two level tariff with on-peak and off-peak periods (Kishore and Snyder, 2010).
In this method, the utility is empowered to control the appliances whenever it is necessary.
It has been shown that DLC can successfully reduce the load peak provided the homes can
share their load consumption information. However without shared information, aggregated
single home energy optimization creates a rebound peak during off peak hours that is even
more pronounced.
Another DR method which has been explored is called Real Time Pricing (RTP) in which the
price of electricity can freely fluctuate each half hour but is announced in advance to the user
who can adapt energy consumption in response. Zhou et al. (2014) extensively studied this
method considering a Home Energy Management System (HEMS) which included an electric
vehicle, photovoltaic system, batteries and appliances control (flexible loads). The simula-
tion results showed that the proposed control approach demonstrates good performance for
scheduling energy consumption while fulfilling the proposed DR requirements.
Although these optimal electric energy consumption schemes show some significant results
in shaving peak energy consumption, using a battery for demand response provides other
advantages such as protection against power outages or integration with photovoltaic sys-
tems that make them an attractive object of study. Semigran and Tsim (2014) quantified
the savings derived from using a battery, showing that significant reduction in cost can be
achieved to partly compensate for the upfront cost of buying a battery. Cho et al. (2014)
studied the integration of Battery Energy Storage Systems (BESS) and presented a method
to optimally size a battery in order to reduce a building’s annual cost. (Kishore and Snyder,
2010) showed that this optimization scheme can be extended to multiple homes in order to
reduce peak demand in a neighborhood while reducing costs. These recent breakthroughs are
now reaching a point where commercial solutions are breaking into the market, with start-
ups such as STEM and Advanced Microgrid Solutions (AMS) offering services to combine
learning algorithms and energy storage solutions to lower costs for private stakeholders.

1.3 Focus of the Study

This study aims to develop a linear program to cost-optimize battery sizes and operation
based on time-varying energy and demand charges and market-based battery costs for future
development into an optimized aggregated load VPP model.
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2 Technical description

2.1 Initial Modeling

The problem that we are trying to model is the cost-optimization of a single load. We want
to minimize the monthly electricity bill for a single household or commercial building. In
order to do so, it is crucial to understand the tariff structure that is being applied by the
utility, in our case, PG&E. For the sake of this study, we will use the standard energy tariff
E-19 (PG&E, 2016), a typical time-varying tariff structure that is divided into two major
charges of interest:

a. an energy charge that corresponds to the price of the amount of kWh being consumed
every 15-minute time step. This price is in $/kWh. It varies between summer and
winter, peak hours, part-peak hours and off-peak hours.

b. a demand charge that charges the maximum demand measured from the customer
over a month in $/kW. PG&E charges first the maximum demand over the month and
second the maximum demand over the month’s peak and part-peak hours.

The first opportunity to optimize one’s consumption is to move energy consumption that
occurs during peak hours (when cost of electricity is high) to off-peak hours (when cost is
low). The battery can charge during off-peak hours and then discharge during peak hours,
providing a lower overall energy cost. The second opportunity is to play with that demand
charge in order to do load ”shaving”, that is, discharging the battery to flatten any peak in
the load and thus reducing the global monthly demand charge and/or peak demand charges.

2.2 Data used

We use load data from the University of California, Berkeley, campus buildings available here
to perform optimizations. Multi-year, 15-minute resolution meter interval data is utilized
to optimize battery sizes and operation for various campus buildings. Our results make it
possible to formulate propositions to the University of California in terms of battery adoption.
Although the university is not served under PG&E tariffs, our methodology and model can
easily be adapted to any electricity pricing comprised of energy and demand charges.
Market-based battery costs are approximated from Tesla Energy’s Powerpack, using quotes
from their ”Design your Powerpack system” tool. Costs scale linearly at $65000 per 250 kW
bi-directional inverter and $47000 per 100kWh powerpack.

2.3 Battery Modeling

We model our battery as a load with a maximum storage capacity and maximum charge and
discharge rate. We assume the battery has no internal or external losses and operate it with
perfect with a 100% round-trip efficiency. We note the maximum energy storage capacity
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Smax and the maximum rate of charge Qmax (whic we also refer to as the size of the inverter).
We could also consider minimum values Smin and Qmin but we will assume for the sake of
simplicity that Smin = 0 and Qmin = −Qmax.

2.4 A first intuition: non-linear programming

2.4.1 Definition of the variables

We define N the number of time intervals that we have data on, L the vector of the load
such that L = [L1, ..., LN ] with Lk being the consumption of the building during the kth

time interval. We define C = [C1, ..., CN ] the vector of electricity cost such that Ck is the
cost of energy during the kth time interval, Q = [Q1, ..., QN ] the consumption of the battery
such that Qk is the consumption of the battery during the kth interval. Finally we define
Z = [Z1, ..., ZN ] the energy stored in the battery such that Zk represents the energy stored
in the battery after the kth time interval. We note I = {1, ..., N}, Ipeak (resp. Ipart) the
subset of I that is constituted of the indexes k such that the kth time interval falls in peak
(resp. part-peak) hours. Demand tariffs are referred to as: c (all-month demand cost), cpeak
(peak hours demand cost) and cpart (part-peak hours).
We note C the objective function corresponding to the monthly electricity cost so that:

Cnl = (L+Q)TC + c ·max
I

(L+Q) + cpeak ·max
Ipeak

(L+Q) + cpart ·max
Ipart

(L+Q) (1)

2.4.2 Formulation of the program

We use the equation 1 to define the objective of the program as

min
Q
Cnl(Q)

Then we have the following constraints:

a. Maximum charge rate:
−Qmax ≤ Q ≤ Qmax

where Qmax is the maximum rate of charge of the battery.

b. Battery Dynamics and Maximum Charge of the battery:

Zk+1 = Zk + ∆t ·Qk+1

with the initial condition Z0 = S0 representing the initial state of the battery. The
following constraint is then:

Smin ≤ Z ≤ Smax

with Smin and Smax being physical limits for the battery storage capacity.
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c. Non-negativity of total demand:
L+Q ≥ 0

d. Anticipation of future optimization:

0.95Z0 ≤ Zk ≤ 1.05Z0

The battery is forced to return to its initial state because failing to do so might com-
promise future optimization.

2.4.3 Solution of the problem

We implement this non-linear program (the non-linearity is due to presence of a max in the
objective function) with MATLAB, using the fmincon solver.

Single-Day Optimization We first test the program on a small period and begin with
a single-day optimization. We account for the monthly the demand charge by scaling these
charges. The cost function was:

Cdaynl = (L+Q)TC + ĉ ·max
I

(L+Q) + ĉpeak ·max
Ipeak

(L+Q) + ĉpart ·max
Ipart

(L+Q)

ĉ = c/n ĉpeak = cpeak/n ĉpart = cpart/n

where n is the number of days in the month.
We decided to set S0 and Smin to 0 and tried several values for Qmax and Smax. Our program
also returned the cost with and without battery.

Results We processed the program on a 15 minute dataset representing the consumption
of Doe Library on Tuesday March 15th, 2016. The battery parameters were chosen as
Smax = 390 kWh and Qmax = 50 kW. Results are presented on Figure 2. The blue curve
represents the real consumption from the dataset. The red curve represents the battery
consumption in order to minimize the total cost and the yellow curve is simply the sum of
the blue and the red curve. The dotted purple curve represents the energy stored in the
battery. We also plotted the electricity cost. As we can see, constraints are respected: the
red curve stays between −50 and 50 kW, the yellow curve stays non-negative, the purple
curve remains between 0 and 390 kWh and the battery returns to its initial state at the
end of the day. In accordance with our expectation, global cost is reduced, decreasing from
$176.48 without battery to $152.20 therewith, achieving a 13.8% saving.

Several days optimization We tried to extend this analysis to longer periods of time
such as three days, one week or an entire month. However, we obtained very poor results
showing that the algorithm proved inefficient in operating such large-scale optimizations,
and this without mentioning the fact that computational times were getting unacceptably
high.

6



University of California, Berkeley Spring 2016

Figure 2: Non-linear single-day optimization for Doe Library, Berkeley, CA.
The solid lines are scaled on the left y-axis and the dotted line is scaled on the
right y-axis. On top, the loads. At the bottom, the electricity tariffs.

Identification of the limitations The reason why we thought our program was not
performing as well as we would have wanted it to do was primarily its non-linearity. Since
there are no very efficient methods to solve optimization problems, researchers often resort
to similar problems where bulletproof solutions already exist: linear programming, quadratic
programming or convex programming for instance. To decrease the program complexity, we
also considered averaging our data over the hour instead of having data every 15 minutes.

2.5 A more efficient model: linear programming

2.5.1 Turning the problem linear

We were greatly helped in our research by an idea from Pr. Scott Moura, originating from
(Han et al., 2015). The idea consists in introducing new variables to optimize on: Pmax the
maximum demand over the month as well as Pmax,peak the maximum demand over the month
peak hours and Pmax,part over part-peak hours. Thus the new cost function is given by

Clin = (L+Q)TC + c · Pmax + cpeak · Pmax,peak + cpart · Pmax,part (2)

and the corresponding linear program:

min
Q,Pmax,Pmax,peak

Pmax,part

Clin(Q,Pmax, Pmax,peak, Pmax,part)

with new constraints:

Lk +Qk ≤ Pmax ∀k ∈ I (3)

Lk +Qk ≤ Pmax,peak ∀k ∈ Ipeak (4)

Lk +Qk ≤ Pmax,part ∀k ∈ Ipart (5)

7



University of California, Berkeley Spring 2016

The attentive reader will have noticed that this formulation is not strictly equivalent to the
non-linear one on the grounds that constraints (3), (4) and (5) are not necessarily active.
However to the extent they are, this is a totally equivalent problem. The great advantage is
that this is a linear program, which can be less computationally intensive.

2.5.2 Formulation

The difficulty of using a linear formulation when dealing with a great number of constraints
is to turn this into the conventional linear form:

min
x
fTx s.t. Ax ≤ b, lb ≤ x ≤ ub

We define

x = [Q1, ..., QN , Pmax, Pmax,part, Pmax,peak] = [x1, ..., xN , xN+1, xN+2, xN+3]

We have

∀k ∈ I Lk +Qk ≤ Pmax ⇔ Qk − Pmax ≤ −Lk

⇔ xk − xN+1 ≤ −Lk

Similarly we have:

∀k ∈ Ipart Lk +Qk ≤ Pmax,part ⇔ Qk − Pmax,part ≤ −Lk

⇔ xk − xN+2 ≤ −Lk

∀k ∈ Ipeak Lk +Qk ≤ Pmax,peak ⇔ Qk − Pmax,peak ≤ −Lk

⇔ xk − xN+3 ≤ −Lk

The constraints on the battery charge are:

∀k ∈ I Smin ≤ Zk ≤ Smax ⇔ Smin ≤ S0 + ∆t · (Q1 + ...+Qk) ≤ Smax

⇔ Smin − S0

∆t
≤ Q1 + ...+Qk ≤

Smax − S0

∆t

⇔ Q1 + ...+Qk ≤
Smax − S0

∆t
and −Q1 − ...−Qk ≤

S0 − Smin

∆t

⇔ x1 + ...+ xk ≤
Smax − S0

∆t
and − x1 − ...− xk ≤

S0 − Smin

∆t

The linear relationships previously established now make it possible to create the matrix A
and the vector b.

We have
f = [C1, ..., CN , c, cpart, cpeak]
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And for the bounds:

Q ≤ Qmax ⇔ ∀k ∈ I xk ≤ Qmax

Q ≥ −Qmax ⇔ ∀k ∈ I xk ≥ −Qmax

L+Q ≥ 0⇔ ∀k ∈ I xk ≥ −Lk

which become:
∀k ∈ I, max(−Qmax,−Lk) ≤ xk ≤ Qmax

2.5.3 First Results with MATLAB

Now we implement and run this model with MATLAB using the linprog solver. Figure 3
shows the results we obtained. Remember that we used scaled values for the demand charge.
The comparison with the non-linear program is striking. Not only is the linear solver more
efficient, achieving 24.2% of cost reduction instead of 13.8% but it also runs faster: 3.34s
instead of 5.43s. We checked that the constraint on maximum demand were active. On
Figure 3, one can well see the peak-shaving effect of cost-optimization comparing the blue
and the yellow curves. The behavior of the battery is also pretty straightforward: charge
until the demand rises then discharge during high-demand period.

Figure 3: Cost without battery: $176.48. Cost with battery: $133.84.
Savings: $42.64 i.e. 24.2%

Then we performed longer optimization. The solver optimized 7 days of battery use in
16s, but 1 month in 10min. Results are shown in Appendix B on Figure 7 and 8. The
month optimization was very time-consuming though it represented our full optimization
(without scaled costs). Yet, we found that up to 17.5% reduction was achievable in this
case (Doe, March 2016). Results for the summer proved even better with saving up to 30%
for September 2015 for instance (Figure 9). With almost $8000 saved over a single month
and building, there is potential for huge savings should batteries be deployed throughout
campus.
In conclusion, even though the linear algorithm proved more efficient and faster than the
non-linear one, we still had long computational times, when optimizing for periods longer
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than a week. Since MATLAB appeared to be too slow for the scope of our study, we decided
to use more powerful tools.

2.5.4 Battery Sizing

In the course of our study, we realized the impact of choosing values for Smax and Qmax —
sizing the battery. We first referred to the values provided by Tesla PowerWall which are
Smax = 6.4 kWh and Qmax = 3.3 kW but we quickly noticed that those were undersized for
applications in buildings as big as the Doe Library or other campus buildings. So at this
point, we decided to manually size the battery.
We sized for March 1st at the Doe Library. We ran several optimizations (using our linear
algorithm presented further) varying Qmax and Smax, and looked for the pair (Q∗

max, S
∗
max)

that minimize the objective cost. Results are shown in Figure 4. We observe that increasing
Qmax and Smax reduces the minimal achievable cost, which is logical since it is equivalent
to weakens the constraints. However, past a certain point, no further improvement in cost
reduction can be achieved. The bar diagram shown in Figure 4 presents a threshold. Because
we want our battery to achieve the most savings but don’t want to pay for an oversized
battery, We retained as optimal size for our battery the elbow of the threshold which was
approximately Smax = 390 kWh and Qmax = 50 kW.

Figure 4: Qmax ranges from 10 to 60 kW and Smax ranges from 10 to 500
kWh. The color bar is in dollars.

2.6 Linear formulation of cost-optimized battery sizing and oper-
ation

A linear program is formulated to concurrently cost-optimize battery sizing and operation.
To do so, maximum battery energy capacity, Smax, and maximum battery charge rate, Qmax,
are defined as decision variables rather than fixed parameters. The new set of decision
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variables to optimize on is now: Q,Pmax, Pmax,peak, Pmax,part, Smax, and Qmax. Note that
the following assumptions are made for the sake of simplicity with regards to the linear
formulation: Smin = 0 and Qmin = −Qmax. In code implementation, a similar formulation is
made using scaling factors for battery energy capacity and charge rate on fixed parameters
Smax and Qmax. Mathematically, these formulations are equivalent.
The objective function is adjusted to incorporate battery costs for the battery capacity and
inverter size. The new cost function is:

Clin = (L+Q)TC + c · Pmax + cpeak · Pmax,peak + cpart · Pmax,part + cbattSmax + cinvQmax (6)

and the corresponding linear program with sizing included is:

min
Q,Pmax,Pmax,peak

Pmax,part,Smax,Qmax

Clin(Q,Pmax, Pmax,peak, Pmax,part, Smax, Qmax)

with new constraints:

X = [Q1, ..., QN , Pmax, Pmax,part, Pmax,peak, Smax, Qmax]T

Constraint ∀k ∈ I Lk +Qk ≤ Pmax
1 0 · · · 0 −1 0 0 0 0
0 1 · · · 0 −1 0 0 0 0
...

. . .
...

...
...

...
...

0 0 · · · 1 −1 0 0 0 0

X ≤ −L
Constraint ∀k ∈ Ipart Lk +Qk ≤ Pmax,part

δ1 0 · · · 0 0 −δ1 0 0 0
0 δ2 · · · 0 0 −δ2 0 0 0
...

. . .
...

...
...

...
...

0 0 · · · δN 0 −δN 0 0 0

X ≤ −L
where δk = 1 if k ∈ Ipart, 0 otherwise.
Constraint ∀k ∈ Ipeak Lk +Qk ≤ Pmax,peak

δ1 0 · · · 0 0 0 −δ1 0 0
0 δ2 · · · 0 0 0 −δ2 0 0
...

. . .
...

...
...

...
...

0 0 · · · δN 0 0 −δN 0 0

X ≤ −L
where δk = 1 if k ∈ Ipeak, 0 otherwise.
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Constraints on the maximum battery capacity: ∀k ∈ I, S0 + ∆t · (Q1 + ...+Qk) ≤ Smax
1 0 · · · 0 0 0 0 −∆t−1 0
1 1 · · · 0 0 0 0 −∆t−1 0
...

. . .
...

...
...

...
...

1 1 · · · 1 0 0 0 −∆t−1 0

X ≤ − S0

∆t

Constraints on the minimum battery capacity: ∀k ∈ I, Smin ≤ S0 + ∆t · (Q1 + ...+Qk)
−1 0 · · · 0 0 0 0 0
−1 −1 · · · 0 0 0 0 0
...

. . .
...

...
...

...
−1 −1 · · · −1 0 0 0 0

X ≤ S0 − Smin

∆t

Constraints on the maximum battery charge rate: ∀k ∈ I, Qk −Qmax ≤ 0
1 0 · · · 0 0 0 0 0 −1
0 1 · · · 0 0 0 0 0 −1
...

. . .
...

...
...

...
...

0 0 · · · 1 0 0 0 0 −1

X ≤ 0

Constraints on the minimum battery charge rate: ∀k ∈ I, −Qmax −Qk ≤ 0
−1 0 · · · 0 0 0 0 0 −1
0 −1 · · · 0 0 0 0 0 −1
...

. . .
...

...
...

...
...

0 0 · · · −1 0 0 0 0 −1

X ≤ 0

A and b are obtained by vertically concatenating the five previous matrices and vectors.
The cost vector now becomes:

f = [C1, ..., CN , c, cpart, cpeak, cbatt, cinv]

where cbatt is a normalized cost of the battery capacity in $/kWh/month and cinv is a
normalized cost of the inverter in $/kW/month.
Bounds:

lb =



max(−Qmax,−L1)
...

max(−Qmax,−LN)
0
0
0
0
0


≤ X ≤



Qmax
...

Qmax

+∞
+∞
+∞
+∞
+∞


= ub
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2.6.1 Python implementation using Pyomo with GLPK

In order to streamline data processing overhead and dramatically decrease computation time,
the cost-optimization of battery sizing and operation model was implemented in Python us-
ing Pyomo, an open-source software package with extensive optimization capabilities for
formulating, solving, and analyzing optimization models, developed by Hart et al. (2012).
Pyomo provides easily scalable programming formulations to define sets, parameters, deci-
sion variables, constraints, and objective functions similar to how one would write them on
paper. It produces the matrices (which get significantly large over larger time horizons; one
month of data consists of roughly 23000 constraints and nearly 6000 decision variables) for
use in a linear or non-linear solver.

The linear formulation permitted use of the lightning fast GNU Linear Programming Kit
(GLPK). This linear solver takes our linear program formulation created using Pyomo and
generates optimal results in a matter of seconds for respectable time horizons, such as a
month. More importantly, the linear nature of the model formulation produced more physi-
cally realistic battery operation results producing very few ”artifacts” of no net gain battery
operation. Again, a penalty for battery cycling could be implemented to reduce such arti-
facts and achieve more realistic battery operation results.

The advantages of linear program formulation were clearly observed via computation time.
Running the linear program cost-optimization with sizing model using the GLPK solver for
September 2015 data for the Haas School of Business took 6.12 seconds on a Dell Inspiron
15 with an Intel i7 processor and 12 GB of memory. Further tests could be conducted over
larger data sets and longer time horizons to better underscore the computational advantages
for formulating the problem as a linear versus non-linear program (for example, a year of
data took over 18 minutes to cost-optimize in the linear program).

2.6.2 Optimal battery sizing and operation results with Python

The implementation of the linear program in Python using Pyomo and the GLPK solver
accommodated rapid cost-optimal battery sizing and operation for multiple UC Berkeley
campus buildings. A key observation of the optimal results is a balance between increasing
battery size for more savings from energy arbitrage and demand peak shaving and the linearly
increasing cost of the battery capacity and inverter. This model is used to generate optimal
battery sizes and operation for Wheeler, see Figure 5, and five other buildings on the UC
Berkeley campus, see Appendix B. Figure 5 illustrates the significant cost savings that occur
due to peak demand shaving. The optimal battery operation focuses on minimizing the
on-peak demand since the E-19S tariff (see 2 in Appendix A) attributed the highest costs to
that period. Furthermore, the battery is optimally utilized during the on-peak period when
demand is below that of the month’s maximum on-peak demand. This is seen in the battery
discharge spikes that are a result of energy arbitrage from charging in the off-peak period
and discharging in the on-peak period.
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Figure 5: Wheeler auditorium optimized with a 116 kW 486 kWh battery
in September 2015 achieving 17% net savings taking into account battery costs.

3 Discussion

3.1 Possible Savings throughout UC Berkeley

We performed battery optimization on various buildings across campus. Results are pre-
sented in Table 1 where we present the optimal sizing of the battery for a given building as
well as the savings achieved with such a battery on that building during September 2015.
The savings also take into account the battery cost. Full results can be found in Appendix
A in Table 4 and Table 5. How it can be noticed, the optimal size is very different for each
building. We can hypothesize that size is correlated with the total consumption of electricity
over the month. The analysis plotted on Figure 6 suggest a linear dependency between the
two. Savings percentage also appears to change a lot between each building, ranging from
7.2% to 26.5%. However this time, we can infer from the figures that it is not correlated to
optimal size and subsequently to total consumption. The assumption we have here is that
the savings achievable will be correlated to the load profile, especially if the initial load is
very flat or if it fluctuates a lot.

Figure 6: Correlation between optimal size and total consumption.
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Table 1: Various buildings optimization results (all results are for
September 2015

Building Optimal Size Optimal Charge Rate Pre-opt. Cost Post-opt. Cost, with Savings Achieved
(kWh) (kW) ($) battery cost ($) (%)

Haas School of Business 2676 442 55227 51237 7,2
Doe Library 444 66 11403 10121 11,2
McLaughlin Hall 139 24 4628 4076 11,9
RSF 411 97 14501 13008 10,3
Memorial Stadium 1596 412 36457 26808 26,5
Wheeler Hall 486 116 12862 10648 17,2

3.2 Limitations and perspectives

A significant limitation of this project is that a single tariff structure is considered (PG&E
E-19), whereas there are many flavors of tariffs that depend on peak demand and load type.
Tariffs can also vary from non-time-varying pricing to relationship-specific contractual Power
Purchase Agreements (PPAs).In order to generalize our results, the optimization could take
into account more tariff structures and pricing schemes. Furthermore, UC Berkeley operates
is own electric grid and campus buildings are not in fact subject to PG&E’s E-19S tariff,
hindering our conclusive net savings results.

Another limitation is that energy losses due to the storage were neglected, i.e. the battery
round trip efficiency was considered to be 100%, which does not accurately reflect the reality.
Furthermore, no cost penalty for battery cycling, battery degradation and maintenance, or
a minimum arbitrage opportunity was implemented in the model.

Finally, we considered offline optimization on historical data, whereas the load profile of a
building is usually uncertain. The optimization could be online if we could predict the load.
The prediction could be achieved using regression on weather data and historical load profile,
or using a Markov Decision Process. Considerations can also include incorporating stochastic
load forecasting with dynamic programming to eliminate the assumption of perfect foresight
tied to the offline model.

Summary

We developed a linear program cost-optimization of battery sizing and operation to observe
minimal costs, otherwise thought of as maximum savings, of electricity bills based on time-
varying tariffs. Our model was applied to various buildings on the UC Berkeley campus using
PG&E’s E-19S time-varying tariff and market-based battery pricing interpolated from Tesla
Powerpack costs. Results show that significant positive net monthly savings are achieved for
all six evaluated buildings. This underscores a significant revenue stream to justify the high
capital costs of batteries. Future model development can include other revenue streams in
the cost-optimization, such as wholesale market pricing and resource adequacy.

15



University of California, Berkeley Spring 2016

References

Cho, K.-h., Kim, S.-k., and Kim, E.-s. (2014). Optimal Sizing of BESS for Customer Demand
Management. Journal of International Council on Electrical Engineering, 4(1):30–36.

Han, S., Lavie, O., Schneider, T., and Wiacek, C. (2015). Energy Management in Commercial
Buildings. Technical report, University of California, Berkeley.

Hart, W. E., Laird, C., Watson, J.-P., and Woodruff, D. L. (2012). Pyomo–optimization
modeling in python, volume 67. Springer Science & Business Media.

Kishore, S. and Snyder, L. V. (2010). Control Mechanisms for Residential Electricity Demand
in SmartGrids. In 2010 First IEEE International Conference on Smart Grid Communi-
cations (SmartGridComm), pages 443–448.

PG&E (2016). Pacific Gas & Electric - Tariffs.

Semigran, J. and Tsim, E. (2014). Bay Area Smart Home Cost Optimization with Photo-
voltaic Electricity. Technical report, University of California, Berkeley.

Zhou, S., Wu, Z., Li, J., and Zhang, X.-p. (2014). Real-time Energy Control Approach
for Smart Home Energy Management System. Electric Power Components and Systems,
42(3-4):315–326.

16



University of California, Berkeley Spring 2016

A Electricity Tariffs

Table 2: PG&E E-19S time varying tariff

All Time Peak Part-Peak Off-Peak
($) ($) ($) ($)

Energy rate - Summer - 0.14726 0.10714 0.08057
Energy rate - Winter - - 0.10165 0.08717
Demand rate - Summer 17.33 18.74 5.23 -
Demand rate - Winter 17.33 - 0.13 -

Table 3: PG&E E-19S time varying tariff

Season Definition Peak Part-Peak Off-Peak

Summer May 1 to Oct 31 12:00 noon to 6:00 p.m.
Mon through Fri

8:30 am to 12:00 noon
and 6:00 pm to 9:30 pm
Mon through Fri

All other hours

Winter Rest of the year - 8:30 am to 9:30 pm
Mon through Fri

All other hours

B Additional Results for UC Berkeley Buildings

Table 4: Optimal battery sizing and cost specifications for six UC
Berkeley campus buildings.

Building Total Energy Consumption Battery Capacity Size Inverter Size Duration
Normalized Monthly
Battery Cost

(kWh) (kWh) (kW) (hours) ($)

Haas School of Business 263508 2676 442 6.1 11216
Doe 48621 444 66 6.7 1845
McLaughlin 20111 139 24 5.8 585
RSF 76451 411 97 4.2 1786
Memorial Stadium 120169 1596 412 3.9 7011
Wheeler 53213 486 116 4.2 2114
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Table 5: Cost-optimized results for Energy, Demand, Total, and
Net Savings

Building Pre-opt. Pre-opt. Pre-opt. Energy Savings Demand Total Net
Energy Cost Demand Cost Total Cost Savings Savings (w/ Batt cost) Savings
($) ($) ($) ($) ($) ($) ($)

Haas School of Business 28179 27048 55227 3768 11438 15206 399
13% 42% 28% 7%

Doe 5352 6051 11403 512 2615 3127 1282
10% 43% 27% 11%

McLaughlin 2166 2462 4628 167 970 1137 553
8% 39% 25% 12%

RSF 7773 6728 14501 588 2691 3279 1494
8% 40% 23% 10%

Memorial Stadium 12007 24451 36457 1845 14814 1666 9649
15% 61% 46% 26%

Wheeler 5714 7149 12862 679 3649 4328 2214
12% 51% 34% 17%

Figure 7: Cost without battery: $1153.53. Cost with battery: $891.52.
Savings: $262.01 i.e. 22.7%.
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Figure 8: Cost without battery: $4991. Cost with battery: $4188. Savings:
$803 i.e. 16.1%.

Figure 9: Cost without battery: $26373.38. Cost with battery: $18485.33.
You save $7888.05 i.e. 29.9%.
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Figure 10: Wheeler with optimal battery size of 116 kW, 486 kWh for
September 2015 achieving 17% net savings ($2214) including battery costs.

Figure 11: Memorial Stadium with optimal battery size of 412 kW, 1596
kWh for September 2015 achieving 26% net savings ($9649) including battery
costs. The massive weekend peak is likely to be a football game.
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Figure 12: RSF with optimal battery size of 97 kW, 411 kWh for September
2015 achieving 10% net savings ($1494) including battery costs.

Figure 13: Doe Library with optimal battery size of 66 kW, 444 kWh for
September 2015 achieving 11% net savings ($1282) including battery costs.
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Figure 14: Haas School of Business with optimal battery size of 442 kW,
2676 kWh for September 2015 achieving 7% net savings ($3990) including bat-
tery costs.

Figure 15: McLaughlin with optimal battery size of 24 kW, 139 kWh for
September 2015.
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