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Abstract—Battery design at the materials level is often an
inefficient process that requires many iterations and significant
development costs. To improve the design process, parameter
sensitivity analysis can be performed to provide battery materials
scientists with better design intiution. A parameter sensitivity
analysis was developed for electrode parameters by adapting
the single particle model (SPM) for a Zn-MnO2 chemistry.
Parameters of interest included particle radius and electrode
thickness. The parameter sensitivity analysis determined the
relative sensitivity of the battery’s output voltage to these
aforementioned parameters as well as their linear dependence
on one another.

I. INTRODUCTION

A. Motivation & Background

The Advanced Manufacturing for Energy lab at UC Berke-
ley is developing a printable, secondary Zn-MnO2 battery for
Internet of Things (IoT) and grid-scale energy storage applica-
tions (Figure 1). The battery utilizes an ionic liquid electrolyte
that enables facile recharging of zinc and could potentially
lead to displacement of lithium-based systems in applications
where safety and cost considerations are paramount. Specif-
ically, applications involving sensors for food or wearables
would significantly benefit from a safer and less hazardous
energy storage system.

Fig. 1. Cross section SEM of Zn-MnO2 battery developed by Advanced Man-
ufacturing for Energy lab. The distinction between electrode and electrolyte
layers is clearly visible, along with some individual particles.
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This class of zinc-based secondary batteries with ionic
liquid electrolytes is not yet well understood or characterized.
Because this research is relatively recent, there exists much
room for improvement beyond proof-of-concept performance
[1]. In order to streamline experimental design, we desire a
model that can parameterize controllable battery characteris-
tics (e.g. geometry, composition, etc.) and predict resulting
system performance. Specifically, this model will inform key
manufacturing decisions in order to best improve the bat-
tery’s output voltage. Devices for IoT demand certain voltage
minimums in order to operate electronic components, and
improving the battery’s system voltage will help the system
meet this minimum over a larger range of charge.

This study utilizes the single particle model (SPM) [2],
[3] for its simplicity over more sophisticated models (such as
Doyle-Fuller-Newman [4]). The model is accurate for low C-
rates, which are typical of our battery. The SPM models each
electrode as a single porous spherical particle and assumes
constant ion concentration within the electrolyte with respect
to space and time [2], [3]. When applied to our battery, this
model will help optimize electrode composition in order to
further improve overall performance.

B. Relevant Literature

Lithium-ion batteries have emerged as the battery of choice
for portable electronics, as well as in vehicular and aerospace
applications [5], [6]. In order to fully utilize the capability
of these batteries, a battery management system must be
deployed with the battery to ensure safe and optimal operation
for a given application [5]. More sophisticated versions of
these management systems employ an electrochemical model
describing the battery’s dynamics to monitor key performance
parameters such as state-of-charge and internal resistance [7].
However, if the system’s dynamics are not well understood,
then the model may provide insight into the battery’s behavior
under certain load conditions.

The single particle model (SPM) was derived from a sim-
plified version of the complete Doyle-Fuller-Newman model
[3], [4] and has been widely utilized to model and understand
lithium-ion batteries [2], [3], [7]. While the assumptions the
SPM makes limit the model’s applicability to scenarios with
low C-rates or negligible electrolyte dynamics, its simplicity
and ease of solving compared to more rigorous models [4]
makes it an attractive tool, especially for more fundamental
analyses of electrochemical dynamics.

The Zn-MnO2 battery of interest shares properties with
previously modeled intercalation lithium-ion batteries that
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make the SPM suitable to modeling this system. It has been
determined that the main mechanism for charge storage in
this system is with intercalation of Zn2+ ions into the MnO2

cathode [8]. Furthermore, the electrolyte-agnostic assumptions
of the SPM also prove to be beneficial as this battery utilizes
an ionic liquid electrolyte whose solvent behavior differs
significantly from traditional aqueous electrolytes [9]. The Zn-
MnO2 battery is also being cycled at low C-rates, further
agreeing with this assumption [10]. By adapting the SPM to
this Zn-MnO2 system, we hope to leverage parameter sensi-
tivity analysis on the resulting model parameters to optimize
controllable geometric and compositional factors to better
understand and improve the system.

C. Focus of this Study

This study will utilize the SPM to model the zinc-based
battery in order to perform parameter sensitivity analysis of
the battery’s output voltage to particle radius and electrode
thickness. The results will be used to directly modify electrode
geometries and compositions in physical experiments to better
tailor performance outputs for IoT demands.

II. TECHNICAL DESCRIPTION

This study utilizes a reduced electrochemical battery model,
the SPM. This model approximates each electrode of the
battery as collections of uniform particles. The dynamics of
one particle at each electrode are studied and then scaled up to
reflect the volume of the entire electrode. This approximation
results from assuming that the concentration of insertion ions
in the electrolyte phase remains constant in space and time
and also that the entirety of the electrode evenly contributes
to the total cell dynamics. The first assumption is reasonably
valid for batteries charged and discharged at low C-rates. See
Figure 2 for a graphical representation of the SPM.

For clarity, Table I provides definitions for all parameters
related to the SPM that follow.

A. Single Particle Model

Specifically, the SPM results from applying the above
simplifying assumptions to the more complex DFN model.
The partial differential equations which therefore define the
SPM come directly out of Fick’s Second Law of Diffusion
in spherical coordinates for symmetric, 1-D diffusion at each
electrode (1)-(4). These PDEs describe the dynamics of the
insertion ions in the solid phase.
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Fig. 2. Graphic representation of the SPM [3]. The electrodes are each
represented as single porous spherical particles. This results from assuming
electrolyte concentration remains constant in space and time.

TABLE I
SINGLE PARTICLE MODEL PARAMETER DEFINITIONS

Symbol Description SI Units
A Cell cross sectional area m2

a

j Specific interfacial surface area m2/m3

c

j

s

Concentration in solid phase mol/m3

c

j

ss

Concentration at particle surface mol/m3

c

j

s,max

Max concentration in solid phase mol/m3

D

j

s

Diffusion coefficient in solid phase m2/m3

F Faraday’s constant C/mol
I Input current A
i

j

0 Exchange current density V
j Positive (+) or negative (-) electrode -
L

j Electrode thickness m
R Universal gas constant J/mol-K
R

f

Lumped current collector resistance ⌦
R

j

s

Particle radius m
r Radial coordinate m or m/m
T Cell temperature T
t Time sec or sec/sec
U

j Equilibrium potential V
V Output voltage V
↵j Anodic/cathodic transfer coefficient -

The Neumann boundary conditions (3) and (4) at the
surfaces of the electrodes (r = R

±
s

) proportionally relate the
flux entering or exiting the electrode to the input current, I(t).
The boundary conditions at the center of the electrodes (r =
0) are required for well-posedness and spherical symmetry.

The system output is the cell voltage and is governed by
a combination of Butler-Volmer kinetics, electrode thermody-
namics, electrode OCP, and internal resistance (5).



3

V (t) =
RT

↵F

sinh�1

 
I(t)

2a+AL

+
i

+
0

�
c

+
ss

(t)
�
!

� RT

↵F

sinh�1

 
I(t)

2a�AL

�
i

�
0

�
c

�
ss

(t)
�
!

+ U

+
�
c

+
ss

(t)
�
� U

� �
c

�
ss

(t)
�
+R

f

I(t) (5)

The exchange current density i
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The full system plant is presented graphically in Figure 3.

Dynamic System | Σ

Parameters | "

#

Input 
Current

$

Output 
Voltage

State Variable | %&&

Fig. 3. Block diagram of system plant with input I(t) and output V(t).

B. SPM Normalization

The SPM equations (1)-(4) can be normalized in both time
and space in order to facilitate the sensitivity analysis, as will
be clarified later. This normalization is carried out by scaling
the radial r and time t coordinates by the particle radius and
characteristic diffusion time respectively (8).
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Applying this normalization to the system equations (1)-(4)
yields the following modified PDEs and boundary conditions
(9)-(12).
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The notable change is that the particle radius, R

±
s

now ap-
pears explicitly in the boundary condition after normalization.

Henceforth, the bars above r and t will be dropped for clarity
and brevity.

C. Sensitivity Equations

Next, we derive the sensitivity equations. We want to study
the influence of the parameters with respect to the system
output, not the states. That is, for a given change in our
parameters, we want to study how the system’s output voltage
reacts (13).
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However, in order to calculate the sensitivity of the output
with respect to the parameters, we must first find the sensitivity
of the states with respect to the parameters. We can then
combine this with the derivative of the output with respect
to the states by using chain rule (14).
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The parameters of interest to be studied are the particle
radius R

±
s

and the electrode thickness L

±. This results in four
separate parameters for both the anode and cathode (15).
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The first step is to take the derivative of the output equation
with respect to the states. This equation is omitted for brevity.
As can be noted from (5), the only state that the output voltage
is dependent on is c

j

ss

, which is simply a boundary value of
c

j

s

.
The second step is to derive the individual sensitivity

equations for each parameter. This is done by first evaluating
the nominal state equation to determine the nominal solution
x(t,�0), evaluating the Jacobian matrices given by (16), and
lastly solving the sensitivity equation (17) for S(t) [11].

A(t, �0) =
@f(t, x, �)

@x

���
x=x(t,�0),�=�0

,

B(t, �0) =
@f(t, x, �)

@�

���
x=x(t,�0),�=�0

(16)

Ṡ(t) = A(t, �0)S(t) +B(t, �0), S(t0) = 0 (17)

Therefore, the next step is to derive the sensitivity equations
with respect to the states. This is done by taking the derivative
of (9)-(12) with respect to ✓

i

for the appropriate electrodes
(18).
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The sensitivity equations for each parameter with respect
to the states can then be computed. The sensitivity equations
w.r.t. ✓�1 = R

�
s

are computed as in (19), (20), and (21).
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The sensitivity equations w.r.t. ✓�2 = L

� are computed as in
(22), (23), and (24).
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The sensitivity equations w.r.t. ✓+1 = R
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are computed as in
(25), (26), and (27).
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The sensitivity equations w.r.t. ✓+2 = L

+ are computed as in
(28), (29), and (30).
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With the sensitivity equations derived, we can now solve
these four sets of PDEs to compute S

�
1 (r,t), S

�
2 (r,t), S

+
1 (r,t),

and S

+
2 (r,t).

We are now positioned to apply the chain rule to get
the sensitivity of the output with respect to the states. That
is, for every parameter, we can now multiply its sensitivity
equation by @V

@css
to obtain our desired result (31). Note that

the sensitivity equations with respect to the state provide the
sensitivity evolution with time for all spatial coordinates. The
appropriate value of S

i

(r,t) to use occurs at the boundary, i.e.

S
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(1,t).
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The final step is to normalize (31) with respect to each
parameter. Without this step, the values provided by the
sensitivity vector become skewed by the magnitude of each
parameter, making it difficult to perform an objective analysis
of each parameter’s influence on the output. The normalization
is performed by multiplying the final sensitivity vector by the
parameter divided by the output (32).
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The results of (32) can then be gathered in a sensitivity
matrix S (33).
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The sensitivity derivation is summarized in Figure 4.
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Fig. 4. Block diagram of sensitivity equation derivation. Only the boundary
values of c

±
s

(r,t) and S

±
i

(r,t) (c
s

s±(r,t)) and S

±
i

(1,t) are used in the final
sensitivity matrix.

D. Sensitivity Analysis

Let S

T

S = D

T

CD. The sensitivity analysis can then be
performed by decomposing the matrix S

T

S into its constituents
C and D. These two matrices are defined as follows (34).
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(34)
Matrix D provides a direct quantification of parameter sen-

sitivity with larger numbers indicating higher sensitivity to that
parameter. Matrix C provides a measure of linear dependence
between parameters. Values close to 1 and -1 indicate that
those parameters are very strongly linearly dependent. Values
equal to 1 and -1 indicate that the parameters are completely
proportional or inversely proportional.

III. DISCUSSION

A. Simulation

The PDEs were discretized for simulation using a combi-
nation of second order central finite difference methods and
first order forwards and backwards finite difference methods
for the boundary conditions. The input current for the system
was a pulsed discharge at 0.5C with a 50% duty cycle. All
parameter values used were for a LiCoO2 battery due to a
lack of comprehensive data for our Zn-MnO2 system.

Despite the mismatch of parameter values for this simula-
tion, the results are still applicable for any battery system as
this sensitivity analysis relates the relative effects of different
parameters to each other. While the absolute magnitudes
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present in the D matrix may not be representative, their relative
values are relevant in describing the relationship between
chosen parameters.

B. Results

The D and C matrices for the simulation ran are provided
below (35).

D =

2

664
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3
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Again, for clarification, the parameter vector as in (15) is
reproduced below.
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The values in D indicate that the particle radius is more
influential on the output voltage than the electrode thickness
for both electrodes. For this particular simulation, this is
subject to the parameters used and may change based on
different values for D

j

s

, ↵j , etc.
The more significant result comes from the values present

in C. The entries corresponding to the linear dependence of
particle radius and electrode thickness for each electrode are
equal to -1. These values are expected because both parameters
only appear in the boundary condition within the sensitiv-
ity equations (21), (27), (24), (30). This sensitivity analysis
suggests that the particle radius and electrode thickness are
inversely proportional to one another.

In reality, this inverse proportionality is not true because the
SPM itself assumes that the dynamics occurring at a single
particle can be scaled up to represent the entire volume of
each electrode. For real batteries, the fraction of each electrode
participating in the reaction is limited by electrolyte dynamics,
which are assumed away in the SPM, so changes in particle
radius cannot be compensated for by changes in electrode
thickness and vice versa.

However, this inverse proportionality does reveal that the
particle radius and electrode thickness are strongly linearly
dependent, even if they are not completely proportional. As
a practical point, both parameters should not be changed
simultaneously to avoid obfuscating the effects of either on
the output voltage.

Ultimately, this analysis yields insight into which parameter
should be prioritized for process control during manufacturing.
Based on these results for the parameter values used, control
of particle size should be prioritized over electrode thickness
when seeking to tightly control output voltage.

C. Future Work

Future work should seek to add more insightful parameters
that still remain controllable during the manufacturing pro-
cess. These can include the moles of cycleable zinc n

Zn,s

,
the volume fraction of active material "

j

s

, and the specific
interfacial surface area ↵

j . Furthermore, the sensitivities of
additional metrics (such as state of charge and cycle life)
to these parameters should also be investigated. The SPM
itself may need to be augmented by adding back in electrolyte
dynamics to more accurately model the true system dynamics
[12].

IV. SUMMARY

A parameter sensitivity analysis was performed for bat-
tery output voltage with respect to electrode parameters by
adapting the single particle model (SPM). The parameters
of interest were the particle radius and electrode thickness.
Analysis concluded that output voltage is more sensitive to
particle radius than electrode thickness and that they are
inversely proportional to each other, which is influenced by the
simplifying assumptions inherent in the SPM. The results rank
the importance of each parameter for use in manufacturing
process control.
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