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Abstract—This paper proposes a data-enabled predictive
energy management strategy for a smart home nanogrid (NG)
that includes a photovoltaic system and second-life battery
energy storage. The key novelty is utilizing data-based forecasts
of future load demand, weather conditions, electricity price, and
power plant CO; emissions to improve the NG system efficiency.
Specifically, a load demand forecast model is developed using
an artificial neural network (ANN). The forecast model predicts
load demand signals for a model predictive controller (MPC).
Simulation results show that the data-enabled predictive energy
management strategy achieves 96%-98% of the optimal NG
performance derived via dynamic programming (DP). Its sen-
sitivity to the control horizon length and load demand forecast
accuracy are also investigated.

I. INTRODUCTION

The nanogrid and microgrid concepts have attracted signif-
icant interest for integrating distributed and renewable power
generation into the smart grid [1]. Essentially speaking,
a microgrid (MG) is a localized power system consisting
of electric generation sources, loads, and energy storage
connecting to the electric grid at a single point. Nanogrids
(NGs) are small microgrids typically serving a single build-
ing, or a home in this paper’s particular case. Economic
viability and reliability of NGs depend critically on the
energy management scheme, which determines flows of
power between generation, loads, and storage. However,
optimal energy management is complicated by uncertainty
in environmental conditions, load demand, and battery aging.
In this paper, we develop a predictive energy management
scheme for a home with photovoltaics (PV) and second
life battery energy storage, using data-based forecasting of
environmental conditions, load demand, electricity prices,
and grid emissions.

Rule-based energy management approaches have been
widely studied for MG/NG applications. However, the de-
sign of such schemes depend on the designer’s intimate
knowledge of the MG/NG. Optimization-based energy man-
agement strategies are highly desirable. In particular, model
predictive control (MPC) is appealing because it incorporates
model-based predictions and explicitly enforces constraints
[2]. The key challenge in MG/NG applications, however, is
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uncertainty in PV power generation and home load demand.
One may forecast PV power via machine learning techniques
[3] or irradiation and temperature forecasts in combination
with photovoltaic system models [4]. Forecasting home load
demand can be accomplished via machine learning [5],
sensing individual plug loads [6], or physical models [7].

The main contribution of this paper is to systematically
address load and solar power uncertainty by incorporating
Internet-based weather data and forecasting methods into a
model predictive control formulation of NG energy manage-
ment. In particular, this paper adopts a data-driven approach
to forecast future load demand using neural networks. PV
power generation is predicted from photovoltaic models and
existing data-based forecasts of environmental conditions,
similar to [4].

The remainder of the paper is organized as follows. In
Section II, the configuration and system model of the PV-
Battery smart home NG is presented. Section III develops
and validates a data-enabled load forecast model. Section IV
details the model predictive controller. Simulation results and
sensitivity studies are illustrated in Section V, followed by
key conclusions in Section VI.

II. PV-GRID SMART HOME MICROGRID
A. Nanogrid Configuration

In Fig. 1-(a) the smart home NG is composed of a PV
array, a second-life! lithium-ion battery pack, the home load
demand, the utility grid, various power converters, data-based
information and energy management algorithms. The battery
is necessary to reconcile the imbalance between available PV
power and load demand. The power flow topology is detailed
in Fig. 1-(b). The PV panels and the battery are coupled to
a DC bus to power DC loads. The DC bus is also connected
to a DC/AC inverter to power AC loads and interact with
the grid. Note that we assume energy will not be exported
to the grid, since a robust regulation for selling electricity to
the grid is absent yet. Compared with conventional homes,
the PV-battery smart home NG provides additional degrees
of freedom for electric power flow.

The controller’s role is to manage power flow between
these components to minimize objectives such as electricity
cost or grid power plant emissions, subject to safe operating
constraints. Specifically, a predictive scheme is applied that
leverages Internet-based data to forecast home load demand
and PV power. Next we detail sub-models for the NG
components.

Ithe battery pack is reused from an automotive application, such as an
electric vehicle
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Fig. 1. A data-enabled PV-Grid smart home nanogrid: (a) the system
configuration, where the Internet provides real-time data on weather condi-
tions, load demand forecasts, electric cost rates, and other services for the
controller; (b) the power topology.

B. NG System Model

1) Solar Irradiation: A Liu-Jordan model is adopted to
determine the solar flux and PV panel temperature [8]. The
solar irradiation includes the global horizontal irradiance
Sgn, the direct beam irradiance Sg,, and the diffuse irra-
diance Sy;. The effective solar irradiance is given by

Spy = Sap(cos b5 cos B, + sin b, sin 5, cos(as — )
+Sai(1 4+ cos Bp) /2 + Sgnpg(1 —cos B,)/2, (1)

where 05 and «; are the zenith angle and azimuth angle of
the sun, respectively; o, and (3, are the azimuth angle and
altitude tilt angle of the PV panel, respectively; p, is the
diffuse reflectance rate of the ground. The panel temperature
is calculated by

T = Sppelt0ve) 1T, )

where T}, v,, is ambient temperature and wind speed, and
a, b are empirical parameters.

2) Photovoltaic Array: The PV cell is modeled as an
equivalent circuit [9]. This model consists of an ideal current
source I, in parallel with a diode and resistance Iz, all in
series with resistor R,. The diode models the semiconductor
material, and R, models the resistance between the contactor
and semiconductor material. The governing equations are
given by
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where V; and V,.;; are the diode voltage and PV cell voltage,
respectively; I, is the PV cell output current, and I, is the
cell saturation current; ¢, A and k are an electron charge, an
ideal factor, and the Boltzmann’s constant, respectively; I ,
is the cell’s reverse saturation current at reference tempera-
ture T’.; Ey4 is the band-gap energy of the semiconductor;
I, is the reference short-circuit current of the PV cell at
25°C and 1kW/m2; K1 is the cell’s short-circuit current
temperature coefficient. The cell model is scaled to an PV
array by considering ny,, cells in series [10], thus the array
voltage and power are

va = npvvvcella Pp'u = vavlpv- (7)

For brevity, we only summarize the PV model equations
here from (3) to (7). Further details can be found in [10].
Note that a maximum power point tracking (MPPT) al-
gorithm is required to improve PV efficiency. Details are
omitted here for brevity.

3) Second-life Battery: Second-life batteries with 80% of
the rated capacity are included in the NG. The battery pack
is modeled as an equivalent circuit. The electrical power at
the battery terminals is denoted as Ppq¢, and the battery
state-of-charge is denoted by SOC. According to the power
conservation law,

I batt
R
where Ipq; is the battery current; V., R;, and @) are the
open circuit voltage, the internal resistance and the battery
capacity, respectively. Py, > 0 corresponds to discharging,
whereas Pp,:+ < 0 corresponds to charging. In practice, the
parameters of the deployed second-life battery cells need to
be re-identified through experiments, and additional efforts

are required to eliminate the inconsistency between different
cells [11].

4) Conservation of Power: The home power demand
Pyem, and grid utility power P,.q satisfy the power con-
servation law,

Pbatt = Vochatt - Il?attR“H SOC = (8)

Paem = PgTd + nddndappv + NaaMvt Poatt &)

where 144 is the efficiency of the DC/DC converter; 74,
is the efficiency of the DC/AC inverter (set as 1 when the
power from PV or the battery is used to fulfill the DC load
demands); 7y is the efficiency of the battery, ny: = 7cnrg
when Pyqy < 0, Mot = TNdischrg when Pyqi > 0. Pgrd >0,
meaning we cannot export power to the grid.

Equations (1)-(9) summarize the model used for the model
predictive controller (see Section IV). Next we develop a
data-based load demand forecasting algorithm.
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Fig. 2. Electricity consumption of a single family home in Los Angeles
from 2013-04-01 to 2014-03-31.

III. DATA ENABLED FORECAST
A. Load Data Analysis

We analyze load data from a single family home in
Los Angeles to investigate correlations between the load
demand and the season, temperature, day of week, and time
of day. The goal is to determine inputs to include in the
data-driven model. The collected data corresponds to date
range 2013-04-01 to 2014-03-31. Figure 2 plots the hourly,
daily, monthly and yearly average electricity consumption.
The hourly load demand varies between 0.5 kW to 4 kW.
The yearly average load is about 1 kW. It is observed that
the house consumed more energy in August and September
(hottest months), and December, January (coldest months)
relative to the other months. The correlation between the
weekly average load and the weekly average temperature
of this geographical area is also investigated. The result
indicates that more energy is consumed when the weekly
average temperature is higher than 21°C or lower than 14°C.
Since temperature correlates with different seasons, either
input can be used for the forecasting model.

The load data is classified according to the day of week,
shown in Fig. 3. We can see that from Monday to Thursday,
the daily pattern of electricity consumption is similar. Peak
loads consistently occur from 7:00 to 8:30 AM, and 6:00 to
10:00 PM. On Fridays, the pattern changes. There are two
peak loads observed in the morning, which is clearly different
from the Monday-Thursday pattern. During weekends, the
electricity consumption pattern is more random. The peak
loads on Saturday and Sunday usually last longer, and the
daytime off-peak load is also higher compared with the
weekdays, resulting with a higher average load during the
weekend.

This analysis is used to determine the exogenous inputs
of the forecast model (to be presented in Section III-B).
Note that other information, such as the holidays or personal
habits, can also be incorporated into the forecast model.

B. Load Demand Forecast

A radial basis function neural network (RBF-NN) forecast
algorithm is utilized to forecast short-term future loads. RBF-
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Fig. 3. Electric load from Monday to Sunday of the sampled LA data.

Blue: load of particular week days; red: hourly average load across all
weeks; green: daily average load over all weeks; yellow rectangle: peak
load periods.

NN is selected because it captures the nonlinear input-output
relations of home load demand and achieves reasonable fore-
cast accuracy [12]. Please note that other forecast methods
may be used. Generally, the RBF-NN model contains three
layers: the input layer, the hidden layer, and the output layer.
The hidden layer performs nonlinear transforms for feature
extraction, and the output layer gives a linear combination
of the output weights. The Gaussian function is used as
the radial basis function in the hidden layer to activate the
neurons [5], formulated as

al = exp _H”_C”2
202 ’
Wa +b

(10)

(an

where a' and a° are neural outputs of the current layer and
prior layer, respectively; n is accumulator output and W is
weight; c is the neural net center and b is the spread width.
Both ¢ and b can be fit using a gradient descent method.
Assume the input is X. According to Section III-A, the
air temperature, day of week, and time of day are selected
as exogenous inputs to the RBF-NN model, together with
the endogenous input, the historical load. Thus, the input of
the RBE-NN is designed as X = [T, D, Ty Ly|”, where
T, is the forecasted air temperature obtained via Internet-
based weather services. T, is the true air temperature and
used only during the training process. D,, is the future day
of week. T} is the future time of day. L; is the historical
load. The output of the forecast algorithm Y is the future
m—dimensional load demand vector, notated as Pdem.

n =

1

C. Load Demand Forecast Validation

The RBF-NN forecast model is validated in this section.
The validation data is one-year real electricity consumption
data (2013-04-01 to 2014-03-31) collected from two houses
located in Los Angeles (LA) and Berkeley. The first half
year data is used for neural network training, and the second
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Fig. 4. Forecast examples and the corresponding air temperature of the
LA load data: (a) on 2013-09-15 Tuesday; (b) on 2013-12-06 Friday. Note
that the output vector length is 24-hour, meaning the forecast of the future
24-hour loads are completed in one process.
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Fig. 5. (a): Empirical CDF for forecast RMSE of the LA and Berkeley
load data; (b): Average RMSEs of the LA and Berkeley data with different
historical load lengths used in the RBF-NN input (output is 24-hour long).

half year data is used for validation and comparison. The
sampling period of the load data is one hour. The length of
the historical load (in the input vector) and the length of the
prediction horizon (output vector) are both initially set as 24.

An empirical cumulative distribution function (CDF) of all
the root mean square errors (RMSEs) of the forecast results
are demonstrated in Fig. 5-(a). Note that 80% of the RMSEs
are below 0.45 kW and 0.55 kW in the LA and Berkeley
data, respectively. The RBF-NN model is able to maintain
the forecast error within an acceptable range. The accuracy
validation of the forecast model is further quantified and
verified in Section V.

Sensitivity to the input historical load length is also
investigated. The average RMSE of the LA and Berkeley
data with different historical load lengths is illustrated in Fig.
5-(b). As expected, longer historical load vectors produce
better forecast accuracy. Interestingly, the marginal accuracy
improvement decreases dramatically for historical load vec-
tors greater than six hours. Conversely, the most recent five
hours of load significantly impact forecasting accuracy.

D. Weather, Cost, and Emission Forecasts

Weather forecast services are now ubiquitous from the
Internet. We assume that the solar irradiance and air tem-
perature information is available via weather forecasting
services (i.e. application programming interfaces (APIs)).
The acquired irradiation and temperature information is
injected into the solar irradiation model (see Section II-B.1)
to estimate the PV solar flux and PV temperature, denoted
as Spv and 7T, pu» respectively.

In addition, the electric cost and power plant carbon
emissions are incorporated into the objective function of
the controller (see Section IV). This information is also
assumed to be available from the Internet. The observed
electric rate and unit carbon emission are notated as R, and
C., respectively.

IV. MODEL PREDICTIVE CONTROL

The proposed data-enabled predictive energy management
strategy determines the optimal power flow, given forecasted
load demand, weather conditions, and electricity cost ob-
tained from the Internet. Given the system model (1)-(9), we
require one control input to render a casual system, and select
grid power P,.q(t). Denoting x(t) as the state variable, u(t)
as the control variable, d(t) as the system disturbance, and
y(t) as the output, the system model is

&(t) = f(x(t), u(t), d(t)),

y(t) = g(x(t), u(t), d(t)),
with 2(t) = SOC(t), u(t) = Pyra(t), y(t) = Poaus(t).
The disturbance d(t) = [Piem(t), Spu(t), Tpy(t)]T, where
Piem(t), Spy(t), and T}, (t) are the forecasted load demand,

solar irradiation and PV temperature, respectively. The elec-
tricity cost and carbon emission can be calculated by

E.(u,t) = Re(t) - u(t),
E.(u,t) = Ce(t) - u(t),

12)
13)

(14)
15)

where R, (t) and C.(t) are time-varying electric rate and unit
carbon emission, respectively. The objective function is

E(u,t) = M E-(u,t) + M Ec(u,t), (16)

where A\; and )\, are weighting parameters. For simplicity,
we fix the prediction horizon length equal to the control
horizon, namely L,. Assume the time step is At. At time
kAt, the cost function Jj, is formulated as

(k4+L,)At
Jp = / E(u,t)? dt.
kAt

a7

Additionally, the following constraints must be satisfied:

SO.Cm“[1 <S0C < SOCmaX7 I < Ty < Iax,
Poait < Prate < Py’ Pyt < Pora < PR
(18)
Special consideration is given to the battery terminal SOC
constraint during each receding horizon of the MPC. Phys-

ically, the battery SOC can vary between SOC™" and
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Fig. 6. Week-long control result of the data enabled predictive energy
management on the LA house when A1 = 1, A2 = 0 in cost function (16),
with load demand forecast by the RBF-NN.

SOC™#* freely. However, in this paper we require the
terminal SOC to be equal to a reference value, which is

SOC(1,)ar = SOC, (19)

where SOC is a pre-defined reference for terminal SOC
of each MPC horizon. In this case, the NG works under
a charge-sustaining mode, to avoid overcharge or overdis-
charge situations. The control procedure of the proposed
predictive energy management strategy follows the standard
one of MPC [2].

Dynamic programming (DP) is employed in step two
to solve the constrained nonlinear optimization problem
at each time step. Alternative nonlinear formulations that
admit special structure, e.g. convex programs or quadratic
programs, can utilize corresponding solvers [13]. DP is used
here for its generality and provable optimality.

V. SIMULATION AND DISCUSSION
A. Data-enabled Predictive Energy Management

The PV panel parameters are adopted from a commercial
product: Renogy Monocrystalline 250D. The battery pack
is from a Toyota Prius hybrid electric vehicle, with 168
series-arranged C-LiFePOy cells. Each cell’s nominal charge
capacity is 6.5 Ah, and we assume the second-life pack has
already degraded to 80% of its original energy capacity. We
consider 6 PV panels in series and 5 battery packs in parallel.
Note that the energy management strategy focuses on slower
dynamics of the NG, thus the control time step is selected
as 1 hour. Faster dynamics are governed by a lower level
controller in practice.

1) Supervisory Control: The control and prediction hori-
zon length are 24 hours. The electricity load data is collected
data from single family homes in LA and Berkeley. The
load demand during each control horizon is predicted by
the RBF-NN forecast model. The weather condition, solar
flux, electric rate and carbon emission data are obtained
from the National Climatic Data Center, PG&E and CAISO,
respectively. These information streams are assumed known
to the controller via the Internet.
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Fig. 7. Normalized energy management performance when increasing the
control horizon length from 1 to 24, where CM stands for the proposed data-
enabled predictive energy management strategy. The cost without PV/battery
is normalized as 100% to indicate the worst case performance. Dp optimal
is the best-case solution solved by DP when full knowledge is known a
priori.

First, we consider Ay = 1, A5 = 0 in the cost function
(16) to investigate the optimal NG behavior with respect to
electric cost only. A week-long energy management result is
shown in Fig. 6. The PV power is intermittent, and drops
to zero during the night. During the day, the solar energy is
directly used to power the house. Extra energy is stored into
the battery for future use. When solar energy is insufficient to
satisfy load demand, the battery or grid provides support. The
bottom figure shows a two-tiered cost structure, including
high-cost “on-peak” rates and lower-cost “off-peak™ rates.
To reduce the electricity cost, the controller avoids on-peak
grid power as much as possible, as demonstrated in Fig. 6.
Consequently the battery generally charges during off-peak
periods, and discharges during on-peak periods.

A similar simulation result is observed where the objective
is to minimize the carbon emissions F., i.e. A\; =0, Ay = 1.
The controller avoids using grid power during higher carbon-
emission periods.

2) Horizon Length Determination: Next we examine con-
trol horizon length. The energy management performance for
control horizons of 1 hr. to 25 hrs. are shown in Fig. 7,
normalized to the electric cost without PV and battery (i.e.
without NG). For a 1 hr. horizon, the MPC is short-sighted
and normalized cost is about 85%. As the control length
increases, the performance converges towards the lower
bound calculated via dynamic programming (DP) with global
time horizon and perfect forecasts (DP optimal). When the
control length is 7 hours, the cost is 2% greater than the
DP result (approximately 64%). Consequently, performance
nearly equal to having perfect forecasts (i.e. the DP result)
can be achieved with a 7 hour horizon, with negligible
marginal improvements for longer control horizons.

3) Energy Manager Assessment: Ten weeks are randomly
selected from the LA and Berkeley data sets for a com-
prehensive assessment of the controller. Results are listed
in Table I. Symbols C, P and o indicate the cost or
carbon in USD or kg, percentage, and the standard deviation,



TABLE I
PERFORMANCE COMPARISON WITH RESPECT TO COST AND CARBON

Type Crt Pry Ort Cep Py Ocb
Without NG 27.32 100% - 8.03 100% -
DP with NG 1697  621% +/-03% 493 614% +/-0.7%
CM with NG 1754 642% +/-08% 5.07 63.1% +/-1.2%

(rt indicated for the electric rate, and cb means the carbon emission.)

72 DP Optimal O
O Uniform Distribution| ~ © o
% RBF-NN Result %3080
70+ & ©° |
& 0

i |
@%%

o
(=2
T

Normalized Cost (%)
&
g
@
o

=3
b

62

; ; ; ; ; ; ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Demand Forecast RMSE

Fig. 8. Normalized energy management performance of the artificially
formulated load demand with uniformly distributed RMSEs from 0 to 1,
compared with the RBF-NN energy management results.

respectively. We can see that both the electricity cost and
carbon emission can be reduced by over 35% compared to
homes without a NG system. Moreover, the data-enabled
predictive energy management is only 2% worse than the DP
optimal benchmark. This suggests moderately accurate fore-

casts of load demand are sufficient for excellent controller
4) Forecast Error Sensitivity Study: Next we investi-

gate load demand forecasting error on energy management
performance. To conduct this sensitivity study, we append
uniformly distributed random errors to the real load demand
data. The RMSE of this artificially formulated load is in-
creased from O to 1 (kW). We implant the contaminated load
demand forecasts into the MPC.

Over 200 tests with uniformly distributed errors are con-
ducted, compared with 20 RBF-NN tests, shown in Fig.
8. When the RMSE is below 0.3 kW, the energy manager
performs closely to the DP optimal solution, with normalized
costs are between 62% and 64% compared with no NG
scenario. These results demonstrate that normalized cost
increases linearly as the forecast RMSE increases.

Additionally, we note the RMSE of the RBF-NN fore-
caster is near 0.38 kW. The normalized cost is 63.4%, which
equals the performance of contaminated forecasts with just
0.25 kW RMSE. This result is surprisingly good, which
is only 1.5-2% higher than the DP optimal solution. After
comparison, we found that the forecast RMSE produced by
the RBF-NN has a tighter distribution (i.e. smaller variance)
compared to uniformly distributed errors. This indicates
that the RBF-NN forecast model captures the nonlinear

performance.

characteristics of the load data and provides a reasonable
disturbance estimate for MPC, relative to the performance
achieved with perfect forecasts.

VI. CONCLUSIONS

This paper presents a data enabled predictive energy man-
agement strategy for a PV-battery smart home nanogrid. A
model predictive controller (MPC) is formulated to solve the
energy management problem. A RBF-NN model is utilized
to forecast home load demand, which is used as a disturbance
prediction in the MPC controller. Future weather conditions
and other information streams are acquired from the Internet
integrated into the energy management system. Numerical
experiments demonstrate that the proposed predictive energy
management system achieves 96%-98% optimality of the
deterministic DP benchmark with respect to electric cost and
carbon emission. In addition, the controller’s sensitivity to
the control horizon length and load demand forecast accuracy
are investigated to determine the fundamental tradeoffs. Fu-
ture work involves energy storage from plug-in electric vehi-
cles, and demonstration of the proposed energy management
strategy on an experimental smart home at the University of
California, Davis [11].
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