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Abstract— This paper examines modeling and control of
a large population of grid-connected plug-in electric vehicles
(PEVs). PEV populations can be leveraged to provide valuable
grid services when managed via model-based control. However,
such grid services cannot sacrifice a PEV’s primary purpose
– mobility. We consider a centrally located fleet of identical
PEVs that are distributed to and collected from drivers. The
fleet also provides regulation services to the grid, contracted
a priori. We develop a partial differential equation (PDE)-
based technique for aggregating large populations of PEVs. In
particular, the model is a set of two first-order hyperbolic PDEs
coupled with an ODE in time. PDE methods are of particular
interest, since they provide an elegant modeling paradigm with
a broad array of analysis and control design tools. The control
design task is to minimize the cost of PEV charging, subject to
supplying PEVs to drivers with sufficient charge and supplying
the requested power to the grid. We examine this control design
on a simulated case study, and analyze sensitivity to a variety
of assumptions and parameter selections.

I. INTRODUCTION

PEVs provide a compelling opportunity for supplying
demand-side management services in the smart grid. Namely,
a vehicle-to-grid (V2G) capable PEV communicates with
the grid, stores energy, and can return energy to the elec-
tric grid. If properly managed, PEVs can enhance energy
infrastructure resilience, enable renewable integration, and
reduce economic costs for consumers and energy providers
[1]. In addition to these societal-level infrastructure and
environmental benefits, V2G may provide additional revenue
streams to PEV owners [2]. Underscoring this opportunity,
U.S. personal vehicles are parked and un-used 96% of time
[3]. A single PEV can generally provide 5-20 kW, which
is insufficient to participate in power grid markets. How-
ever, populations of PEVs can be aggregated to collectively
provide grid services [4]. The main challenge, however, is
monitoring and managing a large population of distributed
PEV resources without sacrificing their primary function of
personal mobility. As such, this paper examines modeling
and control of grid integrated PEV populations.

The V2G concept was popularized by Kempton [5] and
demonstration projects are underway [6]. Researchers are
exploring many aspects of V2G, ranging from bi-directional
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power converters to public policy and energy market eco-
nomics (see survey article [7]). A growing body of lit-
erature addresses design of smart charging algorithms for
PEV control and examine various centralized or distributed
protocols. Centralized algorithms [8], [9], require a central
infrastructure to communicate with each agent, collect mo-
bility information, and compute optimal load profiles for
each PEV. When the number of agents grows, these methods
require heavy communication, memory, and computational
resources. In distributed optimization approaches each PEV
solves a local problem and communicates independently to
a central system. Recent studies have studied various dis-
tributed algorithms, including ADMM [10], non-cooperative
games [11] and dual splitting [12]. However, for all these
methods, the problem becomes harder to solve as the number
of EVs grows: either the convergence time increases or
the optimality of the computed solution decreases. In this
paper we study a continuous modeling approach for PEV
smart charging, as opposed to modeling each individual
agent. Methods for modeling and controlling the population
dynamics via PDEs have come into recent focus [13], [14].
The PDE system is subsequently discretized to formulate an
aggregator control problem. Contrary to other methods, the
our model complexity does not increase with the number of
agents. In fact, model accuracy increases as the number of
PEVs increases.

The remainder of this paper is organized as follows. Sec-
tions II and III develop and validate the PDE model of PEV
aggregations. Section IV formulates the aggregator control
problem, and Section V demonstrates the control results on
an exemplary case study. Sensitivities to various modeling
assumptions and parameters are provided in Section VI.
Section VII summarizes the main results.

II. MODELING AGGREGATIONS OF PEVS

We consider a fleet of identical PEVs managed by a central
organization, where PEVs are checked-out to drivers. This
context includes rental or car sharing fleets. We seek to model
a large population of N individual PEVs as a continuous
representation, mathematically represented by three coupled
PDEs. PEVs in the population fall into three discrete states:

• Charging: a PEV receives energy from the grid (Grid-
to-Vehicle or G2V)

• Idle: a PEV is plugged-in but does not charge, nor
discharge.

• Discharging: a PEV supplies energy to the grid
(Vehicle-to-Grid or V2G)



TABLE I
NOMENCLATURE

Symbol Description
x PEV battery SOE
t Time
u(x, t) Density of charging PEVs
v(x, t) Density of idle PEVs
w(x, t) Density of discharging PEVs
σi→c(x, t) Flow of PEVs from Idle to Charge
σi→d(x, t) Flow of PEVs from Idle to Discharge
σi→Or(x, t) Net Flow of PEVs from Idle to On Road
Arr(x, t) Flow of PEVs from On Road to Idle
Dep(x, t) Flow of PEVs from Idle to On Road
qc(x) Instantaneous charging power
qd(x) Instantaneous discharging power
Xdep Min allowed SOE for departing PEVs
Xmax Min SOE for discharging and idle PEVs
Xmin Max SOE for charging cars
Nmin Min number of departure-ready PEVs at Tmax

Each discrete state will be described by a transport PDE.
The aggregator controls how PEVs switch from one discrete
state to another. This ultimately renders coupling terms and
forms a system of three coupled transport PDEs.

A. PDE Model

Consider a large population of plugged-in PEVs over the
State of Energy (SOE) interval [0,1] at some fixed time,
as visualized by Fig. 1. PEVs exist in three states: charge
u(x, t) , idle v(x, t), and discharge w(x, t). The σ terms
model PEVs moving between individual states σi→c,σi→d ,
and between states and the environment, i.e. checked-in or
out by drivers on the road σi→Or. The cars, which are on road
(uncontrollable) are not modeled in this framework; only the
flow σi→Or is included.

To derive this aggregated PDE population model, we
consider a simple PEV battery model. Denote the i’th PEV
battery SOE and power by xi(t) and Pi(t), respectively. Then
a simple battery model is given by

ẋi(t) =
ηm(xi)

Emax
Pi(t), i = 1, · · · ,N, (1)

m =

{
1 if Pi(t)≥ 0,
−1 if Pi(t)< 0,

(2)

where Emax,η(·),N are parameters that represent the battery
energy capacity, power conversion efficiency, and PEV pop-
ulation size. Efficiency η(·) ∈ [0,1] is generally a function
of SOE xi. We assume Emax and η(·) are homogeneous
across the entire population. Furthermore, the cumulative
power consumption from charging and power generation
from discharging is given, respectively, by

Pc(t) = ∑
N
i=1 Pi ·1(Pi > 0), Pd(t) = ∑

N
i=1 Pi ·1(Pi < 0),

(3)
where 1(·) is the indicator function. More complex battery
models could be considered in future work.

Let u(x, t),v(x, t),w(x, t), all defined on the spaces [0,1]×
R+ → R, denote the PEV distribution at SOE x and time
t, in the charging, idle, and discharging states, respectively.
Consider an infinitesimal segment of u(x, t) as shown in Fig.
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2. The number of charging PEVs at SOE level x at time t is
denoted by u(x, t). We seek to model the evolution of loads in
the infinitesimal volume contained between x and x+dx. The
PEVs with SOE x charge at rate qc(x, t) = η(x)/Emax ·P(t).
The entering flow and exiting flow are respectively:

F(x, t) = qc(x, t)u(x, t), (4)
F(x+dx, t) = qc(x+dx, t)u(x+dx, t). (5)

An additional flow of PEVs from the idle state to charging
state are denoted σi→c(x, t) (see Fig. 1 and 2). During the
infinitesimal time interval dt, the conservation law gives:

[u(x, t +dt)−u(x, t)]dx = (6)
qc(x, t)u(x, t)dt−qc(x+dx, t)u(x+dx, t)dt +σi→c(x, t)dt.

When dt→ 0 and dx→ 0, the relation becomes:

∂u
∂ t

(x, t) =− ∂

∂x
[qc(x, t)u(x, t)]+σi→c(x, t). (7)

PDEs for the idle and discharging are similarly derived as

∂v
∂ t

(x, t) =−σi→or(x, t)−σi→c(x, t)−σi→d(x, t), (8)

∂w
∂ t

(x, t) =
∂

∂x
[qd(x, t)w(x, t)]+σi→d(x, t). (9)

B. Boundary Conditions

For the system to be well posed, we need to define
boundary conditions at x = 0 for u(x, t) and x = 1 for w(x, t).
In addition, we must define boundary values for qc(x, t) and
qd(x, t) to ensure physical meaning and conservation of loads
in the system. Namely,
• The number of charging PEVs at SOE x = 0 is zero,

i.e. u(0, t) = 0. No charging at x = 1, i.e. qc(1, t) = 0.
• The number of discharging PEVs at SOE x = 1 is zero,

i.e. w(1, t) = 0. No discharging at x= 0, i.e. qd(0, t) = 0.

C. Discretization

The model is discretized using a high-resolution scheme
with a Superbee flux limiter adapted to variable-coefficient
linear transport equations from [15, Ch. 9, S. 4]. Practically,
this is an upwind scheme with high-resolution corrections
that provide second-order accuracy in space.



III. MODEL VALIDATION

A. V2G-Sim

We assess the aggregate PDE model’s accuracy against the
Vehicle-to-Grid Simulator (V2G-Sim) developed by the Grid
Integration Group at Lawrence Berkeley National Laboratory
[16]. V2G-Sim is an agent-based simulator that models the
driving and charging behavior of individual PEVs and their
grid impact. The necessary inputs for V2G-Sim are vehicle
characteristics (e.g., battery capacity, battery charging model,
powertrain parameters), driving schedules (e.g. duration of
activities and drive cycles), and charging infrastructure (e.g.
location of chargers, charging rate). The simulator is initial-
ized with statistical data for trip length, departure times, and
destination types derived from the 2009 National Household
Travel Survey (NHTS) [17].

B. Validation method

The 2009 NHTS dataset includes trips from 17,805 vehi-
cles in California during a weekday. We study four cases,
which differ with respect to charging rates and control
algorithms. PEV parameters are adopted from the Nissan
Leaf with a battery energy capacity 26.8 kWh.

The first control algorithm is the standard open-loop
strategy: vehicles begin to charge as soon as they plug in,
and stop when they are fully charged. The second control
algorithm includes V2G services. We apply a rudimentary
V2G control algorithm to validate the PDE model: every
PEV discharges during peak hours (6pm to 9pm) if it has
sufficient charge (SOE > 0.6) and PEVs stop charging if
SOE > 0.55. This algorithm is applied simply to evaluate
the PDE model.

We assume the charging/discharging power is constant
with respect to SOE, which is valid for the low battery C-
rates (normalized charge rates) considered here. We study
two charging rates: Level 1 (1.44 kW) and Level 2 (6.6 kW).

C. Validation results

We test our model for a 24 hour period in four different
cases: {L1 charger, L2 charger }×{open loop, V2G control}.
In every case, we use a 0.01 SOE step. Since we need to
satisfy the Courant Friedrichs Lewy (CFL) condition qdt

dx ≤ 1
[15], time step sizes differ for L1 and L2 chargers: 11.4
minute interval for L1 chargers (120 time steps) and a 2.4
minute interval for L2 chargers (601 time steps).

We compute the L2 norm of the difference between the
PDE model and the V2G-Sim distribution as

e(t) =
||(u+ v+w)PDE(·, t)− (u+ v+w)V 2Gsim(·, t)||2

||(u+ v+w)V 2Gsim(·, t)||2
,

(10)
where fPDE refers to the values from the aggregated PDE
model and fV 2Gsim refers to V2G-Sim.

Table II provides the average normalized error over the
24 hour period. The PDE model approximates the SOE
distributions with an average normalized error of less than
3% and is more accurate for the open loop cases. Figure 3
shows e(t) for each time step. For both L1 cases and the

TABLE II
MEAN NORMALIZED ERROR OVER TIME

Case 1/T ·
∫ T

0 e(t)dt
L1 Open Loop 0.011

L1 V2G 0.023
L2 Open Loop 0.002

L2 V2G 0.028
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Fig. 3. Error in the 4 different scenarios

open-loop L2 case, e(t) is always less than 10%. For L2
chargers with V2G, Fig.3 shows that e(t) has large values for
some isolated time steps. These ”spikes” only occur during
the discharging period (from 6pm to 9pm) and have similar
magnitudes. These errors are in fact a numerical artifact of
the PDE discretization technique. Namely, at the end of the
charging period (6pm), PEVs tend to be aggregated at the
maximum allowable SOE. When PEVs discharge, then this
peak transports toward 0% SOE. This is highlighted in Fig.
5, which show snapshots of the distributions immediately
before, during, and immediately after the V2G period, for
the PDE model and V2G-Sim. The numerical phenomenon
occurs when there is a one SOE-step difference between the
load peaks in V2G-Sim and the PDE model. This can be
resolved via SOE smoothing. Figure 3 shows the smoothed
error esmooth(t) (in green) after averaging the load distribution
with the two closest SOE steps. The smoothed error esmooth(t)
is smaller than 4% for every time step.

esmooth(t) = (11)
||(ua + va +wa)PDE(·, t)− (ua + va +wa)V 2Gsim(·, t)||2

||(ua + va +wa)V 2Gsim(·, t)||2
,

where ga(x, t) =
g(x−dx,t)+g(x,t)+g(x+dx,t)

3 .
The aggregated charging and discharging power is pro-

vided in Fig. 4. The aggregated PDE provides excellent
accuracy, even in the case of L2 charging with V2G control.
Thus, the PDE model predicts aggregated fleet charge and
discharge sufficiently well, despite small offsets in time or
SOE due to numerical implementation. In the next section,
we use this PDE formulation to design a control algorithm
to optimally schedule EV charging and discharging.
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IV. OPTIMAL CONTROL FORMULATION

The control objective is to minimize the cost of charging
PEVs, subject to supplying sufficient energy to the grid
(for services contracted a priori) and providing sufficiently
charged EVs to drivers. We make the following assumptions:
(A1) The cost of electricity Celec(t) is known in advance.
(A2) EVs must be provided to drivers with a minimum

required State of Energy (SOE), Xdep.
(A3) The driver demand for vehicles is known in advance.
(A4) The aggregator sells energy to the regulation market.

It bids Pdes(t) one day in advance.
The real time regulation signal might be lower than Pdes(t).
However, the optimization program seeks a robust control,
which ensures that the aggregator has the available power
capacity during the entire day.

A. Optimal problem

The aggregator minimizes the cost of charging vehicles
over finite time period t ∈ [0,Tmax].

C =
∫ Tmax

0
Celec(t)

∫ 1

0
qc(x, t)u(x, t) dx dt, (12)

where only the charging state u(x, t) appears explicitly. To
ensure physical meaning of the system, we also impose
boundaries on SOE values for each category. For x > Xmax,

cars are restricted from charging further and for x < Xmin,
cars are forced to charge:

u(x, t) = 0, ∀ x≥ Xmax, (13)
v(x, t) = 0 = w(x, t), ∀ x≤ Xmin, (14)

The system must also satisfy three additional constraints.
1) Power supply constraint: We consider a scenario where

the EV aggregator participates in a regulation market. We
assume the bidding process has been completed and the
system operator has assigned an available frequency up
regulation capacity. Hence, the V2G aggregator commits to
supply at least Pdes(t):∫ 1

0
qd(x)w(x, t)dx≥ Pdes(t), ∀ t. (15)

2) Drivers’ demand constraint: We assume the demand
and arrival of cars are known in advance. This could be true
in a reservation-based system. This assumption is admittedly
restrictive, and will be examined via a sensitivity analysis
in Section VI. The arrival of cars Arr(x, t) is known for
all time and all SOE values. Similarly the total demand of
vehicles over time Dem(t) is known one day in advance. The
aggregator decides which PEVs are vended to the drivers, i.e.
at what SOE. In addition, we require vended PEVs to have
a minimum SOE level Xdep upon departure. Then, Dep(x, t)
becomes a controllable input, which satisfies the following
constraint: ∫ 1

Xdep

Dep(x, t) dx = Dem(t), ∀ t. (16)

3) Time horizon and final condition: Note that we con-
sider a finite-time horizon optimization problem. To ensure
continuity of the system after time period Tmax, we require
that the system contains a minimum number of PEVs Nmin
that are able to depart after Tmax.∫ 1

Xdep

(u+ v+w)(x,Tmax) dx≥ Nmin. (17)



B. Formulation of the optimization problem

The optimization problem is summarized as

min
σi→d ,σi→c,Dep

C =

Tmax∫
0

Celec(t)
1∫

0

qc(x, t)u(x, t) dx dt, (18)

subject to: (7),(8),(9),
u(0, t) = 0, w(1, t) = 0, (19)
u(x,0) = u0(x), v(x,0) = v0(x), w(x,0) = w0(x), (20)
−w(x, t)≤ σi→d(x, t)≤ v(x, t), (21)
−u(x, t)≤ σi→c(x, t)≤ v(x, t), (22)
(13)− (17).

Note all the functions and constraints are linear with respect
to states u,v,w, rendering a linear program.

To generate a finite dimensional linear program, we dis-
cretize the PDEs. Denote n ∈ [0,N] as the index for time
with time step ∆t, Tmax = N∆t. Denote j ∈ [0,J] as the index
for SOE with step ∆x. Spatio-temporally dependent variables
are discretized into the form f n

j = f ( j∆x,n∆t). We denote Mc
and Md as the transition matrices derived from discretization
of PDEs (see Section II-C). The PDE dynamics are then
approximated by:

un+1 = Mcun +σ
n+1
i→c , (23)

vn+1 = vn− [σn+1
i→c +σ

n+1
i→d +σ

n+1
i→Or], (24)

wn+1 = Mdwn +σ
n+1
i→d . (25)

We arrive at an explicit linear formulation after eliminating
the control variables σi→d and σi→c and expressing every-
thing in terms of u,v,w. The optimization problem becomes

min
u,v,w,Dep

∆t ∆x
N

∑
n=0

J

∑
j=0

Cn
elecqn

jw
n
j (26)

subject to

[u+ v+w]n+1 +
Depn+1

∆x
= Mcun +Mdwn +

Arrn+1

∆x
(27)

un
0 = 0, vn

J = 0, (28)

u0
j = u0( j∆x), v0

j = v0( j∆x), w0
j = w0( j∆x), ∀ j, (29)

un,vn,wn,Depn ≥ 0, (30)
un

j = 0 ∀ j ≥ Xmax · J (31)

vn
j = 0 = wn

j ∀ j ≤ Xmin · J (32)

∆x∑
J
j=0 qn

d, jw
n
j ≥ Pdes,n (33)

∑
J
j=Xdep·J

Depn
j = Demn (34)

∆x∑
J
j=Xdep·J

uN
j + vN

j +wN
j ≥ Nmin (35)

The program is linear with respect to u,v,w,Dep and we
use an off-the-shelf linear programming solver.

V. RESULTS

A. Data

We extract daily trip data (departure and arrival time of
vehicles) from the 2009 NHTS for 2,300 California vehicles
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[17]. Figure 6 shows the total number of plugged-in cars over
one day. Vehicles have a 28.6 kWh capacity and are charged
with L1 chargers (1.9kW). A 30 minute time step is used.
Electricity price is taken from the California Independent
System Operator (CAISO [18]) We use the electricity price
on the Day-Ahead market for an arbitrarily selected weekday
(August 22, 2014), from the local utility, PG&E (Fig. 7).

The regulation power Pdes(t) is generally defined on a
hourly basis. That is, the aggregator bids a Contracted
Power Capacity (CPC) and the System Operator provides
orders for regulation up and down one day in advance. Due
to uncertainties in the number of plugged-in cars and the
required energy to satisfy drivers, determining a V2G CPC
is an open question [6], [19]. One idea is to determine
the Achievable Power Capacity (APC) from the number of
plugged-in vehicles [19]. That is, APC(t) is defined by the
number of plugged-in PEVs (Fig. 6) and their discharging
rate qd = 1.9kW . APC(t) provides the instantaneously avail-
able capacity and gives an upper bound for the fleet discharge
power. Then a simple energy management method is to bid
for a percentage α ∈ [0,1] of the APC,

CPC(t) = α ·APC(t). (36)

In the remainder of the paper we define Pdes(t) = α ·APC(t)
for different values of α . Remaining simulation parameters
include: Xdep = 0.75, Xmax = 0.95, Xmin = 0.2, Nmin = 800,
u(x,0) = 2225, v(x,0) = w(x,0) = 0.

B. Optimal Charging

The control algorithm ultimately provides the distributions
of PEVs between the three categories: Charging, Idle, and
Discharging. Figure 7(a) presents the resulting distribution
for α = 0.25 and Fig. 7(b) shows V2G power and requested
power during the day.

The controller ensures enough PEVs exist in discharging
mode to meet the power supply demand (Fig. 7(b)). The
remaining PEVs are managed between Charge and Idle to
meet demand from drivers and to minimize overall cost (Fig.
7(a)). In this case study, PEVs mainly charge from 1 am to
3 pm, when the price of electricity is low. After 4pm large
flows occur from Charge to Idle to avoid peak hour charging.

A second aspect of the controller is to optimize the
distribution of cars along SOE values. Figure 8(a) shows
how the controller tends to aggregate cars around particular
SOE values. At the end of the optimization period, PEVs
are mostly in the idle category and are charged at the
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minimum required value Xmin = 0.2. A second peak occurs
at Xdep = 0.75, which corresponds to the final constraint of
having a minimum number of cars Nmin = 800 at Tmax. The
controller also optimizes the SOE level for departing cars,
with respect to condition x ≥ Xdep. Figure 8(b) shows that
almost all cars depart with the minimum required SOE, Xdep.

VI. SENSITIVITY ANALYSIS AND FEASIBILITY

A major assumption is that PEV arrivals and departures are
known in advance. Even if statistical studies or reservation-
based systems provide very good forecasts of driver behavior,
it is impossible to have an exact prediction. Therefore, we
investigate how the program reacts to uncertainties in driving
schedules. In the optimization program detailed above, the
demand for cars (Dem and Arr) impacts the constraints and
does not impact the cost function. Therefore, if the actual
demand is different from the expected one, then the cost
will remain the same but constraints may be violated.

1) Higher demand than expected: We run the optimiza-
tion with several parameters and various values for the
expected demand. Then, we apply the resulting control signal
with a higher demand than the expected one and examine the
impact on the constraints. Simulations demonstrate that:
• The final constraint (17) is almost always violated. If the

overall demand for cars is D+∆D instead of D, then
the available number of cars at Tmax will be Nmin−∆D
instead of Nmin.

• The demand departure constraint x ≥ Xdep is never
active in our simulations. Figure 9 shows how much
the demand can increase before the departure constraint
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Fig. 9. Sensitivity analysis to higher demands
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Fig. 10. Impact of lower than expected demand on cost.

becomes active, for different values of α . Except for
small values of α , the demand can double (more than
100% margin) without violating x≥ Xdep, thus demon-
strating robustness to this particular constraint.

2) Lower demand than expected: In this case, every
constraint is satisfied but the solution is suboptimal. Since
the aggregator overestimates the demand the resulting cost
is higher. Figure 10 shows how the realized cost relates to
the optimal cost for lower demands than expected.

3) Impact of control parameters on cost and feasibility:
We examine two sets of parameters for the aggregator:
• α is a grid-related parameter. If α increases, the aggre-

gator bids more power and V2G power increases.
• Nmin, Xdep are driver-related parameters. If their values

increase, SOE capacity offered to drivers increases.
Figure 11 shows the variability of cost with respect to
variations in these three parameters and Fig. 12 shows the
variability of cost per unit of V2G power ($/kWh). The
graphs show how the parameters impact cost and feasibility
of the system, and the tradeoffs in selecting these values.
• If α increases, then more power is necessary for the

regulation up and the cost of PEV charging increases.
• If α , Xdep and Nmin simultaneously take sufficiently high

values, then the constraints are too restrictive and the
problem becomes infeasible. High values of α imply
less flexibility to keep energy for drivers.

• Figure 12 shows that the optimization program leads
to economies of scale. Cost per kW decreases with
increasing α . That is, the aggregator is more aggressive
in utilizing excess PEV SOE for V2G services.

4) Impact of charging rate on cost and feasibility:
The optimization program depends on the available charg-
ing infrastructure and especially charge/discharge rates
qc(x, t),qd(x, t). Figure 13 presents the results for different
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Fig. 12. Sensitivity analysis regarding α and Xdep and Nmin
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Fig. 13. Sensitivity analysis regarding α , q and Nmin

rate values); fast charging allows more flexibility and higher
instantaneous power. Cost per generated power is therefore
lower with fast chargers and more stringent constraints can
be satisfied.

VII. CONCLUSIONS

This paper develops a partial differential equation (PDE)-
based model for grid-integrated plug-in electric vehicle
(PEV) populations. The model consists of three coupled
transport PDEs. We utilize this model to optimally manage
the PEV fleet to: (i) deliver contracted grid services, (ii)
supply drivers with sufficiently charged PEVs, and (iii)
minimize charging costs. We examine a case study and
assess sensitivity to uncertainties in PEV arrivals/departures,
V2G service level, and mobility-related parameters. Future
work will consider stochastic information for PEV arrivals,
departures, electricity prices, and regulation signals in a
real-time optimal control setting, such as stochastic model
predictive control.
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