
Sensitivity-Based Interval PDE Observer for Battery SOC Estimation

H. E. Perez and S. J. Moura

Abstract— Complex multi-partial differential equation (PDE)
electrochemical battery models are characterized by parameters
that are often difficult to measure or identify. This parametric
uncertainty influences the state estimates of electrochemical
model-based observers for applications such as state-of-charge
(SOC) estimation. This paper develops a sensitivity-based in-
terval observer that maps bounded parameter uncertainty to
state estimation intervals, within the context of electrochemical
PDE models and SOC estimation. Theoretically, this paper
extends the notion of interval observers to PDE models using
a sensitivity-based approach. Practically, this paper quantifies
the sensitivity of battery state estimates to parameter variations,
enabling robust battery management schemes.

I. INTRODUCTION

This paper develops a sensitivity-based interval partial dif-
ferential equation (PDE) observer for state-of-charge (SOC)
estimation in batteries, using an electrochemical-based model
with bounded uncertain parameters. The goal is to generate
an interval estimate of battery SOC that mathematically
relates parametric uncertainty to estimation uncertainty.

Batteries are ubiquitous in applications ranging from smart
phones to electrified transportation. In telecommunications,
there were 5.2B active mobile handsets and over 1.7B mobile
phone sales worldwide for 2012 [1]. In electrified transporta-
tion, there were 53,000 plug-in electric vehicles sold in the
U.S. for 2012 [2]. Despite growing sales, “range anxiety” is
considered the largest inhibitor of electrified transportation.
These facts provide overwhelming motivation for accurate
and robust SOC estimation to maximize battery performance
and lifetime.

To this end, electrochemical models [3] have attracted
significant attention from battery controls researchers, due to
their potential for high accuracy predictions. The parameters
of these models, however, are often characterized by a
bounded interval of uncertainty. In this paper, we seek to
generate interval state estimates of lithium-ion concentration,
given a simple PDE electrochemical model, measurements
of current and voltage, and bounds on parameter values.
Mathematically, we abstract this problem as an interval PDE
observer design task, based upon sensitivity equations. The
two relevant bodies of literature include electrochemical
model-based SOC estimation and interval observers.

Electrochemical battery models capture the spatio-
temporal dynamics of lithium ion concentration, electrode
potential, and Butler-Volmer kinetics. Most models in the
battery controls literature have been derived from the Doyle-
Fuller-Newman model [4], which includes PDEs, ODEs in
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space, ODEs in time, and nonlinear algebraic equations. This
system of equations is generally too complex for state ob-
server design. Consequently, researchers have combined var-
ious model reduction and estimation techniques to perform
SOC estimation. These include residue grouping/Kalman
filters [5], electrode averaging/extended Kalman filters [6],
output error injection [7], and adaptive PDE observers [8].
The underlying electrochemical models, however, are charac-
terized by parametric uncertainty [9]. The sensitivity of state
estimates to parametric uncertainty has not been addressed
in the literature.

Parallel to battery SOC estimation is the theory of interval
observers. In state estimation and filtering schemes, process
and measurement noises are often assumed to be Gaussian.
In contrast, interval or bounding observers assume process
and measurement disturbances are unknown but bounded
[10], [11]. We develop a similar yet different approach that
assumes specified parameters are unknown but bounded.
The approach is based upon sensitivity analysis [12] and
developed within the context of PDE state observers [13].

This paper connects the aforementioned bodies of liter-
ature by developing a novel interval observer based upon
sensitivity equations. As such, the results provide two key
contributions. First, a sensitivity-based interval observer is
proposed that relates parametric uncertainty to an interval
state estimate, for battery SOC estimation. Second, the
sensitivity equations provide a metric for ranking parameter
sensitivity, as illustrated in Section VI. We develop these
results within the context of an electrochemical PDE model
of lithium-ion batteries.

This paper is organized as follows: The single particle
model and corresponding backstepping observer have been
designed in [8], [14], but are provided in Sections II and III,
respectively, for completeness. Sections IV and V develop
the observer sensitivity equations and formulate the interval
observer. Finally, Sections VI and VII provide simulation
results and a summary of the key contributions.

II. ELECTROCHEMICAL MODEL DEVELOPMENT

The sensitivity-based interval PDE observer is based upon
an observer-oriented electrochemical model and backstep-
ping observer designed in [8], [14]. For completeness and
context, we summarize the model development here.

A. Single Particle Model

We consider the simplest of electrochemical battery mod-
els, known as the “single particle model” (SPM) [15]. This
model is derived from the complete Doyle-Fuller-Newman
model [4] by assuming the electrolyte Li concentration is
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Fig. 1. Each electrode is idealized as a single porous spherical particle.
This model results from assuming the electrolyte concentration is constant
in space and time [3].

constant in space and time [3]. This approximation is rea-
sonably valid for low C-rates (i.e. low current magnitudes).

As shown in Fig. 1 the model consists of two diffusion
PDEs in spherical coordinates governing Li concentration
dynamics in the solid phase.
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The Neumann boundary conditions at r = R+
s and r = R−s

signify the flux entering the electrode is proportional to the
input current I(t). The Neumann boundary conditions at
r = 0 are spherical symmetry conditions and required for
well-posedness. The measured terminal voltage is governed
by a combination of electric overpotential, electrode thermo-
dynamics, and Butler-Volmer kinetics. The end result is
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Functions U+(·) and U−(·) in (5) are the open circuit
potentials of each electrode material, given the surface con-
centration. Mathematically, these are strictly monotonically
decreasing functions. This fact implies the inverse of their
derivatives is finite, a property that is required in Section
II-C. Further details on the electrochemical principles used
to derive these equations can be found in [3], [4]. The SPM
parameter definitions can be found in [14].

Note that the bulk anode SOC is defined as the normalized
volume sum
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3

c−s,max(R−s )3
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This model contains the property that the total number of
lithium ions is conserved [7]. Mathematically, d

dt (nLi) = 0,
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This property is important, as it relates the total concentration
of lithium in the cathode and anode. In previous work [8],
[14], we have leveraged this fact to perform model reduction
for the state estimation problem.

B. Observability & Model Reduction

As previously demonstrated [8], [14], the SPM is not com-
pletely observable from measurements of voltage and current
only. Consequently, the SPM is reduced by approximating
the cathode diffusion dynamics (2) by its equilibrium. This
renders a completely observable model.

The reduced SPM has a PDE given by (1), boundary
conditions given by (3), and output equation
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Note that c+ss(t) has been replaced by αc−ss(t)+ β . This is
the critical detail of the reduced SPM. The equilibrium of
the cathode states (i.e., c+s (r, t)= c+ss(t)) is computed from the
conservation of Li property in (9) to produce the relationship
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C. Output Function Inversion

The reduced SPM contains linear dynamics and a nonlin-
ear output function. In general, an output injection-based esti-
mator would be nonlinear for this class of systems. However,
a linear estimator is implemented in this paper by injecting
the boundary state error as in [8], [14]. This requires the
boundary state to be calculated from the measured voltage as



Diffusion 
PDE

Diffusion 
PDE Copy + 
Output Inj.

Sensitivity 
PDEs

Interval 
Estimator

Fig. 2. Block diagram of estimation scheme where the boundary state error
is injected into the estimator. The use of the boundary state c−ss is determined
by ϕ(V, I), which inverts the nonlinear output w.r.t. the state, uniformly in
the input current. The double spatial derivative estimates ĉ−srr (r, t) along with
input current I(t) and output inversion ϕ(V, I) are fed into the sensitivity
PDEs. The sensitivity estimates S1(r, t), S2(r, t), S3(r, t), S4(r, t) along with
the concentration estimates ĉ−s are used to calculate the interval estimates
ĉ−s (r, t), ĉ−s (r, t).

shown by the block diagram in Fig. 2. The output function
is invertible w.r.t. the boundary state c−ss, uniformly in the
input current I(t). We show this by defining h : R×R→ R,
such that V (t) = h(c−ss(t), I(t)). The horizontal line test can
be used to show that h is a one to one function w.r.t. c−ss(t),
uniformly in I(t). As a result it is possible to determine the
inverse function ϕ where c−ss(t) = ϕ(V (t), I(t)).

D. Normalization and State Transformation

Next we perform normalization and state transformation
to simplify the observer structure as done in [8], [14]. First
scale the radial r and time t coordinates as follows

r̄ =
r

R−s
, t̄ =

D−s
(R−s )2 t. (12)

Henceforth we will drop the bars over the space and time
coordinates to simplify notation. Next we perform a state
transformation to eliminate the first spatial derivative in the
spherical diffusion equation (1). Namely, let

c(r, t) = rc−s (r, t). (13)

This normalization and state transformation produces the
following PDE with Dirichlet and Robin boundary conditions
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and nonlinear output map given by (10) where c+ss =
αc(1, t) + β (see (11)), and c−ss = c(1, t). The parameter
ρ = R−s /(D

−
s Fa−AL−) groups parameters together. The pa-

rameters ε and q are nominally equal to one. Respectively,
they represent uncertainty in the diffusion and boundary
input coefficients. In the following sections, we derive an
interval observer that maps uncertainty in these parameters
to bounds on the state estimates.

III. BACKSTEPPING PDE OBSERVER DESIGN

The sensitivity-based interval PDE observer is based upon
the backstepping design reported in [8], [14]. We summa-
rize the observer design here. The state estimator structure
consists of a copy of the plant (14)-(16) plus boundary state
error injection, as follows
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where the boundary state error is given by

c̃(1, t) = γϕ(V (t), I(t))− ĉ(1, t). (20)

Function ϕ(V (t), I(t)) generates the boundary state from
measured voltage and current by inverting the output func-
tion, as demonstrated visually by the block diagram in Fig. 2,
as explained in Section II-C. The parameter γ represents the
uncertainty in the output inversion, and is nominally equal
to one. The backstepping approach [13] is applied to design
the output injection gains p1(r) and p10, resulting in
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and I1(x) and I2(x) are, respectively, the first and second
order modified Bessel functions of the first kind.

IV. OBSERVER SENSITIVITY EQUATIONS

The main contribution of this paper is an interval observer
based upon the aforementioned backstepping observer, and
the following sensitivity equations. Consider the parameter-
ized PDE backstepping SPM observer
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ĉ(0, t) = 0, (25)

∂ ĉ
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where θ = [ε,q,γ,δ ]T represents the uncertain parameters,
whose values are nominally given by θ0 = [ε0,q0,γ0,δ0]

T

= [1,1,1,1]T . The parameter δ represents uncertainty in



the initial condition of the observer. Suppose the nominal
observer has a unique solution denoted ĉ(r, t;θ0). We seek
to study variations of this solution due to variations in θ .

In the following, we derive sensitivity equations w.r.t. ε

using the procedure outlined by Khalil in Chapter 3 of [12].
The remaining sensitivity equations w.r.t. q, γ , and δ follow
an identical process. Let us re-write the PDE (23) in partial
integro-differential equation (PIDE) form
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(r,s;θ)+ ĉrr(r,s;θ)− p1(r)

∂ ĉ
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∂ε

(0, t) = 0, (32)

∂ ĉr
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where ĉr = ∂ ĉ/∂ r, and since c0(r) is independent of ε . We
denote ĉε = ∂ ĉ/∂ε , and change the order of differentiation
in the first term on the RHS of (31)
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Differentiating w.r.t. time, we find that ĉε(r, t) verifies the
PDE
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When θ = θ0, then the RHS of (37) depends only on
the nominal solution ĉ(r, t;θ0). Let S1(r, t) = ĉε(r, t;θ0) be
the sensitivity function. Then S1(r, t) is the solution of the
“Sensitivity PDE”:

S1t (r, t) = ε0S1rr(r, t;θ0)+ ĉrr(r, t;θ0)− p1(r)S1(1, t;θ0),
(40)

S1(r, t0) = S1(0, t) = 0, (41)
S1r(1, t)−S1(1, t) = −p10S1(1, t). (42)

Note that the sensitivity PDE is linear in S1(r, t) and driven
by exogenous signal ĉrr(r, t;θ0).

Similarly, the sensitivity equations w.r.t. q are computed
as

S2t (r, t) = ε0S2rr(r, t;θ0)− p1(r)S2(1, t), (43)

S2(r, t0) = S2(0, t) = 0, (44)
S2r(1, t)−S2(1, t) =−ρI(t)− p10S2(1, t), (45)

where S2(r, t) = ĉq(r, t;θ0). The sensitivity PDE is linear in
S2(r, t) and driven by exogenous signal I(t). The sensitivity
equations w.r.t. γ are computed as

S3t (r, t) = ε0S3rr(r, t;θ0)+ p1(r)ϕ(V (t), I(t))− p1(r)S3(1, t),
(46)

S3(r, t0) = S3(0, t) = 0, (47)
S3r(1, t)−S3(1, t) = p10ϕ(V (t), I(t))− p10S3(1, t), (48)

where S3(r, t) = ĉγ(r, t;θ0). The sensitivity PDE is linear in
S3(r, t) and driven by exogenous signal ϕ(V (t), I(t)). Lastly,
the sensitivity equations w.r.t. δ are computed as

S4t (r, t) = ε0S4rr(r, t;θ0)− p1(r)S4(1, t), (49)

S4(r, t0) = ĉ0(r), (50)
S4(0, t) = 0, (51)

S4r(1, t)−S4(1, t) =−p10S4(1, t), (52)

where S4(r, t) = ĉδ (r, t;θ0). The sensitivity PDE
is linear in S4(r, t), and is autonomous. Note that
S1(r, t),S2(r, t),S3(r, t),S4(r, t) quantify the sensitivity
of the estimated states to variations in the uncertain
parameter values. We exploit this property to also perform
a sensitivity analysis in Section VI.

Consequently, when θ is close to the nominal value θ0,
we can approximate the solution ĉ(r, t;θ) around the nominal
solution ĉ(r, t;θ0) to first-order accuracy by,

ĉ(r, t;θ) := ĉ(r, t;θ0)+S1(r, t)(ε− ε0)+S2(r, t)(q−q0)

+S3(r, t)(γ− γ0)+S4(r, t)(δ −δ0). (53)

V. SENSITIVITY-BASED INTERVAL OBSERVER

We are now positioned to formulate an interval observer
based upon the sensitivity equations derived in the previous
section. First, we assume the parameters θ = [ε,q,γ,δ ]T are
unknown but bounded as follows

ε ≤ ε ≤ ε, q≤ q≤ q, γ ≤ γ ≤ γ, δ ≤ δ ≤ δ , (54)

where the bounds ε,q,γ,δ , ε,q,γ,δ are known. Then the
nominal state estimate ĉ(r, t) is generated from the PDE
backstepping observer with interval estimates ĉ(r, t), ĉ(r, t)
computed as

ĉ(r, t) = min{ĉ(r, t)±S1(r, t)(ε− ε0)±S2(r, t)(q−q0)

±S3(r, t)(γ− γ0)±S4(r, t)(δ −δ0)}, (55)

ĉ(r, t) = max{ĉ(r, t)±S1(r, t)(ε− ε0)±S2(r, t)(q−q0)

±S3(r, t)(γ− γ0)±S4(r, t)(δ −δ0)}, (56)
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where S1(r, t),S2(r, t),S3(r, t),S4(r, t) are solutions to the sen-
sitivity PDEs (40)-(52). These interval estimates consider
all possible cases where S1(r, t),S2(r, t),S3(r, t),S4(r, t) are
positive or negative. This allows for the absolute min/max
to be used as the interval estimates, which are then used to
find the interval estimates of bulk SOC

(
ˆSOC(t), ˆSOC(t)

)
and voltage

(
V̂ (t),V̂ (t)

)
.

VI. SIMULATIONS

In this section we present simulation examples of the
interval PDE observer for various charge/discharge cycles,
along with a sensitivity analysis. We apply the observer to the
reduced SPM, apply the sensitivity equations to the observer,
whose results are then used in the interval observer. We work
in the normalized (r, t) coordinates but retain the original
state realization. The model parameters originate from [9]
for a commercial LiFePO4 cell. Estimation gain parameter
λ =−5 from (21)-(22), as in [14]. The uncertain parameters
for the interval observer are set at θ = [0.9,0.9,0.9,0.0]T and
θ = [1.1,1.1,1.1,3.3]T which represents a ±10% deviation
from the nominal parameters ε0,q0,γ0 and the range of
physically meaningful observer initial conditions for the
nominal parameter δ0. All PDE models are implemented

using the finite central difference method. The SPM plant
and observer states are initialized at different values to
demonstrate uncertainty in initial conditions. Zero mean
normally distributed noise with a standard deviation of 2mV
is added to the voltage measurement.

First, a pulse current charge/discharge cycle is applied.
Figure 3(a) shows the applied current in terms of C-rate
(normalized current against charge capacity), where positive
values indicate discharge rates. Figure 3(b) shows the result-
ing sensitivities, where S3 is largest, followed by S2, S1, and
S4. This indicates that the observer system is most sensitive
to perturbations in γ , followed by q, then ε , and finally δ .
More specifically, the observer system is most sensitive to
the output inversion ϕ as γ represents its uncertainty. Figure
3(c) shows the true and estimated bulk SOC along with the
upper and lower interval estimates. We see that the estimate
converges to within 1% of the the true value at t=4.13min.
We also see that the interval estimates encapsulate the true
SOC within reasonable bounds. Figure 3(d) shows the plant
output voltage with noise and estimated voltage along with
the upper and lower interval estimates. At t=1.19min the
voltage error between the estimated and true voltage with
noise is less than 3mV. We also see that the interval estimates
encapsulate the measured voltage within reasonable bounds.



Fig. 5. Normalized parameter sensitivity ranking (average in blue, standard
deviation in red) across various electric vehicle-like charge/discharge cycles
(UDDSx2, US06x3, SC04x4, LA92x2, DC1, DC2).

Next, an electric vehicle-like charge/discharge cycle con-
sisting of two concatenated urban dynamometer driving
schedules (UDDS) is applied. Figure 4(a) shows the applied
current in terms of C-rate. Figure 4(b) shows the resulting
sensitivities, where S3 is largest, followed by S2, S1, and S4.
Note that this is the same observation as seen with the pulse
current profile. Figure 4(c) shows the true and estimated bulk
SOC along with the upper and lower interval estimates. We
see that the estimate converges to within 1% of the the true
value at t=4.25min. We also see that the interval estimates
encapsulate the true SOC within reasonable bounds. Figure
4(d) shows the plant output voltage with noise and estimated
voltage along with the upper and lower interval estimates.
At t=1.17min the voltage error between the estimated and
true voltage with noise is less than 3mV. We also see that
the interval estimates encapsulate the true voltage with noise
within reasonable bounds.

Lastly, a set of electric vehicle-like charge/discharge cycles
(US06x3, SC04x4, LA92x2, DC1, DC2) [16] are applied
to further understand the effects of parameter uncertainty
through sensitivity analysis on the observer system. We rank
the parameters based on the integrated absolute value of each
sensitivity normalized by time,

Sranki =
1
T

∫ T

0
|Si(s)|ds, (57)

where i ∈ [1,2,3,4], and T is the total time. Figure 5 shows
that estimated SOC is most sensitive to perturbations in γ ,
followed by q, ε , and finally δ . Consequently, accurate output
inversion is most important for accurate SOC estimation.

VII. CONCLUSIONS

This paper examines the sensitivity of the previously
developed backstepping PDE estimator [8], [14] due to

perturbations in the nominal uncertain parameters. It then
combines the resulting sensitivities with the observer esti-
mates to create upper and lower interval estimates for a given
deviation in the nominal uncertain parameters, and the range
of physically meaningful initial conditions. The sensitivity
results are also used to rank parameter sensitivity to un-
derstand which parameters have the greatest effect on the
observer estimates. This is important for prioritizing which
parameters to identify in a system identification process.
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