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Abstract— Recent advances in the traffic monitoring sys-
tems have made traffic velocity information accessible in real
time. This paper proposes a supervised predictive energy
management framework aiming to improve the fuel economy
of a power-split plug-in hybrid electric vehicle (PHEV) by
incorporating dynamic traffic feedback data. Compared with
conventional model predictive control (MPC), an additional
supervisory state of charge (SOC) planning level is constructed
in this framework. A power balance PHEV model is developed
for this upper level to rapidly generate optimal battery SOC
trajectories, which are utilized as final state constraints in
the MPC level. The proposed PHEV energy management
framework is evaluated under three different scenarios: (i)
without traffic information, (ii) with static traffic information,
and (iii) with dynamic traffic information. Simulation results
show that the proposed control strategy successfully integrates
dynamic traffic velocity into the PHEV energy management,
and achieves 5% better fuel economy compared with when no
traffic information is utilized.

I. INTRODUCTION

Traffic monitoring systems in intelligent transportation
systems have matured rapidly in recent years. Real-time flow
data is integrated with short-term and long-term knowledge
of traffic speeds to dynamically update the velocity estimates.
This effort has made it possible to incorporate dynamic traffic
flow information into plug-in hybrid electric vehicle (PHEV)
energy management, enabling improved fuel economy. This
paper systematically integrates real-time traffic flow velocity
into the energy management of a power-split PHEV.

In the energy management problem (EMP) of PHEVs,
SOC is an important state for determining the optimal power
split ratio between the engine and battery. If no future driving
information is available, the charge depleting and charge
sustaining (CDCS) strategy is often used [1]. However, given
more information about the velocity profile – enabled from
traffic data – we hypothesize that a near-optimal energy man-
agement strategy can be developed through SOC planning.
The authors of [2] developed a SOC reference generator for
hilly driving profiles, and demonstrated improved fuel econ-
omy. In this paper, we consider a SOC pre-planning approach
under time-varying traffic conditions. Real-time traffic data
is utilized for SOC planning and control. Meanwhile, vehicle
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velocities are continuously monitored and fed back into the
traffic monitoring system.

MPC controllers for the EMP of PHEVs have been studied
for years [3], [4]. However, to the authors’ best knowledge,
the incorporation of dynamic traffic data into MPC energy
management for PHEVs has not been investigated. In this
paper, a real-world highway driving scenario is constructed
based on real collected traffic flow data from the Mobile
Century project [5] as a case study.

The main contribution of this paper is a traffic data enabled
predictive control framework for PHEV energy management,
to achieve near optimal fuel consumption. Compared with
conventional MPC, this framework includes a higher su-
pervisory battery SOC planning level, aiming to improve
the controller performance from a global perspective. A
power balance PHEV model is developed for reference
SOC trajectory generation based on the obtained traffic data.
Compared with conventional PHEV models, the power bal-
ance model significantly reduces SOC trajectory computation
time, thereby enabling real-time implementation at updates
rates commensurate with traffic data. A real-world highway
driving scenario is used for validation based on the traffic
flow data from Mobile Century [5]. Although the foregoing
contributions are made specifically for a power-split PHEV
in a highway driving scenario, the proposed approach extends
directly to other HEV/PHEV configurations or other driving
situations when traffic velocity information is available.

The remainder of the paper is arranged as follows. In
Section II, the obtained traffic data is presented and ana-
lyzed. Section III introduces the supervised predictive energy
management strategy. Section IV gives the control-oriented
PHEV model and formulates the nonlinear control problem.
Simulation results are illustrated in Section V, followed by
key conclusions in Section VI.

II. TRAFFIC FLOW VELOCITY ANALYSIS

Reference [5] presents a traffic monitoring system based
on GPS-enabled smartphones. This system exploits the ex-
tensive coverage of the cellular network, position and ve-
locity measurements of GPS, and the communication infras-
tructure of cellphones. A field experiment was conducted to
measure the velocity of traffic flow on a 10-mile stretch of
I-880 near Union City, California, for 8 hours. The data is
used for the PHEV energy management study in this paper.

Vehicle in the experiment were all equipped with GPS-
enabled mobile devices, which can produce time-stamped
position and velocity measurements every 3 seconds. A
traffic estimation server is used to collect all the GPS data



Fig. 1. Collected driving trips from field experiment of Mobile Century.
Each blue line represents the trajectory of one collected trip during a day.
The positions of each vehicle are identified by post-miles of highway I-880,
from 16 to 28 mile northbound.
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Fig. 2. Traffic flow velocity distribution from 10:20 to 13:40. Sampling
time interval is 300 seconds and the road resolution is 0.1 mile.

and analyze traffic flow dynamics. A time-position map
can be plotted with the driving trips provided by field
experiments of Mobile Century, as illustrated in Fig. 1. A
traffic congestion event can be seen from the red rectangle
marked in this figure. All vehicles were forced to decelerate
when driving through the congestion area. As the influence of
the congestion attenuated, the vehicles gradually accelerated
back to normal speeds. The propagation of the shock-wave
can be observed clearly.

The traffic congestion period, from 10:20 to 13:40 is
selected deliberately as the object of study. The trip data is
assumed to be collected and analyzed by a central server. The
traffic flow velocity distribution is computed and the vehicle
can obtain it via the Internet. Note that the flow velocity
data received by the drivers is only a static reflection of the
traffic. The information is more valuable when it updates in
real-time. In this paper, we assume the driver can obtain the
traffic flow data every 300 seconds, which is consistent with
the update rate of the Caltrans Performance Measurement
Systems (PeMS) [6].

The extracted traffic flow velocity is demonstrated in Fig.
2. As can be seen, the flow velocity reduces greatly from 70
mph to less than 10 mph near the 24-mile position, 10:45
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Fig. 3. The proposed supervised predictive energy management for PHEVs,
assuming that the terrain information is pre-stored in a 3D map.

AM. The velocity of the congestion part starts to increase
from about 11:20 AM. The traffic flow velocity is assumed
to be the real driving profile that the target vehicle will drive
along. However, due to the fact that the road resolution is low,
the extracted traffic velocity profile is piecewise constant. We
smooth this data with a Butterworth filter to produce a more
realistic and trackable velocity signal.

III. SUPERVISED PREDICTIVE ENERGY
MANAGEMENT

A. Traffic Enabled Energy Management

The structure of the dynamic traffic enabled predictive en-
ergy management is demonstrated in Fig. 3. The traffic flow
velocity Vflow used by the supervisory SOC planning level
is utilized for long-term optimal SOC trajectory calculation.
A horizon velocity predictor is employed to forecast short-
term future driving velocities in each receding horizon. As
such, the upper and lower-levels correspond to the long-term
and short-term disturbances, respectively.

The SOC trajectory is introduced into the MPC level
as a terminal reference during each horizon. This provides
the lower level MPC feedback loop with additional control
flexibility to compensate for SOC errors, denoted as

SOC(t) = SOC∗(t) (1)

where SOC is the terminal SOC reference for the MPC level
and SOC∗ is the generated optimal SOC trajectory from
the supervisory SOC planning level. The general control
procedure is described as below, to be elaborated in the
following sections:

• Acquire the traffic and route information, calculate the
reference SOC trajectory;

• Predict the short-term future velocity profile via the
horizon velocity predictor;

• Given the SOC reference and forecasted short-term
velocity, calculate the control policies in MPC level;

• Apply the first element of the optimal control policy,
feedback and repeat.

Note that the upper and lower levels utilize different PHEV
models for optimization. In the upper level, a simple power-
based model is utilized for SOC trajectory generation. In the



Battery/

M/Gs

Mechanical 

Energy

Chemical 

Energy

Tank/

Engine

Wheel
+

+

Ptank ωeng  Teng=Peng

Pbatt

Pdemand

ωM/G1  TM/G1+

              ωM/G2  TM/G2

η1(Peng)

η2(Pbatt)

Fig. 4. Power flow topology for the power-split PHEV powertrain.

lower level, a higher fidelity PHEV model is used for MPC.
We describe each level in the following subsections. The
quasi-static PHEV model is a detailed plant model furnished
by the QSS-toolbox developed at ETH, which has been
validated against experiments (see [7] for details).

B. Long-term SOC Trajectory Generation

The reference SOC trajectory calculation must be fast
enough to follow the traffic dynamics. The commonly used
control-oriented PHEV model [8] is proficient for powertrain
control, but excessively complex for SOC trajectory calcu-
lation for this particular purpose. This paper introduces a
reduced power balance based model, which is much more
computationally efficient, yet sufficiently accurate for the
purpose of SOC trajectory generation.

The power balance model is based on the power flow
in Fig. 4, which describes power flows and conversion
efficiencies. The tank/engine converts chemical energy into
mechanical energy with efficiency denoted by η1. The battery
and two motor/generators (M/Gs) convert between chemical
battery energy and mechanical energy with efficiency de-
noted by η2. The sum of the engine and M/Gs’ mechanical
powers must equal power demand, Pdemand. Mathematically,
the simplified powertrain is governed by power balance
equation

η1Ptank(t) + η2Pbatt(t) = Pdemand(t) (2)

where Ptank is the chemical energy supplied by the tank,
Pbatt is the electro-chemical energy supplied by the battery
and Pdemand is the vehicle power demand. Positive Pbatt

denotes discharging. Parameters η1 and η2 are synthetic
energy conversion coefficients of the mechanical propulsion
path (engine side) and the electrical propulsion path (M/G
side), respectively. The power demand is provided by

Pdemand(t) =

(
ma(t) + Crmg +

1

2
ρACdv

2(t)

)
v(t) (3)

where m is the vehicle mass, a(t) is the vehicle acceleration,
g is gravitational acceleration, v(t) is the vehicle velocity, Cr

represents the rolling resistance coefficient and 1
2ρACd is the

aerodynamic drag resistance. Note that the wheel inertia is
neglected and the road grade is assumed to be zero in this

paper. The battery pack is modeled as an equivalent circuit
[9]. The battery power and SOC are modeled as

Pbatt(t) = V Ibatt(t)− I2batt(t)R (4)

˙SOC(t) = −Ibatt(t)

Q
(5)

where V and R are the open circuit voltage and internal
resistance, respectively; Ibatt(t) and Q are the battery current
and capacity, respectively.

In this power balance model, the number of control
variables is reduced from two to one compared with the
control-oriented model (presented in [10]). Battery output
power is selected as the control variable, where u = Pbatt.
Battery SOC and the engine on/off state (denoted as O) are
selected as state variables, where x = [SOC,O]T . O = 1
means the engine is on, and O = 0 means the engine is off.
Define switching of the engine state as

δO(k∆t) = |O(k∆t)− O((k − 1)∆t)| (6)

The cost function is formulated as

J =

∫ T

0

[Ptank(u(t)) + w · δO(t)]
2
dt (7)

where Ptank(u(t)) penalizes fuel consumption and w is
the penalty for engine state switching. The expression for
Ptank(u(t)) is derived as follows. From (2) we have

Ptank(t) =
Pdemand(t)− η2Pbatt(t)

η1
. (8)

Note that u(t) = Pbatt(t). Moreover, consider the conversion
efficiencies with the following arguments

η1 = η1(Peng), (9)
η2 = η2(Pbatt) = η2(u). (10)

Note that Peng = Pdemand−η2Pbatt = Pdemand−η2(u) ·u.
Consequently, we obtain

Ptank(t) =
Pdemand(t)− η2(u(t)) · u(t)

η1(Peng(t))
=

Peng(t)

η1(Peng(t))
.

(11)
Dynamic Programming (DP) is used to minimize J , subject
to constraints

SOCmin ≤ SOC ≤ SOCmax, Pmin
tank ≤ Ptank ≤ Pmax

tank;
Imin
batt ≤ Ibatt ≤ Imax

batt , Pmin
batt ≤ Pbatt ≤ Pmax

batt .

Efficiencies η1, η2 for this power balance model are deter-
mined empirically. Namely, η1 can be calculated by assuming
the engine always operates on the optimum operating line
(OOL). In contrast, η2 involves the combined operating
efficiencies of both M/G1 and M/G2, and it is therefore
not possible to assume operation along the individual OOLs.
Thus, this paper proposes an empirical approach to determine
η1 and η2, based on the optimal operating behaviors yielded
from the control-oriented model. Details are shown below:

• First, utilize DP to solve the EMP with the control-
oriented PHEV model across a variety of driving cycles;



Fig. 5. The Pbatt-η2 operating points and the curve fitting result.

• Second, collect the optimal solutions for powertrain
behavior analysis. Coefficients η1 and η2 are calculated
by

η1 =
ωeng · Teng

Ptank
(12)

η2 =
ωM/G1 · TM/G1 + ωM/G2 · TM/G2

Pbatt
(13)

where ωeng , ωM/G1, ωM/G2 and Teng , TM/G1, TM/G2

are corresponding rotation speeds and torques of the
engine, M/G1 and M/G2.

• Last but most important, formulate η1 and η2 by least
squares curve fitting.

In step one, four driving cycles, including both urban
and highway types, are used for the optimal energy man-
agement simulation: WVUCITY, NYCC, Artemis-highway
and HWFET. Different battery discharging depths are also
investigated. The operating points for function η2 are plotted
in Fig. 5. It can be seen that η2 is strongly correlated
with Pbatt. Consequently, the hypotheses in (9) and (10)
are verified. Interestingly, the fitting results for η1 prove
to be consistent with the engine OOL approach. Piecewise
functions are employed for curve fitting of η2, including
polynomial functions and mixture Gaussian functions.

The complete power balance-based model is validated in
Section V-A against a more detailed control-oriented model.
Next we consider the issue of velocity prediction in the MPC
level from Fig 3.

C. Short-term Velocity Prediction

Next we develop a forecasting technique to predict short-
term vehicle velocities. This paper employs a data driven
approach to velocity prediction. Vehicles with forward radar
devices can utilize lead vehicle measurements to improve
velocity prediction, but this is not considered here.

In recent work on velocity prediction [11], artificial neural
networks (ANN) have proven effective in terms of both
accuracy and ease-of-use. Here, a radial basis function neural
network (RBF-NN) based velocity predictor is selected for
short-term velocity prediction, based on a velocity predictor

comparison study in [12]. The input of the RBF-NN predictor
is a historical velocity sequence, and the output is short-
term future velocity sequence Vpredict. Four standard driving
cycles are used for the network training, including both
highway and urban types: UDDS, HWFET, NEDC, US06. A
real driving cycle is selected for validation from the highway
driving data collected from Mobile Century. According to the
empirical cumulative distribution function (CDF) of the root-
mean-square errors (RMSE) of all the prediction processes,
nearly 90% of the RMSEs are below 1.5 m/s. Therefore,
we conclude that the RBF-NN velocity predictor is accurate
enough for MPC-based PHEV energy management. Note
that other velocity prediction methods, such as Gaussian
mixture modeling or stochastic approaches, could also be
implemented in this part.

IV. CONTROL FORMULATION IN MPC
The control-oriented power-split PHEV powertrain model

is deployed in the MPC level. For brevity, this paper omits
the equations of the model. The details and notation infor-
mation of the PHEV mpowertrain model can be found in
[10].

The EMP in the MPC level is formulated as a constrained
nonlinear optimization problem and solved by DP. Given the
powertrain dynamics in [10], ωeng and Teng are chosen as
control variables. Denoting x as the state variable, u as the
control variable, d as the system disturbance, and y as the
output, the proposed control-oriented powertrain model can
be represented as

ẋ = f(x, u, d)

y = g(x, u, d) (14)

with x = [SOC,O]T , u = [ωeng, Teng]
T , d = Vpredict,

y =
[
ṁfuel, Pbatt, TM/G2, ωM/G1, TM/G1

]T
. Consider a

one second time step, ∆t = 1 second. At time step k, the
cost function Jk is formulated as

Jk =

∫ (k+Hp)∆t

k∆t

[ṁfuel(u(t)) + wδO(t)]
2
dt (15)

where Hp is the prediction horizon length, which is herein
equal to the control horizon length for simplicity. The dis-
turbance d = Vpredict is predicted by the short-term velocity
predictor in Section III-C. Additionally, the physical con-
straints for SOC, Ibatt, Pbatt, Teng , ωeng , TM/G1, ωM/G1,
TM/G2, and ωM/G2 must be enforced.

The terminal battery SOC constraint in the MPC horizon
must also be verified, as given by the SOC trajectory gen-
erated from the traffic flow data. Note the SOC reference
can be indexed in two ways: over a time domain and over a
space domain. For a time domain dependent SOC reference,

SOC((k +Hp)∆t) = SOC∗((k +Hp)∆t) (16)

For a space domain dependent SOC reference,

SOC(nk∆s) = SOC∗(nk∆s) (17)

where ∆s is the space step, nk indicates the space step
number that the vehicle drives through by the end of time



horizon k. SOC∗ is the optimal SOC trajectory generated
from the supervisory SOC planning level in Section III-
B. Both of these two index options are investigated in the
following section.

V. SIMULATION AND DISCUSSION

All the simulations were performed on a computer with
an Intel Corel i7-3630QM CPU @2.4GHz. The power-split
PHEV structure and parameters are also adopted from [10].
Note that in the simulation, we focus on trips that exceed the
all-electric-range, and require engine power at some point.

A. Power Balance Model Validation

The power balance model is validated by comparing the
generated SOC trajectory with the control-oriented model.
The optimization problem (7) and (15) are all solved by DP
with the same discretization resolution. The initial battery
SOC is set as 0.7 and terminal SOC is set as 0.3. Six standard
driving cycles and two real-world cycles, highway-Realh
and urban-Realu, are combined arbitrarily to construct three
longer trips for testing. Note that the validation driving cycles
are different from those used to identify η1 and η2. Details
of the trips are shown in the top of Table I.

The bottom of Table I reports a comparison of SOC
trajectory generation from the two PHEV models: higher-
fidelity control oriented (C.O) versus lower-fidelity power
balance (P.O). Symbol T is the computation time. The
control oriented model requires 190-260 seconds to compute
the SOC trajectory. It may be difficult for this model to
satisfy the real-time traffic information updating requirement
on an embedded system. However, the computation time
required by the power balance model is 80% less than the
control-oriented model (30-40 seconds). The power balance
model facilitates real-time SOC trajectory production, and is
computationally sufficient for rapid SOC trajectory calcula-
tion. Denote the SOC error as e(t), thus,

e(t) = SOCp(t)− SOCc(t) (18)

where SOCp(t) and SOCc(t) are the SOC trajectories cal-
culated from the power balance model and the control-
oriented model, respectively. It can be seen that the average
and maximal SOC errors over time of the power balance
model remain within 3% and 5% of the battery SOC full
scale, respectively. This demonstrates that the power balance
model is reasonably accurate for the reference SOC trajectory
calculation, and therefore serves the SOC planning purpose at
the top level of Fig. 3. The resultant battery SOC trajectories
of the 3/Mixed driving trip testing are illustrated in Fig. 6.
As can be seen, the SOC trajectory of the power balance
model follows the control-oriented model well.

B. Energy Management Strategy Evaluation

The congestion period from 10:20 to 13:40 in the Mobile
Century data is chosen to evaluate the proposed energy
management strategy. Six arbitrarily selected driving trips are
used for testing. Each testing cycle includes one or two traffic
congestions. The SOC reference is computed simultaneously

TABLE I
TRIP DETAILS & SOC TRAJECTORY COMPARISON

Trip No./Type Composed by Cycles Length (s/km)

1/Urban UDDS NEDC Realu 3528/32.8
2/Highway HWFET WVUINTER Realh 4112/65.0

3/Mixed WVUSUB US06 Realh Realu 4820/56.3

Trip No./Model Avg |e| Max |e| T (s) SOC

1/C.O. — — 197.2 (100%) 0.30
1/P.B. 0.0147 0.0249 31.8 (16.1%) 0.30
2/C.O. — — 231.9 (100%) 0.30
2/P.B. 0.0226 0.0467 37.5 (16.2%) 0.30
3/C.O. — — 261.1 (100%) 0.30
3/P.B. 0.0168 0.0438 41.2 (15.8%) 0.30

’C.O.’ and ’P.B.’ denote the control-oriented model and the power balance
model, respectively. SOC denotes the terminal SOC value.
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Fig. 6. Comparison of SOC trajectory in the 3/Mixed case. From top to
bottom: SOC trajectories, the absolute SOC error |e| and the driving profile.
The average |e| is 0.0168 (1.68% of the battery SOC full scale).

during the simulation. All of the real driving profiles are
completely blind to all the MPC simulations. The same
RBF-NN velocity predictor is used for short-term velocity
prediction. For simplicity, the control and prediction horizons
are both set as 10 steps, as a compromise between control
performance and computational complexity. The average
computation time of the simulation process at each time
instant (one second) is 0.6-0.7 seconds, which is potentially
implementable on an embedded system.

Based on different traffic data accessibility levels, five
situations are considered to evaluate the proposed supervised
predictive energy management strategy:

1) CDCS: When no traffic information is available, the
CDCS strategy is used for battery SOC planning.

2) Static@T: Static traffic information is available and
the vehicle obtains traffic information only at begin-
ning of the trip, with SOC reference indexed by time.

3) Static@S: Static traffic information is available and
the SOC reference is indexed by space.



TABLE II
SIMULATION RESULTS FOR TRIP 2

Type Terminal SOC Fuelc (g) Fuel Optimality

DDP 0.3000 628.5 100%
CDCS 0.2955 691.6 89.9%

Static@T 0.3911 712.2 86.7%
Static@S 0.2965 678.9 92.0%

Dynamic@T 0.2895 659.1 95.1%

Dynamic@S 0.2971 654.5 95.9%

DDP means deterministic DP, where full knowledge of the driving cycle is
known in a prior and DP computes the optimal solution in theory.

4) Dynamic@T: Dynamic traffic information is available
every 300 seconds. The SOC is indexed by time.

5) Dynamic@S: Dynamic traffic information is available,
and the SOC reference is indexed by space.

The deviation between the final battery SOC and the
desired value has been compensated in the fuel consumption
calculations, denoted as Fuelc. Detailed simulation results
for one of the testing trips are listed in Table II, including
deterministic DP as a benchmark. As expected, the fuel
consumption of predictive energy management with dynamic
traffic information available is less than the CDCS strategy
and the static traffic information approaches.

Simulation results for all six testing trips are illustrated in
Fig. 7, including the average value and standard deviation
of the fuel optimality and the terminal SOC. The CDCS
maintains an average of 90% fuel optimality, and the terminal
SOC is always restrained around 0.3. Due to utilizing static
traffic flow information that poorly predicts traffic evolution,
the Static@T performs worse than the CDCS on average.
In particular, the terminal SOC has a relatively high vari-
ance around 0.3. By indexing the SOC reference in space,
Static@S guarantees the terminal SOC constraint is respected
with low variance. As a result, the overall fuel economy is
improved by 5% on average.

In the Dynamic@T case, the deviation of the terminal SOC
is reduced by updating the traffic data frequently compared
with the Static@T. The terminal SOC is restricted within an
acceptable range between 0.3 and 0.35. More importantly,
nearly 94% average fuel optimality is achieved with dynamic
traffic enabled, which is a considerable improvement consid-
ering the uncertainty of the driving schedules.

The demonstrated results are conducted under a congested
highway driving scenario constructed from [5]. Different
results could be observed under different traffic conditions.
However, the proposed predictive energy management proves
effective in achieving near optimal fuel economy with inte-
grated dynamic traffic feedback data.

VI. CONCLUSIONS

This paper presents a predictive PHEV energy manage-
ment strategy, which integrates real-time traffic flow velocity
data. The strategy is with a two-layer hierarchical structure.
In the supervisory level, the optimal SOC trajectory is rapidly
generated from the dynamic traffic data, which is used as
terminal SOC constraints in the lower MPC level. A power
balance PHEV model is developed for this upper-level SOC
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Fig. 7. Average fuel optimality and terminal SOC results for all the testing
trips. Dynamic traffic information allows the proposed energy management
strategy to achieve nearly 95% fuel optimality while consistently ensuring
the terminal SOC value.

calculation. With this model, DP computes the optimal SOC
trajectory in real-time - at a rate commensurate with traffic
data update rates (300 sec). Simulation results show that the
predictive energy management strategy with dynamic traffic
data can achieve 94-96% fuel optimality of the deterministic
DP benchmark in a highway driving scenario, despite con-
gestion events. Future work is to validate the proposed energy
management strategy via hardware-in-the-loop experiments.
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