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Abstract— This paper seeks to derive insight on battery
charging control using electrochemistry models. Directly using
full order complex multi-partial differential equation (PDE)
electrochemical battery models is difficult and sometimes im-
possible to implement. This paper develops an approach for
obtaining optimal charge control schemes, while ensuring safety
through constraint satisfaction. An optimal charge control
problem is mathematically formulated via a coupled reduced
order electrochemical-thermal model which conserves key elec-
trochemical and thermal state information. The Legendre-
Gauss-Radau (LGR) pseudo-spectral method with adaptive
multi-mesh-interval collocation is employed to solve the result-
ing nonlinear multi-state optimal control problem. Minimum
time charge protocols are analyzed in detail subject to solid
and electrolyte phase concentration constraints, as well as
temperature constraints. The optimization scheme is examined
using different input current bounds, and an insight on battery
design for fast charging is provided.

I. INTRODUCTION

This paper develops an approach to solve for optimal
charge control schemes using an electrochemical based
model with thermal dynamics. The goal is to systematically
obtain optimal charge schemes that result in the lowest
charge times, while understanding their nature to gain an
insight on battery design optimization for fast charging.

Batteries are widely utilized in mobile handsets, electric
vehicles (EVs), and power grid energy storage [1], [2]. They
are an enabling technology for diversifying and securing our
future energy supplies. In contrast to simple and rapid refuel-
ing of gasoline or diesel, battery recharge requires meticulous
control and management, owing to complex electrochemical
reactions, immeasurable internal states, and serious safety
concerns [3]. Fast charging is a thriving area of research,
as it increases the practicality and consumer acceptance of
battery-powered devices (e.g., EVs). Nevertheless, it can
also impair battery longevity depending on the charging
method used, particularly due to heating. It is thus crucial to
systematically study the effects of electrochemical states on
charging time, which is the focus of this paper.

The traditional charging protocol for Li-ion batteries is
constant-current/constant-voltage (CC-CV) [4]. In the CC
stage, the charging current is constant until a pre-specified
voltage threshold is reached, and in the CV stage the voltage
threshold is maintained until the current relaxes below a pre-
specified threshold value. This technique is simple and easily
implemented. The current rate and voltage threshold are,
however, almost universally selected in an ad-hoc manner.
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In the literature, various methods have been proposed
to reduce charge times, such as multi-stage CC (high CC
followed by low CC) plus CV (CC-CC-CV) [5], boost
charging (CV-CC-CV) [6], constant power-constant voltage
(CP-CV) [7], fuzzy logic [8], [9], neural networks [10], grey
system theory [11], and ant colony system algorithm [12].
Alternative protocols were reported to prolong the battery
lifetime as well, such as MCC-CV (low CC followed by
high CC plus CV) [7] and CC-CV with negative pulse (CC-
CV-NP) [13]. This literature provides enormous insight on
rapid charging, but all the protocols are – at some level –
heuristic. That is, they employ basic knowledge, empirical
observations, and experience of the battery’s electrical prop-
erties to devise a charging strategy. Their implementation
and performance are subject to cumbersome meta-parameter
tuning. Furthermore, there are no mathematical guarantees
for fast charge optimality, nor constraint satisfaction.

Recently, some researchers have given first insights into
model-based optimal charge control [14], [15], [16], [17],
[18], [19]. A significant challenge for model-based charge
control is numerically solving a multi-state nonlinear cal-
culus of variations optimal control problem. These previ-
ous studies side-step this difficulty using linear-quadratic
formulations [14], state independent electrical parameters
[15], piecewise constant time discretization [16], linear input-
output models [17], a one-step model predictive control for-
mulation [18], or a reference governor formulation [19]. To
directly face the nonlinear variational calculus problem, or-
thogonal collocation enabled pseudo-spectral methods were
employed in [20] to optimize charging time and efficiency
of lithium-ion batteries. This work was extended in [21]
to consider aging and coupled electrical-thermal dynamics
via equivalent circuit type models. However, all of the
foregoing studies do not explore coupled electrochemical
and thermal dynamics for fast charge applications. Moreover,
previous model based techniques do not give insight on what
parameters a battery cell designer can optimize for enabling
faster charge times.

This paper pursues a different approach to developing op-
timal fast charging protocols using electrochemical-thermal
models. Mathematically, we formulate a minimum time opti-
mal control problem via a coupled Single Particle Model with
Electrolyte and Thermal Dynamics (SPMeT). In the coupled
model, two PDE single particle subsystems capture both an-
ode and cathode solid concentration dynamics, a three-PDE
electrolyte subsystem captures the electrolyte concentration
dynamics in three domains (anode, separator, cathode) which
all feed into the nonlinear voltage output function (10). The
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Fig. 1. Each electrode is idealized as a single porous spherical particle
whose dynamics evolve in the r dimension. The electrolyte concentration
dynamics evolve in all regions in the x dimension.

nonlinear voltage output and bulk solid concentrations are
then fed into the thermal subsystem (12), whose temperature
feeds back into the nonlinear voltage output. Due to the
coupled electrochemical-thermal dynamics, the optimization
problem is highly nonlinear. Consequently, there are no
analytic solutions and numerical solutions have been con-
sidered extremely difficult. We challenge this entrenched
mindset by leveraging the Legendre-Gauss-Radau (LGR)
pseudo-spectral method with adaptive multi-mesh-interval
collocation.

The remainder of this paper is structured as follows.
In Section II, the Single Particle Model with Electrolyte
and Thermal Dynamics is described. In Section III, the
minimum time optimal charge control problem is formulated,
and the LGR pseudo-spectral method is briefly introduced.
Optimization results are discussed in Section IV, followed
by conclusions in Section V.

II. SINGLE PARTICLE MODEL WITH ELECTROLYTE AND
THERMAL DYNAMICS

The Single Particle Model with Electrolyte and Thermal
Dynamics (SPMeT) is summarized in this section. The Sin-
gle Particle Model with Electrolyte Dynamics (SPMe) used
here is most similar to [22], [23], [24] and achieves a higher
prediction accuracy than the Single Particle Model without
electrolyte dynamics. Complete details on the derivation and
model properties of the SPMe are presented in [25]. The
Thermal Model from [26] is coupled to the SPMe to form
the SPMeT (see Fig. 1).

A. SPMeT Model

The SPMeT model consists of: (i) two linear spherical dif-
fusion PDEs modeling each electrode’s solid concentration
dynamics, (ii) a quasilinear diffusion equation (across three
domains) modeling the electrolyte concentration dynamics,
(iii) a nonlinear output function mapping boundary values
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Fig. 2. Block diagram of SPMeT. Note that the c+s ,c
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s ,ce subsystems

are independent of one another, and that temperature feeds back into the
nonlinear voltage output.

of solid concentration, electrolyte concentration, and current
to terminal voltage, and (iv) a nonlinear ODE modeling the
bulk temperature of the cell which then feeds back into the
nonlinear output function (see Fig. 2).

We now introduce the SPMeT equations. The solid diffu-
sion equations (1) with boundary conditions (2) are
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The Neumann boundary conditions at r =R±s signify the flux
entering the electrode is proportional to the input current I(t)
(positive for charge). The Neumann boundary conditions at
r = 0 are spherical symmetry conditions and required for
well-posedness. Next, the electrolyte diffusion equations (3)-
(5) with boundary conditions (6)-(9) are
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ce(L−, t) = ce(0sep, t), ce(Lsep, t) = ce(L+, t). (9)

The nonlinear output function for terminal voltage is gov-
erned by a combination of electric overpotential, electrode
thermodynamics, Butler-Volmer kinetics, and electrolyte po-
tential as
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where c±ss(t) = c±s (R
±
s , t) is the surface concentration in the

solid, kconc =
2RT (t)

F (1− t0
c )k̄ f (t), and ī±0 (t) is the spatially

averaged exchange current density
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The bulk temperature dynamics which includes ambient,
ohmic and entropic heating terms is governed by
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where c̄±s (t) is the bulk concentration in the anode/cathode

c̄±s (t) =
3

(R±s )3

∫ R±s

0
r2c±s (r, t)dr. (13)

We define bulk anode SOC as

SOC(t) =
c̄−s (t)
c−s,max

. (14)

This summarizes the SPMeT which maintains accuracy at
higher C-rates than that of an SPM with thermal dynamics
alone [25]. The model parameters used in this study originate
from the publicly available DUALFOIL simulation package
[27] and correspond to a lithium cobalt oxide cathode /
graphite anode chemistry. The cell capacity is 40.18 Ah/m2,
calculated from the maximum concentration of the anode.

1) Comparison to existing SPMe Models: The models in
[22], [23], [24] are most similar to the SPMe presented here
with a few critical differences. In [22], bulk solid concen-
tration is used in the voltage output function instead of the
surface concentration we use here (see (26) in [22]). In the
case of [23], volume averaging is performed in the electrolyte
phase which partially obscures electrolyte polarization. In
[24], the authors use an approximation of the solid state
diffusion equation instead of retaining the PDE version we
use in (1)-(2) (see Section 2 of [24]). Moreover, we include
a temperature submodel, as does [22].

III. OPTIMAL CHARGE CONTROL FORMULATION

Next we formulate a minimum-time/safe optimal charge
control problem. The objective function J is given by

min
I(t),x(t),t f

∫ t f

t0
1 ·dt, (15)

where (t f − t0) is the charge time to reach a desired tar-
get SOC (SOC f ). The optimization variables are the input

current I(t) and final time t f , with state variables x(t) =
[c+s (r, t),c

−
s (r, t),c

+
e (x, t),c

sep
e (x, t),c−e (x, t),T (t)]

T . The con-
straints include the model dynamics and boundary conditions
(1) - (9), input, state, event, and time constraints below:

Imin ≤ I(t)≤ Imax, (16)

θ
±
min ≤

c±s (r, t)
cs,max

≤ θ
±
max, (17)

ce,min ≤ cl
e(x, t)≤ ce,max, l ∈ {−,sep,+} (18)

Tmin ≤ T (t)≤ Tmax, (19)
t0 ≤ t f ≤ tmax, (20)

c±s (r, t0) = c±s,0, cl
e(x, t0) = cl

e,0, l ∈ {−,sep,+} (21)

T (t0) = T0, SOC(t0) = SOC0, (22)
SOC(t f ) = SOC f . (23)

Constraints (17) - (18) protect the solid active material and
electrolyte from lithium depletion/oversaturation. Constraint
(19) protects against excessively cold or hot temperatures
that accelerate cell aging.

The PDE system (1)-(9) is discretized in space using a
second-order accurate finite central difference method that
conserves lithium [28], resulting in a nonlinear differential
algebraic equation system. Due to this complex mathematical
structure, it is difficult to use conventional optimization tech-
niques, e.g., dynamic programming, Pontryagin’s minimum
principle, and indirect methods, due to intractable computa-
tional burden or accuracy. Instead, we pursue pseudo-spectral
methods to transcribe this infinite-dimensional optimal con-
trol problem into a finite-dimensional optimization problem
with algebraic constraints at the discretized nodes. Then, the
optimization variables at such nodes are solved by off-the-
shelf nonlinear programming (NLP) solvers, like SNOPT or
IPOPT [29]. Note that convexity is not guaranteed, and there-
fore these solvers yield locally optimal solutions. Pseudo-
spectral methods are an effective tool for complex non-
linear optimal control problems and have been extensively
applied to real-world optimization problems in engineering,
including aerospace and autonomous flight systems [30],
road vehicle systems [31], energy storage [20], [21], etc.
There are a myriad of approaches for discretizing integral
and differential equations, leading to a spectrum of pseudo-
spectral variants. In this study, we use the Legendre-Gauss-
Radau (LGR) pseudo-spectral method with adaptive multi-
mesh-interval collocation, featured by the general purpose
optimal control software (GPOPS-II) [29]. This software
incorporates an orthogonal collocation method to generate
the LGR points. Rather than a traditional fixed global mesh,
an adaptive mesh refinement algorithm is employed to it-
eratively adjust the number of mesh intervals, the width of
each interval, and the polynomial degree (the number of LGR
points). Theoretical and algorithmic properties of this method
are elaborated in [32], [33].

IV. RESULTS AND DISCUSSION

This section presents optimization results for minimum-
time charge and examines solution sensitivity to perturba-
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tions in model parameters.

A. Minimum Time Charge

The optimal charge trajectories are shown in Fig. 3
for Imax = {11.05C,8.84C,5.89C}. It takes 7.4721min
to achieve a target SOC of 80% (SOC f = 0.8) from an
initial SOC of 20% (SOC0 = 0.2) when Imax = 11.05C.
The charge process follows a constant-current/constant-
electrolyte-concentration/constant-surface-concentration
(CC-CCe-CCss) protocol. To minimize charging time, the
maximum C-rate is applied initially, causing the minimum
electrolyte concentration constraint to become active at the
anode current collector. The surface concentration at the
anode increases until it reaches its maximum value, which
becomes the dominant inequality constraint. A similar
behavior is observed when Imax = 8.84C, with a longer
initial current at the maximum C-rate. It takes 7.5099min to
achieve the target SOC in this case, which is slightly more
than the previous case. Note that once the the minimum
electrolyte concentration constraint becomes active at the
anode current collector, the protocol follows almost the
same trajectory as the previous case. A slightly different
behavior is observed when Imax = 5.89C, which just has
2 steps. It takes 7.9238min to achieve the target SOC in
this case, which is longer in time than the previous cases.
This protocol follows a constant-current/constant-surface-
concentration (CC-CCss) protocol. The maximum C-rate is
applied initially, until the maximum surface concentration at
the anode constraint becomes active. Heuristically, the first
two protocols where Imax = {11.05C,8.84C} are similar in
nature to the CC-CC-CV charge protocol [5] which involves
an initial high constant current period, followed by a lower
constant current period, and then by a constant voltage
period. The last protocol where Imax = 5.89C is similar in
nature to the well known CC-CV protocol [4].

A comparison of the optimized charge protocol vs. the
well known CC-CV protocol is presented in Fig. 4 for
Imax = 5.89C. We make two observations. (i) It takes the
CC-CV protocol 9.0041min to achieve the target SOC, a
1.0803min (13.63%) increase w.r.t. the optimized charge
protocol at Imax = 5.89C. (ii) The optimized protocol allows
safe excursions beyond the 4.2V upper limit in CC-CV by
ensuring the electrochemical state constraints are satisfied.

B. Sensitivity Based Battery Design for Fast Charging

Next we examine the solution sensitivity to perturbations
in model parameters for fast charging. In previous results,
we noted that the first electrochemical constraint to become
active was the electrolyte concentration at the anode current
collector when Imax = {11.05C,8.84C}. This observation mo-
tivates exploring how alterations to the electrolyte dynamics
impact minimum charge time.

1) Electrolyte Diffusivity De(ce): A comparison between
the optimized charge protocol for a ±5% deviation in De(ce)
and the solution with nominal parameters is shown in Fig. 5
for Imax = 8.84C. The optimized charge protocol with a +5%
deviation requires 7.3866min to achieve the target SOC. The
cell with greater electrolyte diffusivity requires 0.1234min
(1.64%) less charge time. Consequently, increasing De(ce)
is favorable to obtaining a faster charge time. The optimized
charge protocol with a −5% deviation requires 7.6463min
to achieve the target SOC. The cell with lower electrolyte
diffusivity requires 0.1363min (1.82%) more charge time.
Consequently, decreasing De(ce) is not favorable to obtaining
a faster charge time. Note that the trajectories are similar to
that of the unperturbed solution. The difference is seen in
the electrolyte concentration dynamics which become faster
or slower depending on the increase or decrease in De(ce),
respectively.
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Fig. 5. Influence of a ±5% deviation in De(ce) on optimization results for minimum time charge with Imax = 8.84C. Left: Current I(t), Voltage V (t),
State of Charge SOC(t), Temperature T (t). Right: Surface Concentrations θ−(t),θ+(t), Electrolyte Concentrations c−e (0

−, t),c+e (0
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V. CONCLUSIONS

An optimal control framework for a PDE system has
been developed to explore model-based fast-safe charging
protocols. In this framework, a coupled Single Particle Model
with Electrolyte and Thermal Dynamics is incorporated to
account for solid and electrolyte phase concentration con-
straints, as well as thermal constraints. The Legendre-Gauss-
Radau (LGR) pseudo-spectral method with adaptive multi-
mesh-interval collocation is leveraged to solve the infinite
dimensional nonlinear optimal control problem.

Charge time is examined subject to both electrochemical
and thermal constraints. The resulting minimum time

charge regimes with varying input current limits are
analyzed in detail, with the following key findings: (i)
The protocol is constant-current/constant-electrolyte-
concentration/constant-surface-concentration (CC-CCe-
CCss) when Imax = {11.05C,8.84C}, requiring 7.4721
minutes and 7.5099 minutes to charge the battery from
20% to 80% SOC, respectively. This optimized protocol is
similar to the heuristic high constant current-low constant
current-constant voltage (CC-CC-CV) protocol. (ii) The
protocol is constant-current/constant-surface-concentration
(CC-CCss) when Imax = 5.89C, requiring 7.9238 minutes
to charge the battery and is similar to the well known



constant-current/constant-voltage (CC-CV) protocol. (iii)
The protocol solutions yield physical insight on which
battery design parameters to optimize for fast charging
applications. Increasing electrolyte diffusivity coefficient
De(ce) results in faster charge time when Imax = 8.84C.

In this paper we assume full state measurements and
known parameters to ascertain the maximum possible fast
charging benefits of SPMeT-based control. Future work
combines the SPMeT presented here with state and parameter
estimates generated by adaptive PDE observers [1]. This
output feedback system (i) guards against harmful operating
regimes, (ii) increases charging speed, and (iii) monitors
state-of-charge and state-of-health, all from measurements of
voltage, current, and temperature. Future work also include
incorporation of progressive aging dynamics, similar to [21].
Finally, we plan to experimentally quantify the aforemen-
tioned benefits on a battery-in-the-loop test facility.
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