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Abstract— Lithium-ion (Li-ion) battery faults are potentially
hazardous to battery health, safety and performance. Thermal
fault mechanisms represent a critical subset of such failures.
To ensure safety and reliability, battery management systems
must have the capability of diagnosing these thermal failures.
We present a Partial Differential Equation (PDE) model-based
scheme for diagnosing thermal faults in Li-ion batteries. For
this study, we adopt a distributed parameter one-dimensional
thermal model for cylindrical battery cells. The diagnostic
scheme objective is to detect and estimate the size of the
thermal fault. The scheme consists of two PDE observers
arranged in cascade. The first observer, denoted as Robust
Observer, estimates the distributed temperature inside the cell
under nominal (healthy) and faulty conditions. The second
observer, denoted as Diagnostic Observer, receives this estimated
temperature distribution, and in turn outputs a residual signal
that provides the fault information. Lyapunov stability theory
has been utilized to verify the analytical convergence of the ob-
servers under heathy and faulty conditions. Simulation studies
are presented to illustrate the effectiveness of the scheme.

I. INTRODUCTION

Thermal failure and degradation mechanisms constitute
an important subset of battery faults that can potentially
deteriorate battery performance and safety [1]. Some of these
thermal failures, e.g. thermal runaway, may even lead to
catastrophic events if not detected or diagnosed early enough.
Therefore, diagnosis of battery thermal failures is extremely
important to ensure safe and reliable operation. In this paper,
we propose a Partial Differential Equation (PDE) model-
based diagnosis scheme for thermal faults in Li-ion batteries.

In the battery controls/estimation literature, real-time esti-
mation of State-of-Charge (SOC) and State-of-Health (SOH)
have received substantial attention in the past decade [2]
[3] [4] [5] [6] [7]. Compared to SOC and SOH estimation,
temperature estimation problems have received significantly
less attention. There are some recent studies. For example,
algorithms for core temperature estimation [8] [9], and
distributed temperature estimation [10] are proposed.

The body of literature on real-time fault diagnosis prob-
lems in batteries is significantly smaller than estimation
problems. Some of the existing approaches deal with sensor
and actuator faults [11] [12] [13], electrochemical faults [14],
overcharge/over-discharge faults [15], and terminal voltage
collapse [16]. However, real-time diagnosis of thermal faults
is almost unexplored in the existing published literature,
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despite its critical importance for battery safety and perfor-
mance. A few efforts exist in battery thermal fault diagnos-
tics that utilize average thermal model [11] and two-state
thermal model [17] to diagnose certain thermal faults. These
approaches, however, (i) rely on lumped parameter thermal
models which may not be sufficient to capture the effect
of distributed thermal faults inside the cell, and (ii) do not
estimate fault size. Note that information on fault size can
be crucial for thermal management under faulty conditions.
In the present paper, we extend this research by proposing
a battery thermal fault diagnosis scheme which (i) utilizes
a distributed parameter thermal model and, (ii) detects and
estimates the thermal fault size.

In the proposed diagnostic scheme, we adopt an one-
dimensional distributed parameter thermal model of a cylin-
drical battery cell [18]. The scheme consists of two PDE
observers arranged in cascade and utilizes measured surface
temperature feedback. The first observer, denoted as Robust
Observer, estimates the distributed temperature inside the
cell under healthy and faulty conditions. Robust state estima-
tion is a bi-product of this scheme that provides convergent
estimate of the temperature distribution inside the battery
cell irrespective of healthy or faulty conditions. The sec-
ond observer, denoted as Diagnostic Observer, receives this
estimated temperature distribution information from Robust
Observer and in turn outputs a residual signal that provides
the fault information. The backstepping transformation and
Lyapunov stability theory [19] have been utilized to design
and analyze the observer. Furthermore, the residual signals
are compared with non-zero thresholds to incorporate ro-
bustness to modeling and measurement uncertainties. These
non-zero thresholds are designed offline based on the prob-
ability distribution of the residual signals under fault-free
conditions.

The rest of the paper is organized as follows. Section
IT introduces the distributed parameter thermal model of
the battery cell. Section III designs and analyzes the fault
diagnosis scheme in detail. Simulation studies are presented
in Section IV. Finally, Section V concludes the work.
Notations: In this paper, following notations are used:
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luG)ll =/ fo v (@)dz, up = G, ue = G2, uze = G-

II. DISTRIBUTED PARAMETER THERMAL
MODEL FOR LI-ION BATTERIES

Nominal Model: We adopt the following (nominal or fault-
free) one-dimensional thermal model that predicts the radi-
ally distributed temperature dynamics of a cylindrical battery



cell [18]:
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with Neumann boundary conditions
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where ¢ € R represents time and r € [0, R] is the spatial
coordinate in the radial direction. The parameter k is the
thermal conductivity of the battery cell, Q(f) is the volu-
metric heat generation rate, h is the convection coefficient
and B = (pC,)/k is the inverse of thermal diffusivity, where
p is the mass density and Cj, is the specific heat capacity.
Next, we: (i) perform a state transformation yielding a
simpler PDE in new space variable Z and time ¢ and, ii)
then scale the space and time variables in the new PDE by
defining T (z,t) = T (z,t) with z = Z/R, t = t/BR? and
k = k/R2. This transformation and scaling results in the
following system:

0.0=02(r

)(t
Ti(x,t) = Typp(x, t) + %, 3)
with Neumann boundary conditions
h
Tm(oat) :Ova(l,t) = E(TOO?T(lat))a 4)

where t € RT and z € [0, 1]. The remainder of this paper
considers (3)-(4) as the plant model.

Furthermore, we adopt a second order electric circuit
model to capture the electrical dynamics of the battery (see
Fig. 1) [20]. The electrical circuit consists of an open circuit
voltage source (V,.), an internal series resistance (R;,;) and
two resistance-capacitance branches in series. Furthermore,
it is assumed that the SOC of the battery is computed online
via Coulomb-counting. The state-space equations for the
electrical model are:

dsoc . It
dt (= Chatt’ ©)
avi . Vi) | I(t)
W(t)f RGOy (6)
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H(t)_ R.Cy = Oy @

‘/term(t) = OC(SOC) - ‘/l(t) - V2 (t) - Rintl(t)’ (8)

where I(t) is the battery current, Cp,y; is the battery charge
capacity in Amp-sec and Vi, is the terminal voltage. The
open circuit voltage (V) is a function of the State-of-Charge
(SOC) and computed online. This function can be determined
via offline experimental studies. In this distributed parameter
model, R;,; is assumed to have Arrhenius dependence on the
average battery temperature Tg,q given as: Rint = f (Tavg)

where f( avg) - Rznt ref © €XP 22 and Rint,ref is a
known reference value at a known reference temperature
Tref The average temperature of the cell is given by

Ty ( fo (z,t) dx.
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Fig. 1. Battery electrical circuit model

Measurements: Measured variables include the current (7),
terminal voltage (Vierr, ), and surface temperature (7°(1)).

Remark 1. The heat generation rate ) is expressed as:

Qt) =

where vy, is the battery cell volume. In this work we assume
that Q is computed online using the measured variables
Vierm» I, and V,.(SOC), which is computed using the
SOC' information from (5). Furthermore, we assume that
the electrical states V7 and V5, are computed online via the
open-loop model (6)-(7).
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Fault Model: The faulty battery thermal dynamics can be
mathematically modeled as

)(t
Ti(x,t) = Tox(z,t) + % + Ag(x,t), (10)
with Neumann boundary conditions
h
T;E(O,t):O,TI(l,t)zE(T(,O—T(l))7 (11)

where Ag(x,t) represents a distributed thermal fault, such
as abnormal heat generation from electrochemical side reac-
tions, or failure due to mechanical or thermal abuse [1][21].

ITII. FAULT DIAGNOSIS SCHEME

The fault diagnosis scheme is diagramed in Fig. 2. The
scheme consists of two observers working in cascade. The
first observer, Robust Observer, uses the surface temperature
feedback and estimates the distributed battery cell tempera-
ture under healthy and faulty condition. The second observer,
Diagnostic Observer, receives the estimated temperature
distribution from Robust Observer and in turn provides a
residual signal. The residual signal is used for detection and
estimation of the thermal fault (Ag). In the next subsections,
we will discuss the design of these two observers.

A. Robust Observer

The following structure is chosen for the Robust Observer,

. . (¢ -
Tlt(l?,t) = lex(l‘,t) + % + P ($)T1(1,t), (12)
with Neumann boundary conditions
. . h .
T1,(0,t) =0,T1,(1,t) = z (Too — T (1,%)) + ProTu(1,1),

13)
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Fig. 2. Fault diagnosis scheme

where 71 (z,t) is the estimated temperature distribution,
Ti(1,t) = T(1,t)—Ty(1,t) is the boundary estimation error
and P;(x) and Pjq are the observer gains to be determined.

The error dynamics of the Robust Observer are given by
subtracting (12)-(13) from (10)-(11),

Tii(x,t) = Tiaa(z,t) + Ag(z,t) — Py(x)Ti(1,1), (14)

T12(0,t) = 0,T1,(1,t) = —PioTi(1,1). (15)

Next, we follow the backstepping approach to analyze the
error dynamics and design the observer gains [19]. The back-
stepping approach seeks the linear Volterra transformation
Ty (z,t) — w(z,t)

1
T (2,1) = wiz, £) - / Pla.y)w(y.t)dy,  (16)

which transforms (14)-(15) to the following target error
system

wi(z,t) = weg(x, 1) + Ay, t) — cw(z, t), a7

we(0,1) = 0,w,(1,8) =0, (18)

with ¢ > 0 as a parameter of user’s choice and Ag(z,t) =
Aoz, t) — jml P(z,y)A,q(y,t)dy. Note that, the gain
kernel P(z,y) in (16) must satisfy the following conditions:

Pyy(2,y) = Pra(z,y) = cP(z,y), (19)
Plz,z) = —cg, P, (0,y) =0, (20)

and the observer gains can be computed as:
Py (z) = —Py(z,1),Pio = —P(1,1), 21

Remark 2. There exists a unique and closed-form solution
of the kernel PDE (19)-(20) [19], given by

L(Vely? —a?))
c(y? —x?)

Therefore, the observer gains can be computed offline via
(21) using the closed form solution (22).

P(z,y) = —cy (22)

Remark 3. It can be proven that the transformation (16)
is linear and invertible [19]. Hence, stability of the target

system (17)-(18) implies stability of the original system (14)-
(15). Next, we present a theorem for the convergence of the
Robust Observer via stability analysis of the target system.

Theorem 1 (Performance of Robust Observer). Consider the
error dynamics (17)-(18). If ¢ > 0, then

(a) under Scenario 1: A,g = 0 i.e in the presence of
no fault, the origin of the error dynamics w(x,t) = 0 is
exponentially stable in the sense of the spatial H, norm.
(b) under Scenario 2: A,q # 0 i.e. in the presence of a fault,
the error w(x,t) remains bounded in the sense of spatial H,

HAwQH2+|2\AwaH2

3 as t — oo.
C

norm, i.e. |wll,, < Rp =

Proof. We consider the square of the spatial ; norm as a
Lyapunov function candidate to analyze the error dynamics
(17)-(18):
2 2
[wll” + flwe |
2

e e
f/ w?(z, t)dz + f/ Wiz, t)dz.  (24)
2 Jo 2Jo

The derivative of W;(t) along the state trajectory can be
written as:

Wi(t) = (23)

(1>

1 1
Wl(t) :/ wwidr —|—/ Wrwgrd. (25)
0 0

Now consider the first term of the right hand side of (25),

1 1 1 1
/ wwedx = / WWygpdx + / wA,qdx — c/ wdz.
0 0 0 0

(26)
Applying integration by parts on the first term and the
Cauchy-Schwarz inequality on the second term of the right
hand side of (26) yields

1
2 2
/0 wwrds < — wel® + ] [Awell — clw®  @7)

Now applying integration by parts on the second term of
right hand side of (25), we have

1 1
/ WeWgrdr = —/ WiWgpdT
0 0

1 1 1
= —/ wgidw — / Wz Ao + c/ WWggdx. (28)
0 0 0

Next applying integration by parts on the second and third
terms of the right hand side of (28), we have

1 1 1 1
/ Wapwgrdr = —/ wiwdm +/ Wz AwQe — c/ widw
0 0 0 0

(29)
Further, we apply Cauchy-Schwarz inequality on the second
term of right hand side of (29) which yields

1
2 2
/0 el < — [wra ]2+ [ Duall [wall —¢ wal. (30)

Finally, considering (27) and (30) we can write the upper
bound of the derivative of the Lyapunov function

Wi(t) < wll (18uwqll = ¢ llwl) + llwe | (1Awqall = ¢ llws]l).
€29



Now considering Scenario 1: A, = 0, we can write (31)
as

W1 (t) S —20W1 (t) (32)

If ¢ > 0 the comparison principle applied to (32) gives
Wi(t) < W1(0)exp(—2ct), which confirms the exponen-
tial convergence of Wi(¢). Hence, the origin of the error
dynamics w(x,t) = 0 is exponentially stable in the sense of
the spatial H; norm.

Next, we consider Scenario 2: A,qo # 0. From (31), the
sufficient conditions for the negative definiteness of Wl(t)

are
”AwQ H

leoll > =7 llws [ > (33)

||AwQﬂcH

Pa
Squaring both sides of the conditions in (33) and adding
them, we can write a single sufficiency condition as the
square of H; norm:

leoll? + flows 1 SR A 18wl + | Awge”

2 B 2c2 '
Therefore, we can conclude that the negative definiteness
of W (t) will hold outside the ball of radius in the llwll,
space defined by Rp. Hence, Wy (¢) will settle on or within
a bounded ball of radius R%. This implies [|w|,;, < Rp as
t — oco. The magnitude of Rp can be made arbitrarily small
by choosing a high value of c. O

(34)

B. Diagnostic Observer

The Diagnostic Observer utilizes the estimated tempera-
ture distribution from Robust Observer as a feedback signal.

Remark 4. The estimated temperature from Robust Ob-
server can be written as: Ty(x,t) = T(x,t) + e(z,t).
However, we have proven that ¢ can be made arbitrarily
small by selecting c arbitrarily large. Hence, we consider
T1(z,t) ~ T(x,t) for all practical purposes in the following
analysis.

Assumption 1. We assume the following structure of the
fault function Ag(z,t) = 0Y(T(x,t),I(t)) where ¥(-,-)
is a known function of distributed state T'(x,t) and input
current I, and § € R is an unknown constant parameter
which determines the fault size. The main objective of the
diagnostic observer is to estimate the value of 6.

Considering Remark 4 and Assumption I, the following
structure is chosen for the Diagnostic Observer,

Q)

Ton(,t) = Taga (@, 1)+ 2 4+0U(T(2,1), 1(£)+ Lo Ta(a, 1),
(35)
with Neumann boundary conditions
. . h
TQm(Ovt) :OaT2m(17t) = E(Too 7T(]‘ﬂt))7 (36)

where Tg(x,t) is the estimated temperature distribution by
Diagnostic Observer, To(x,t) = T(x,t) — Th(z,t) is the
distributed estimation error with T'(x,t) as the estimated
temperature distribution from Robust Observer, 0 is the

estimated size of the fault and, L, € R is an observer gain
to be determined. The update law for 6 is chosen as

X 1 1 ~
o-1- /0 (T ), [() (@, de,  (B7)

where Ls > 0 is a user-defined gain that determines the
parameter convergence rate. Subtracting (35)-(36) from (10)-
(11), we can write the error dynamics of Diagnostic Observer
as

Toi(,t) = Toga(, t) + O(T(x, ), I(t)) — LoTo(x,t),
(38)
with Neumann boundary conditions

Toz(0,1) = Top(1,t) = 0, (39)

In the following theorem, we analyze the performance of the
Diagnostic Observer.

Theorem 2 (Performance of Diagnostic Observer)). Con-
sider the error dynamics (38)-(39) and the parameter update
law (37). If Remark 4 and Assumption 1 are valid and
Ly > —i, then the distributed state estimation error T2(1'7 t)
and parameter estimation error 6 will be bounded. i.e.
HTQ é’ € Ly as t — oc.

9

Proof. We consider the following Lyapunov function candi-
date to analyze the error dynamics

1 1. o~
Wa(t) = 5/0 T3 (z,t)dr + %92 (40)

Now considering (38) and the fact 6 = 0, the derivative of
Wa(t) along the state trajectories can be written as

1 1
Wg (t) = / TQTQMLCZJJ — Lg/ ng.ﬁ
0 L 0 . (41)
+0 / (T, I Todx — L300
0

Next applying integration by parts on the first term of the
right hand side of (41) and then applying Poincaré inequality:
— fol T de < —3 fol T2dz, we have

. 1 /. 1
Wa(t) 5*1/ ngfoz/ T2dx
0 0 (42)

1 .
16 / (T, I)Todx — L300

0
Finally, applying the update law (37) on (42), we can write:

. 1 1

Wa(t) < (7 + L2) / T}de. (43)
0

From (43) it can be concluded that Wg(t) is negative

semidefinite if Lo > —%. Hence, the estimation errors

‘5‘ and Ty (x,t) will be bounded. i.e. HTQ , 5‘ € L as

t — oo. ]

Remark 5. The parameter estimate 6 will be used as a resid-
ual signal which serves the purpose of detection (indicated by



the fact 6 # 0) and estimation (indicated by the magnitude
of ) of the thermal fault Ag. The presence of modeling
and measurement uncertainties prohibits the residual 6 from
having the ideal property of equaling zero in the absence of
a fault. We handle the effect of uncertainties by comparing
the residual with a nonzero threshold. The residual will be
evaluated as follows: A fault is detected when 6 > th; no
fault when @ < th, where th is the predefined threshold.

Remark 6. The convergence properties of the Robust Ob-
server and Diagnostic Observer are analyzed separately. This
is enabled by the following facts: (i) The interaction between
the two observers is one directional (from Robust Observer
to Diagnostic Observer); (ii) The parameter ¢ can be chosen
arbitrarily small to yield arbitrarily small T, and therefore
error from Robust Observer can be neglected.

IV. SIMULATION STUDIES

In this section, we conduct simulation studies to test the
effectiveness of the scheme. The battery under consideration
is a commercial Lithium Iron Phosphate A123 26650 cylin-
drical cell with rated capacity of 2.3 Ah. Battery parameters
are taken from [10] [20]. In simulation, applied current to the
battery and corresponding voltage and temperature responses
under no fault condition are shown in Fig. 3 and Fig. 4. To
emulate a realistic scenario, we inject following zero mean
Gaussian noises in the measured quantities: 10mA current
(I) noise, 0.3°C' surface temperature (7%) noise and 5mV
voltage (Vierm) noise. Under these assumed uncertainties, we
select a a constant threshold value for the residual signal (é)
following the procedure discussed in the previous section.
In the following results, the performance of the observers
will be shown in terms of spatially averaged temperature,
ie. Thpg = fol T(x,t)dz and Tj_qpy = fol T;(x, t)dz where
T(z,t) represents actual temperature and T}(x, ¢) represent
estimated temperatures with ¢ € {1,2}. Furthermore, we
will quantify the convergence performance of the estimates
in terms of convergence time defined as the time taken to
reach within +2% band of the true value starting from
the incorrect initial condition. The observer estimates are
provided in Fig. 5 under no fault condition. To verify the
convergence properties, the observers are initialized with
incorrect temperature 295 K, 3 K less than the true initial
condition of 298 K. Recall from Theorem 1 that we have
proven exponential stability of 77 (z,t) to the origin, in the
sense of spatial ; norm. Theorem 2 proves boundedness
of the £y norm of Th(x,t), i.e. ||T2|| € Loo. In Fig. 5, both
Tl,m,g and Tg,avg from the Robust Observer and Diagnos-
tic Observer, respectively, converge to the true temperature
Tvg. The convergence time for both observers are within
0.1 sec. Next we illustrate the proposed approach under the
following faulty case. A distributed additive heat generation
fault is injected between 50 sec and 170 sec in the battery.
In this case we have ¢(T'(z,t),I(t)) = 1 and Ag(z,t) = 0.
The nature of the fault is abrupt/step-like. The tempera-
ture distribution is shown in Fig. 6, which clearly exhibits
higher temperatures. The corresponding performance of the
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Fig. 4. Temperature distribution inside the battery Under no fault condition

observers is provided in Fig. 7. Similar to the nominal case,
both observers are initialized with incorrect temperatures to
test the convergence properties. In Fig. 7, both Tl_avg and
Ty avg from the Robust Observer and Diagnostic Observer,
respectively, converge to the true temperature T, . The
convergence time for both observers are within 0.1 sec. This
is expected, of course, since the fault does not occur until
50sec. Furthermore, the estimated parameter 0 crosses the
threshold shortly after the fault occurrence at 50 sec, thus
detecting the fault. Moreover, 6 converges to a neighborhood
of the true fault size 6, as shown in the bottom subplot in
Fig. 7. Recall that Theorem 2 only guarantees boundedness
of 6, i.e. || € Lo. Nevertheless, we find the estimate can
be successfully used to estimate fault size. In this case,
the detection time is 1 sec whereas the fault estimate (é)
converges to the true value () within 5 sec.

V. CONCLUSIONS

This paper presents a PDE-observer based scheme for
diagnosing thermal faults in Li-ion batteries. We consider
a distributed parameter thermal model coupled to a second
order electrical model for diagnostic scheme design. The
scheme consists of two PDE observers working in cascade.
The first observer, Robust Observer, estimates the internal
temperature distribution. The second observer, Diagnostic
Observer, utilizes this estimated temperature distribution and
in turn detects and estimates thermal faults. The proposed
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The

fault is injected between 50 sec and 170 sec. Nature of the fault: abrupt.

scheme is tested on a case study of an internal heat genera-
tion fault. Simulation results illustrate the proposed scheme.
Future work includes experimental validation.
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