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Abstract— Longevity remains one of the key issues for
Lithium-ion (Li-ion) battery technology. On-board Intelli-
gent Battery Management Systems (BMS) implement health-
conscious control algorithms in order to increase battery life-
time while maintaining the performance. For such algorithms,
the information on Remaining Useful Life (RUL) of the battery
is crucial for optimizing the battery performance and ensuring
minimal degradation. However, accurate prediction of RUL
remains one of the most challenging tasks until this date. In
this paper, we present an online RUL estimation scheme for
Li-ion batteries, which is designed from a thermal perspective.
The key novelty lies in (i) leveraging thermal dynamics to
predict RUL and, (ii) developing a hierarchical estimation
algorithm with provable convergence properties. The algorithm
consists of three stages working in cascade. The first two
stages estimate the core temperature, State-of-Charge (SOC)
and battery capacity based on a combination of thermal and
Coulombic SOC model. The third stage receives this capacity
information and in turn identifies a capacity fade aging model.
Finally, we estimate the RUL by predicting the battery capacity
fade over the cycles utilizing the identified aging model. A
combination of sliding mode observers and nonlinear least-
squares algorithm is utilized for designing the estimators.
Simulation results illustrate the performance of the proposed
RUL estimation scheme.

I. INTRODUCTION

With the rapid evolution of smart grid technologies and
electrified vehicles, the Lithium-ion (Li-ion) battery has
become a prominent device for energy storage. Over the last
decade, interest in this topic has dramatically increased and
a substantial body of research has emerged on improving
battery performance and safety. Essentially, an intelligent
BMS implements real-time control/estimation algorithms
that enhance battery performance while improving safety.
One of the crucial functions of such BMS is to estimate the
Remaining Useful Life (RUL) [1]. Accurate RUL estimation
is still an unsolved problem in BMS research.

The existing literature contains several approaches to RUL
estimation. Broadly, these approaches can be categorized
into offline and online approaches. Offline approaches gen-
erally develop RUL models in specific laboratory settings
with access to large amounts of battery data under varying
operating conditions. Liu et al. developed a data-driven
adaptive recurrent neural network (ARNN) trained using
history resistance data at two different temperatures for
battery RUL prediction [2]. A model based offline RUL pre-
diction using relevance vector machines (RVMs) and particle
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filters (PFs) were examined in [3]. Tang et al. proposed
a RUL prediction method based on the Wiener process
with measurement error and offline parameter estimation [4].
Although these offline approaches significantly contribute
towards this research area, their applicability for real-time
purpose is limited due to the following reasons: (i) in real-
time, we have access to very limited amounts of data; (ii)
in practice, battery degradation depends significantly on the
usage patterns. Therefore, a single offline RUL scheme may
not be sufficient for these cases. These facts motivate the
necessity of online approaches for RUL estimation.

The online RUL estimation approaches operate on real-
time BMS processors utilizing real-time measurements. Gen-
erally, online approaches are comparatively more challenging
than their offline counterparts due to lack of measured
information and limited computation power. A few stud-
ies have investigated this. Zhou et al. used mean voltage
falloff (MVF) as a health indicator to quantify the capacity
degradation, thanks to high correlation between MVF and
capacity [5]. Orchard et al. developed a risk-sensitive particle
filtering based approach for accurate RUL and end-of-life
(EOL) estimation in [6]. Data-driven capacity estimation
approaches, such as artificial neural network (ANN) and
Relevance Vector Machine (RVM), were examined in [7],
[8]. However, none of the aforementioned approaches ex-
plore RUL estimation from a thermal perspective. In light of
these existing approaches, the main contributions of the paper
are the following: (i) we exploit electro-thermal coupling to
predict RUL of the battery in terms of capacity fade; (ii)
from a theoretical perspective, we develop a hierarchical esti-
mation algorithm with mathematically provable convergence
and robustness properties.

The proposed online RUL estimation scheme is composed
of a hierarchical structure with three stages. In Stage 1,
core temperature and heat generation are estimated based
on a two-state thermal model. Stage 2 estimates SOC and
capacity using the coupling between thermal and electrical
dynamics. Finally, Stage 3 uses estimated capacity and core
temperature, as well as input current to identify a capacity
fade model. A combination of sliding mode observers [9]
and least-squares algorithm is used for the estimator design,
where the convergence of each estimation process is carefully
examined. The choice of sliding mode observer is due to its
provable finite time convergence and robustness properties.
This identified aging model further predicts the battery EOL,
defined as a 20% decrease of the original cell capacity [10].

The paper is organized as follows: Section II presents
battery electrical, thermal, and aging models. Section III



Fig. 1: Schematic of Equivalent Circuit Model

discusses sliding mode observers with stability analyses, and
least-squares algorithm for parameter identification. Section
IV discusses the simulation results for a particular charge-
discharge cycle. Conclusions are drawn in Section V.

II. BATTERY MODEL

This paper utilizes an equivalent circuit model (ECM) that
captures the electrical dynamics, and a two-state thermal
model that captures battery surface and core temperature
dynamics [11]. We also consider a cycle-life battery aging
model from [12]. In the following subsections, we describe
these models in detail.

A. Electrical Model

Consider the ECM presented in Figure 1, which idealizes
a battery as an open-circuit voltage (OCV ) in series with
two resistor-capacitor (R-C) pairs, and an internal resistor
(R0). The state space dynamics and output are given by:

dSOC(t)

dt
= − I(t)

Cbat
(1)

dV1(t)

dt
= − 1

R1C1
V1(t) +

1

C1
I(t) (2)

dV2(t)

dt
= − 1

R2C2
V2(t) +

1

C2
I(t) (3)

VT (t) = OCV (SOC)− V1(t)− V2(t)− I(t)R0 (4)

where I(t) is the input current, and we specify positive for
discharge and negative for charge. Cbat is the battery charge
capacity in Ampere-second, and VT denotes terminal voltage.

B. Thermal Model

A two-state lumped thermal model of a cylindrical battery
is adopted from [11]. The model states are core temperature
(Tc) and surface temperature (Ts):

Cc
dTc(t)

dt
=
Ts(t)− Tc(t)

Rc
+ Q̇(t) (5)

Cs
dTs(t)

dt
=
Tf (t)− Ts(t)

Ru
− Ts(t)− Tc(t)

Rc
(6)

Q̇(t) = I(t)
(
OCV (SOC)− VT (t)− T (t)

dU

dT

)
(7)

where Rc, Ru, Cc and Cs represent heat conduction resis-
tance, convection resistance, core heat capacity, and surface
heat capacity, respectively. Q̇(t) is internal heat generation.

Heat generation from resistive dissipation and entropic heat
are considered, where U is the equilibrium potential and T (t)
is the average of surface and core temperature. Following
[11], we assume the coolant flow rate is constant and the
ambient temperature Tf is nearly constant. The thermal pa-
rameters used in this work have been identified and validated
on a LiFePO4/LiC6 A123 26650 cell [11].

C. Aging Model

A cycle-life aging model is adopted from [12]. Exper-
imental data strongly suggests that time (Ah-throughput),
temperature and C-rate significantly affect capacity fade.
They propose an empirical capacity fade model, given as:

Ploss = B(c) · exp
(
Ea(c)

RTc

)
(Ah)z (8)

where Ploss is the capacity loss percentage, c is C-rate, B(c)
is the pre-exponential factor, and R is the universal gas con-
stant. Ah is ampere-hour throughput. Moreover, Ea(c) and z
are the activation energy and power law factor, respectively.
A cycle-life capacity model can be derived accordingly:

Cbat(N) =
(
1− Ploss

100

)
Cbat(0)

=
[
1− a · exp

( b

RTc

)
(Ah)z

]
Cbat(0) (9)

where N ∈ N is the cycle number, Cbat(0) is the full cell
capacity, and a, b are the parameters to be estimated online.

III. ONLINE ESTIMATION SCHEME FOR RUL
PREDICTION

The goal of this work is to develop an online estimation
scheme that predicts battery RUL. Essentially, we estimate
parameters a and b of the aging model (9) online and use
the identified model to predict capacity fade. We present a
novel hierarchical scheme depicted in Figure 2. The scheme
consists of three stages. In Stage 1, a sliding mode observer
based on the two-state thermal model is employed to simul-
taneously estimate unmeasured state (Tc) and unmeasured
input (Q̇), using the available online measurements of surface
temperature (Ts), input current (I), and terminal voltage
(VT ). Next, the estimated heat generation ̂̇Q is passed to
Stage 2, where another sliding mode observer based on
the SOC-model is applied to estimate the unmeasured state
(SOC) and unknown parameter (Cbat). Finally, Stage 3 iden-
tifies parameters of capacity fade model (9). The inputs to
Stage 3 are the input current (I), estimated core temperature
(Tc) and capacity (Cbat). In contrast to the first two stages,
Stage 3 operates on a slower time scale by taking the
estimated capacity value at the end of each charge-discharge
cycle, and updating parameters of the aging model (9) online.
For this stage, we use the nonlinear least-squares algorithm
for parameter estimation. In the following subsections, we
detail the design of each stage.



Fig. 2: Online RUL Estimation Scheme

A. Stage 1: Estimation of Core Temperature & Heat Gener-
ation

The purpose of Stage 1 is to simultaneously estimate
the core temperature (unmeasured state) and heat generation
(unmeasured input). We consider the following observer
structure for Stage 1:

˙̂
T c = −

1

RcCc
T̂c +

1

RcCc
T̂s + L1sgn(v) (10)

˙̂
T s =

1

RcCs
T̂c −

( 1

RuCs
+

1

RcCs

)
T̂s +

1

RuCs
Tf + L2v1

(11)

Q̂ = L1Ccsgn(v) (12)

where L1, L2 > 0 are scalar observer gains to be designed.
sgn(·) is the sign function. Moreover, v1 = sgn(Ts − T̂s),
and v is the filtered version of L2v1. In real time, v can be
computed by passing L2v1 through a low pass filter with
unity steady-state gain, i.e. v(t) = {ω/(s + ω)}L2v1(t),
where ω is the cut-off frequency. Next, we provide the
convergence analysis of observer (10)-(11).

Convergence Analysis of Stage 1 Observer:

Consider the estimation error T̃c = Tc− T̂c and T̃s = Ts−
T̂s. Subtracting (10)-(11) from (5)-(6), the error dynamics
can be written as:

˙̃
T c = −

1

RcCc
T̃c +

1

RcCc
T̃s +

1

Cc
Q̇− L1sgn(v) (13)

˙̃
T s =

1

RcCs
T̃c −

( 1

RuCs
+

1

RcCs

)
T̃s − L2sgn(T̃s) (14)

We analyze error dynamics (14) by using the Lyapunov
function candidate V1(t) = 1

2 T̃
2
s . The derivative of the

Lyapunov function candidate V1 is

V̇1 = T̃s
˙̃
Ts

=
1

RcCs
T̃cT̃s −

( 1

RuCs
+

1

RcCs

)
T̃ 2
s − L2T̃ssgn(T̃s)

≤ |T̃s|
( 1

RcCs
|T̃c| − L2

)
(15)

If the gain L2 is chosen high enough such that

L2 >
1

RcCs
|T̃c|max (16)

then we have that V̇1 ≤ 0.
Remark 1. For the design of the observer gain L2, we need
a finite value for |T̃c|max. Essentially, |T̃c|max < L2RcCs

can be viewed as a Region of Convergence (ROC) for the
observer, which is function of the observer gain L2. Hence,
we can define an acceptable ROC for the observer and
design the observer gain accordingly.

Furthermore, note from (15) that

V̇1 ≤ −
√
2α
√
V1 where α = L2 −

1

RcCs
|T̃c|max (17)

Applying the comparison principle on (17) yields V1 ≤
(
√
V1(0) − αt/

√
2)2, and then the time needed for T̃s to

converge to zero is

t1f =

√
2V1(0)

α
(18)

Therefore, it can be concluded that T̃s → 0 in finite time t1f ,
and hence, the sliding mode is attained. At the sliding mode,
we have T̃s = 0 and ˙̃

Ts = 0. Substituting these expressions
in (14), we can write v = 1

RcCs
T̃c. Next we analyze (13)

using the Lyapunov function candidate V2(t) = 1
2 T̃

2
c . The

derivative of Lyapunov function candidate V2:

V̇2 = T̃c
˙̃
T c

= − 1

RcCc
T̃ 2
c +

1

Cc
Q̇T̃c − L1T̃csgn

( 1

RcCs
T̃c

)
≤ |T̃c|

( 1

Cc
|Q̇| − L1

)
(19)

If we choose the gain L1 high enough such that

L1 >
1

Cc
|Q̇|max (20)

we can conclude that V̇2 ≤ 0.
Remark 2. For the design of observer gain L1, we need a
finite value for |Q̇|max. From (7), this maximum value can
be determined based on a priori knowledge of the possible
range of input current, temperature, terminal and open circuit
voltages.

Similarly, the finite time for T̃c to converge to zero is

t2f =

√
2V2(0)

β
, where β = L1 −

1

Cc
|Q̇|max (21)

At the sliding mode, we have T̃c = 0 and ˙̃
T c = 0. After

t > t2f > t1f , with T̃s = 0, equation (13) simplifies to:

̂̇Q = L1Ccsgn(v) (22)



B. Stage 2: Estimation of Battery SOC and Capacity

Stage 2 simultaneously estimates battery SOC (unmea-
sured state) and capacity (unknown parameter) by receiving
heat generation estimate from Stage 1 as an input signal. We
consider the following observer structure for Stage 2:

˙̂
SOC = L3sgn(OCVm − ÔCV ) (23)

OCV m =
̂̇Q
I
+ VT + T̂

dU

dT
(24)

Ĉbat = −
I

L3v3
(25)

where v3 is the filtered version of sgn(OCVm − ÔCV ),
computed by passing sgn(OCVm−ÔCV ) through a low pass
filter with unity steady-state gain in real time. L3 is the scalar
observer gain to be designed. Note that ̂̇Q and T̂ are the
estimated heat generation from (22) and estimated average
temperature from Stage 1. As analyzed in the previous
subsection, we have ̂̇Q = Q̇ and T̂ = T , and hence from (7),
OCVm = OCV after t > t1f > t2f . Under this scenario,
we analyze the convergence of observer (23)-(24).
Remark 3. Note that (24) requires division by current
I(t) to reconstruct OCVm information. Therefore, this
reconstruction cannot be used under zero current scenarios.
This limitation arises from the fact that the heat generation
is zero under zero current (according to the model (7)).
For practical implementation, this issue can be dealt with
by turning off this reconstruction, and hence the output
injection term of the observer, under the condition |I(t)| < ε
where ε is an user-defined arbitrary small positive number.

Convergence Analysis of Stage 2 Observer:

Strict monotonicity of the OCV-SOC relationship guarantees

sgn(OCV − ÔCV ) = sgn(SOC − ŜOC). (26)

Remark 4. In this formulation, we have assumed that the
OCV is a monotonically increasing function of SOC over
the 0%-100% SOC range. Note that this assumption is
already verified for most of the popular Li-ion chemistry,
e.g. LiCoO2 -Graphite and LiFePO4-Graphite [13].

We can re-write observer (23) based on (26):

˙̂
SOC = L3sgn(SOC − ŜOC) (27)

The dynamics of S̃OC = SOC − ŜOC can be written as:

˙̃
SOC = ˙SOC − ˙̂

SOC = − I

Cbat
− L3sgn(S̃OC) (28)

Consider the Lyapunov function candidate V3(t) = 1
2 S̃OC

2
.

The derivative of V3 along the trajectories of S̃OC is

V̇3(t) = S̃OC · ˙̃
SOC = S̃OC

(
− I

Cbat
− L3sgn(S̃OC)

)
≤
∣∣∣ I

Cbat

∣∣∣|S̃OC| − L3|S̃OC|

= |S̃OC| ·
(∣∣∣ I

Cbat

∣∣∣− L3

)
(29)

Choose the gain L3 high enough such that

L3 >
|I|max

|Cbat|min
(30)

Remark 5. The values for |I|max and |Cbat|min can be
determined a priori based on knowledge of feasible input
current and battery capacity range.

Similarly, the finite time for S̃OC to converge to zero is

t3f =

√
2V3(0)

γ
where γ = L3 −

|I|max

|Cbat|min
(31)

At the sliding mode, we have S̃OC = 0 and
˙̃

SOC = 0.
Substituting these expressions in (28) gives:

Ĉbat = −
I

L3v3
(32)

C. Stage 3: Online Identification of Battery Aging Model

The purpose of Stage 3 is to estimate the parameters θ =[
a b

]T
of the aging model (9) via a nonlinear least-squares

identification algorithm. Define θ̃ = θ − θ̂ and write (9) in
terms of θ̃ =

[
ã b̃

]T
:

Cbat(N) =
[
1− (ã+ â) exp

( b̃+ b̂

Tc

)
(Ah)z

]
Cbat(0) (33)

Next we take the Taylor series approximation with respect
to θ̃ around θ̃ = 0

Cbat(N) ≈
[
1− â · exp

( b̂
Tc

)
(Ah)z

]
Cbat(0)

−
[
exp

( b̂
Tc

)
(Ah)zCbat(0)

]
ã

−
[
â · 1

Tc
· exp

( b̂
Tc

)
(Ah)zCbat(0)

]
b̃ (34)

Re-arrange the previous expression into the matrix form

enl = Cbat(N)−
[
1− â exp

( b̂
Tc

)
(Ah)z

]
Cbat(0)

= θ̃Tφ (35)

where the regressor vector φ is defined as

φ =

 − exp
(

b̂
Tc

)
(Ah)zCbat(0)

−â · 1
Tc
· exp

(
b̂
Tc

)
(Ah)zCbat(0)

 (36)



The regressor φ depends upon measured signals and pa-
rameter estimates. We now choose a discrete-time least-
squares parameter update law with forgetting factor and
normalization

θ̂(N + 1) = θ̂(N) + P (N)enl(N)φ(N), θ̂(0) = θ̂0 (37)

P (N + 1) = (1 + β)P (N)− P (N)
φ(N)φT (N)

m2(N)
P (N),

(38)

P (0) = P0 = PT
0 � 0 (39)

m2(N) = 1 + φ(N)φT (N) (40)

IV. SIMULATIONS AND DISCUSSION

In this section, we present simulation studies that demon-
strate the performance of the proposed online RUL es-
timation scheme. The battery under consideration is a
LiFePO4/LiC6 A123 26650 cell with nominal capacity 2.3
Ah. The parameter values are taken from [11]. In the plant
model simulation, we incorporate the nonlinear capacity fade
model (8). To illustrate the performance, we apply a repeated
charge-discharge cycle to the battery model. Each cycle
consists of a charging protocol [14] that charges the battery
from 25% to 75% SOC, followed by a constant discharge
with low C-rate that discharges the battery to 25% SOC.
Figure 3 plots the evolution of current, terminal voltage,
core and surface temperature in the plant, for part of one
charge-discharge cycle. We repeat this cycle 200 times to test
our proposed scheme. All the estimated quantities (unknown
states, input and parameters) are initialized with incorrect
values to illustrate the convergence properties.

A. Performance of Stage 1 and Stage 2: Core Temperature,
Heat Generation, State-of-Charge and Capacity Estimation

We now consider only the first cycle. First, we evaluate the
performance of observer (10)-(12) in Stage 1. The core and
surface temperature estimates are initialized with incorrect
values (3oC initial error for both cases) to validate the
convergence property. Figure 4 portrays the evolution of
unknown state (Tc) and unknown input (Q̇) estimation of
thermal system (5)-(6). Note that with an appropriate choice
of gain L1 = 25 and L2 = 5 as presented in (20) and (16),
the convergence time for Tc and Q are t1f = 10 sec and
t2f = 12 sec. Next, we investigate the effectiveness of state
(SOC) and capacity (Cbat) estimation in Stage 2. Similar
to the Stage 1 observer, the SOC estimate is initialized
with incorrect value (15% initial error). Figure 5 shows the
convergence of SOC and capacity (Cbat) to their true values.
In this case, SOC convergence time is t3f = 60 sec and
capacity convergence time is 204 sec. These results confirm
the finite-time zero error convergence analysis conclusions
for the Stage 1 and 2 observers in Section III.

B. Performance of Stage 3: Parameter Identification of the
Aging Model

In this section, we illustrate the performance of online
aging model parameter identification. We simulate 200 cycles
of the previously mentioned charge-discharge profile. The
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Fig. 3: Current, voltage, core temperature, and surface temperature
in the plant. This charge-discharge cycle is repeated for 200 times.

first 100 cycles are used to identify the parameters of the
aging model whereas the rest are used to test the prediction
performance. We initialize the parameters to incorrect values,
and finally the estimated parameters â and b̂ are obtained
by algorithm (37)-(40). In the prediction phase we use
these identified parameters to predict battery capacity and
compare the prediction with testing data. Figure 6 illustrates
the prediction performance, where the blue ’+’ markers
represent the capacity fade prediction and the red ’o’ markers
represent the actual capacity fade data from the nonlinear
aging model (8). The root mean square (RMS) prediction
error is 0.0002 Ah compared to testing data set, meaning our
proposed online estimation scheme achieves ≈0.01% error
in predicting capacity fade under current usage condition,
normalized against nominal cell capacity. Consequently, we
simulate forward the aging model (9) with the identified
parameters to predict RUL. In this case study, the predicted
cycle number that reaches EOL will be 1407 cycles.

V. CONCLUSION

This paper proposes an online Remaining Useful Life
(RUL) estimation scheme for Li-ion batteries from a thermal
prospective. The proposed estimation scheme consists of
three stages operating in a cascaded manner. Stages 1 and 2
estimate battery core temperature, SOC and capacity based
on a two-state temperature model and Coulombic SOC model
utilizing sliding mode observers. The convergence for the
sliding mode observers are mathematically analyzed using
Lyapunov stability theory. The estimated capacity and core
temperature, along with measured current, are then utilized in
Stage 3 to identify a capacity fade aging model via a nonlin-
ear least-squares algorithm. A simulation case study with 200
repeated charge-discharge cycles is presented, where the first
100 cycles are used to identify the aging model online. The
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Fig. 4: Estimation performance for the first charging process, for
thermal model. (a). heat generation; (b). surface temperature; (c).
core temperature
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identified aging model successfully predicts the capacity fade
over the next 100 cycles. The main contribution of this paper
includes online estimation of battery capacity fade from
thermal perspective, by incorporating nonlinear model-based
observers and least-squares algorithm. In addition, with the
identified aging model, we are able to prognose the End-
of-Life (EOL) of the battery. Future work will validate this
estimation scheme using real battery experimental data.
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