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Abstract—This paper examines a hybrid battery system
modeling framework, where data-oriented recurrent neural
network (RNN) and first-principle electrochemical battery
model are combined. The data-driven RNN model captures un-
modeled dynamics in the electrochemical model. We specifically
study a simple RNN model called an Elman network, which
has feedback loops in the hidden layer. We analyze and prove
convergence of the weight errors for a class of Elman networks
and learning update laws. In simulation, we compare our
proposed hybrid battery model with reduced electrochemical
battery models. The results demonstrate that the proposed
hybrid approach outperforms other reduced electrochemical
battery models in most scenarios.

Keywords—Single Particle Model, Recurrent Neural Network,
Elman Network, Online Learning

I. INTRODUCTION

Lithium-ion batteries have emerged as the primary choice
for electrified transportation and energy storage system due
to their high energy density, no memory effect, and low self-
discharge. In order to ensure battery safety and performance,
an advanced battery management system (BMS) is typically
deployed with the batteries. Over the past decade, a vast
body of literature has developed in BMS research [1], [2].
One may categorize BMS research into model development
and algorithm design. In this paper, we focus on control-
oriented battery models.

Battery models for BMS applications can be categorized
into two groups: equivalent circuit models (ECMs), and
electrochemical models. ECMs have relatively simple struc-
tures to represent the input-output behavior of batteries using
circuit elements, such as resistors and capacitors. However,
ECMs do not directly capture the physical phenomena
inside the battery, such as lithium transport, solid-electrolyte
interphase dynamics, and degradation mechanisms. Electro-
chemical models directly incorporate diffusion, intercalation,
and electrochemical kinetics. Although these models can
accurately explain the internal behavior of the battery, their
mathematical structure is relatively complex for observer
designs, such as state of charge (SoC) and state of health
(SoH) estimation. Consequently, reduced order models are
generally selected for state estimator design. There are
several widely studied reduced order electrochemical models
in this field. The simplest is single particle model (SPM),
where electrolyte concentration is assumed constant in space
and time [3]. Papers by Santhanagopalan et al. [4] and
Di Domenico et al. [5] study SPM-based Kalman filters
for SOC estimation. More recently, [6] studies nonlinear
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observers for the SPM. The main limitation of the SPM is
that it neglects electrolyte dynamics, which play important
role at high charge/discharge C-rates1. For this reason,
researchers have recently considered a SPM with electrolyte
dynamics (SPMe) [7]. A provably convergent partial differ-
ential equation (PDE)-based state estimation technique based
on the SPMe can be found in [2]. Tanim et al. [8] augment
the SPMe with Arrhenius relations for the model parameters
to account for temperature variation, abbreviated as SPMeT.
A Luenberger state observer based on this SPMeT model is
derived in [9].

In parallel, computational learning theory in artificial in-
telligence has been rapidly applied to real-world engineering
applications, such as self-driving cars, pattern recognition,
and robotics. Artificial neural networks are a fundamental
technique in machine learning for modeling an environment
from data. In this paper, we focus on dynamic neural
networks, which were first proposed for dynamic system
identification in the early 1990’s [10]. Dynamic neural net-
works, a.k.a. recurrent neural networks (RNNs), can capture
dynamical behavior by learning from input-output data. In
battery applications, some published works have studied
RNN models. The authors of [11] use an adaptive RNN
to predict remaining useful life of lithium-ion batteries.
They use the Levenberg-Marquardt algorithm to optimize the
network parameters, then estimate the electrolyte resistance
and charge transfer resistance in the ECM to infer power
fade. In [12], the ECM is converted into an RNN model
that captures SoC information and model parameters. The
authors conclude that the RNN can accurately describe the
charge-discharge phenomena of a lead-acid battery. Simi-
larly, a RNN-based SoH indicator for lithium-ion batteries
is proposed in [13]. They also predict variations in capacity
and resistance of an ECM reformulated into a RNN. This
literature suggests that RNNs can play a useful role in
predicting battery dynamics, especially aging mechanisms.
However, this set of literature is completely based on the
ECM. Moreover, it lacks a theoretical stability analysis. This
motivates us to explore the role of RNNs in combination
with electrochemical models, and study stability for various
classes of RNNs.

In this paper, we propose a hybrid battery model that inte-
grates the SPM and RNN. Note, the SPM is valid for low C-
rates, but produces erroneous voltage predictions at high C-
rates where electrolyte dynamics play an increased role [14].
This paper focuses on a simple RNN, known as the Elman

1C-rate is a normalized measure of electric current that enables compar-
isons between different sized batteries. Mathematically, the C-rate is defined
as the ratio of current, I , in Amperes [A] to a cell’s nominal capacity, in
Ampere-hours [Ah]. For example, if a battery has a nominal capacity of
2.5 Ah, then C-rates of 2C, 1C, and C/2 correspond to 5 A, 2.5 A, and
1.25 A, respectively.



network [15], which originally emerged in cognitive science.
Contrary to the conventional electrochemical modeling ap-
proach of extending models based on first principles, we
augment the SPM with Elman networks to improve voltage
prediction accuracy. To the best of the authors’ knowledge,
the combination of electrochemical and data-driven models
have not been previously explored. We summarize our
key contributions as follows. First, we propose a hybrid
modeling framework that incorporates electrochemical and
RNN models – namely the SPM and Elman networks. We
consider the real-time recurrent learning (RTRL) algorithm
for learning Elman network weights online. Second, we
suggest a special case of Elman networks that guarantees
stability in the sense of Lyapunov. Third, we demonstrate
that our hybrid approach often outperforms other reduced
electrochemical models that do not apply learning structures.

The paper is organized as follows. Section II describes
the Single Particle Model. In Sections III–IV, the proposed
Elman network and RTRL algorithm are introduced and
analyzed for stability. Section V presents simulation results
and quantitative performance metrics to illustrate the efficacy
of the hybrid modeling framework. In Section VI, we
conclude our work with remarks and future work.

II. ELECTROCHEMICAL BATTERY MODEL

In this section we describe the electrochemical model
considered in this paper. Electrochemical models provide
deep insight on the evolution of internal battery dynamics.
These models are generally derived from the Doyle-Fuller-
Newman (DFN) model, which is based on intercalation,
diffusion, and electrochemical kinetics modeled by partial
differential equations (PDEs). Although the DFN model can
accurately predict internal states, its mathematical struc-
ture is comprised of nonlinear PDEs, ODEs in space, and
nonlinear algebraic equations. Due to this intricacy, many
researchers have studied model reduction techniques on the
DFN model. The most commonly used reduced-order model
is the single particle model (SPM), which idealizes each
electrode as a single spherical porous particle while neglect-
ing electrolyte dynamics, as shown in Fig. 1. Specifically,
the electrolyte concentration is approximated as constant in
space and time, and this restriction causes errors which will
be discussed later in this section. The intercalation process
and mass transport is modeled by a linear diffusion PDE
over spherical coordinates:
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The Neumann boundary conditions at r = R−s and r =
R+
s represent that the molar flux of lithium entering / exiting

the electrode is proportional to the input current I(t). For
clarity, all parameters related to the SPM are listed in Table I.

Figure 1: Schematic of single particle model for Li-ion
battery.

Symbol Description Units
A Cell cross sectional area m2

aj Specific interfacial surface area m2/m3

cjs Concentration in solid phase mol/m3

cjss Concentration at particle surface mol/m3

cjs,max Max concentration in solid phase mol/m3

Dj
s Diffusion coefficient in solid phase m2/m3

F Faraday’s constant C/mol
I Input current A
ij0 Exchange current density V
Lj Electrode thickness m
R Universal gas constant J/mol-K
Rf Lumped current collector resistance Ω

Rj
s Particle radius m

r Radial coordinate m
T Cell temperature K
t Time seconds
Uj Equilibrium potential V
V Output voltage V
αj Anodic/cathodic transfer coefficient -

Table I: Single Particle Model Parameters.

Note that superscript j in Table I indicates anode, seper-
ator and cathode such as j ∈ {+, sep,−}. The terminal
voltage output is governed by a combination of electric
overpotential, electrode thermodyanmics, and Butler-Volmer
kinetics, yielding:

V (t) =
RT

α+F
sinh−1

( −I(t)

2a+AL+i+0 (c+ss(t))

)
+

RT
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)
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where the exchange current density ij0 and solid-electrolyte
surface concentration cjss are computed as:

ij0(cjss) = kj
√
c0ec

j
ss(t)(c

j
s,max − cjss(t)), (6)

cjss(t) = cjs(R
j
s, t), j ∈ {+,−}. (7)

The drawback of using SPM is that predicted voltage
accuracy decreases as C-rate increases [2]. This presents a
significant challenge for BMS applications, such as electri-
fied vehicles, where high C-rates are commonly experienced.
Large voltage output mismatch could lead to misguided
control policies.



Figure 2: Proposed framework for hybrid modeling approach
based on electrochemical model.

III. RNN STRUCTURE AND LEARNING ALGORITHM

In this section we describe the hybrid modeling frame-
work, which applies a machine learning algorithm on top
of the electrochemical model as depicted in Fig. 2. We
augment the first principals model with an input-output
learning model to enhance voltage prediction accuracy.

A. Elman Network Structure and Training Algorithm

Consider the Elman network structure in Fig. 3. In
general, there are nI inputs, nH hidden units, and nO
outputs in this network. The structure consists of output
layer weight matrix W3 ∈ RnO×nH , input layer-to-hidden
layer weight matrix W2 ∈ RnH×nI , and hidden layer-to-
context layer weight matrix W1 ∈ RnH×nH . Since we have
few measurements in battery systems, this Elman network
structure can be reduced to a single-input / single-output
network, i.e., input current and output voltage. The network
dynamic equations can be written as follows:

x(k) = f(W1 · x(k − 1) + W2 · u(k)), (8)
y(k) = g(W3 · x(k)). (9)

where x(k) is called the “hidden layer” output vector, y(k)
is the output from the “output layer”, and u(k) represents
the input. Functions f(·) and g(·) are “activation functions”
for each layer. We take

f(z) = tanh(z), (10)

for reasons that emerge in the stability analysis. The function
g(·) is often taken as the identity function, that is

y(k) = W3 · x(k). (11)

Note that (8)-(9) is a nonlinear system, with order given
by user-selected parameter nH .

The weight matrices, W1, W2, and W3 are updated to
train the network. There are several methods for training
RNNs, such as backpropagation through time, real-time
recurrent learning (RTRL), and the extended Kalman filter
[16]. In this work, we use the RTRL scheme which is a
gradient-descent online learning algorithm that calculates the

Figure 3: Elman network structure.

error gradient at every time step. The instantaneous squared
error E(k) at time step k is computed as:

E(k) =
1

2
e(k)2 =

1

2
(yd(k)− y(k))2, (12)

where e(k) is the prediction error between desired output
yd(k) and network output y(k) at time step k. In RTRL,
we update the weight matrix W via gradient-descent to
minimize the squared error E(k) such as:

W3,ij(k + 1) = W3,ij(k)− η3 ·
∂E(k)

∂W3,ij(k)
(13)

= W3,ij(k) + η3 · e(k) · xj(k),

W2,jq(k + 1) = W2,jq(k)− η2 ·
∂E(k)

∂W2,jq(k)
(14)

= W2,jq(k) + η2 · e(k) ·W3,ij · γj(k) · u(k),

W1,jl(k + 1) = W1,jl(k)− η1 ·
∂E(k)

∂W1,jl(k)
(15)

= W1,jl(k) (16)
+ η1 · e(k) ·W3,ij · γj(k) · xj(k − 1),

where η1, η2, η3 ∈ R are user-selected learning rates for each
weight, and i, j, q, l represent the unit index in each layer.
Parameter γj is the derivative of activation function:

γj(k) = f
′

j(W1,jl · x(k) +W2,jq · u(k)).

Compared to typical feedforward neural networks that
build approximators of nonlinear functions by using static
input-output mappings [17], the Elman network is able
to approximate arbitrary dynamical systems with arbitrary
precision according to the universal approximation property
[18]. We consider online training of (8)-(9), i.e. recursive
estimation of W1,W2,W3, to capture the error between
measured voltage and SPM-predicted voltage.

B. Special Case of Elman Network
A long-standing and un-solved challenge is proving the

convergence of weights W1,W2,W3, or even convergence
of e(k) to zero via online learning [19]. The key issue is



nonlinear term W3x(k). In the neural network community,
a number of papers have discussed this issue. For instance, in
[20], the stability of the dynamic backpropagation algorithm
is thoroughly discussed based on a dynamic learning process
and RNN suggested by Narendra [10]. The authors propose
two learning schemes: a multiplier method and a constrained
learning rate algorithm to avoid unstable phenomenon during
the learning process. The author in [19] proves that the
Elman network’s weights converge in the sense of Lyapunov
functions under a backpropagation algorithm with adaptive
dead zones.In this paper, we examine a special case of Elman
networks for which weight convergence can be proven with
RTRL update laws.

IV. STABILITY ANALYSIS

This section analyzes stability for the proposed learning
structure. First we derive the weight error dynamics,

W̃(k) = W(k)−W∗, (17)

where W∗ is the “true” weight matrix that represents the
desired output given input data. The output error at time k
is given by:

e(k) = yd(k)− y(k)

= W3f(W∗1x(k − 1) + W∗2u(k))

−W3f(W1(k)x(k − 1) + W2(k)u(k))

= −αW3

(
W̃1(k)x(k − 1) + W̃2(k)u(k)

)
, (18)

where the last equality is derived by the Mean Value
Theorem, which requires function f to be continuous on a
closed interval and differentiable on an open interval, which
activation function f(z) = tanh(z) satisfies. Therefore
∃ z ∈ R such that α = f ′(z) and 0 < α ≤ 1. Then,
we can re-write (14)-(15) as follows:

W1(k + 1) = W1(k) + η1(k)e(k)γ(k)x(k − 1)T

= W1(k)− η1(k)αW3

(
W̃1(k) · x(k − 1)

+ W̃2(k) · u(k)
)
γ(k)x(k − 1)T , (19)

W2(k + 1) = W2(k) + η2(k)e(k)γ(k)u(k)

= W2(k)− η2(k)αW3

(
W̃1(k) · x(k − 1)

+ W̃2(k) · u(k)
)
γ(k)u(k). (20)

Assume the true weight matrices W∗1,W∗2 are constant,
and η1(k) = η2(k) = η(k). Then the weight error dynamics
are:

W̃1(k + 1) = W̃1(k)− η(k)αW3

(
W̃1(k)x(k − 1)

+ W̃2(k)u(k))
)
γ(k)x(k − 1)T , (21)

W̃2(k + 1) = W̃2(k)− η(k)αW3

(
W̃1(k)x(k − 1)

+ W̃2(k)u(k)
)
γ(k)u(k). (22)

The following theorem guarantees the convergence of W1,
W2 to their true values under update laws (19)-(20).

Theorem 1: The zero equilibrium of weight error dynam-
ics (21), (22) are stable in the sense of Lyapunov functional,
V (k) = ||W̃1(k)||2 + ||W̃2(k)||2 if

η(k) ≤ 2
[
α‖x(k − 1)T + u(k)‖2W3

T γ(k)T
]−1

. (23)

Proof: Lyapunov’s indirect theorem requires that the
difference in the Lyapunov functional denoted by ∆V is
negative-definite along the trajectories ∀ W̃1, W̃2, i.e.:

||W̃1(k + 1)||2 − ||W̃1(k)||2 + ||W̃2(k + 1)||2 − ||W̃2(k)||2 ≤ 0.

Squaring both sides equations (19) and (20), we can
construct ∆V as:

∆V = −2η(k)αW3

(
||W̃1||2x(k − 1) + W̃T

1 W̃2u(k)
)

× γ(k)x(k − 1)T

+
∣∣∣∣∣∣η(k)αW3

(
W̃1x(k − 1) + W̃2u(k)

)
γ(k)x(k − 1)T

∣∣∣∣∣∣2
− 2η(k)αW3

(
W̃T

2 W̃1x(k − 1) + ||W̃2||u(k)
)
γ(k)u(k)

+
∣∣∣∣∣∣η(k)αW3

(
W̃1x(k − 1) + W̃2u(k)

)
γ(k)u(k)

∣∣∣∣∣∣2.
(24)

After a few steps for re-arranging ∆V , we can finally obtain

∆V ≤ −2η(k)αW3

∣∣∣∣∣∣(W̃1x(k − 1) + W̃2u(k)
∣∣∣∣∣∣2γ(k)

+ η(k)2α2
∣∣∣∣∣∣(W̃1x(k − 1) + W̃2u(k))

∣∣∣∣∣∣2
×
∣∣∣∣∣∣x(k − 1)T + u(k)

∣∣∣∣∣∣2||W3||2||γ(k)||2

≤ 0, (25)

where the last inequality is derived from the definition of
the adaptive learning rate in (23).

Remark 1: The adaptive learning rate, η(k) defined in
(23) can be re-written in terms of the previous desired
output yd(k−1), since we adopt specialized Elman network
structure expressed by yd(k − 1) = W3 · x(k − 1). That is:

η(k) ≤ 2

[
α
∥∥∥ 1

nH
1nH

yd(k − 1) + u(k)
∥∥∥2

W3
T γ(k)T

]−1

,

(26)
where 1nH

is a nH×1 vector of ones. Assuming a constant
weight matrix W3 plays the critical role for calculating the
adaptive learning rates from the previous output data yd(k−
1) and current input data u(k).

Remark 2: Since the activation function is strictly mono-
tonically increasing and has bounded derivative, we can state
that when α = 1, the following condition

η(k) ≤ 2

[∥∥∥ 1

nH
1nH

yd(k − 1) + u(k)
∥∥∥2

W3
T γ(k)T

]−1

,

(27)
becomes sufficient condition for (26) as α ∈ (0, 1]. Prac-
tically, we calculate the learning rates based on (27) with
equality as long as the computed value does not exceed 1,
since 0 < η(k) ≤ 1 is used to regularize the learning rate.
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Figure 4: Voltage error comparison for UDDSx2 cycle: (a)
Input current. (b) SPMe. (c) The special case of Elman
network (d) The original Elman network.

V. SIMULATION RESULTS

This section presents simulations that demonstrate the
hybrid approach performance compared to several electro-
chemical models. The measured voltage data is generated
from the DFN model, which plays the role of “true” voltage.
Consequently, the model voltage error arises from model
reduction. We notate Elman 1 as the special case of the
Elman network and Elman 2 as the original Elman network.
We use 4 hidden units for the Elman networks. Elman 1 uses
adaptive learning parameter η(k) given by (27), and Elman
2 uses fixed learning parameter η = 0.3 in the simulation.
We train the RNN to identify an uncertainty model with
various input profiles such as 1C/2C/5C discharge cycles
and dynamic current profiles. This enables us to investigate
how the identified RNN captures the uncertainty dynamics.
In all cases, we require 10 epochs or less for the output
error to converge. To evaluate the resulting learned RNN,
our primary performance metric is the root mean square
error (RMSE) between the DFN voltage and various model
voltages.

A. Training Phase
The numerical training results are displayed in Table II,

for various input profiles and models that do and do not
incorporate learning structures. Indeed, our proposed hybrid
approach resolves the limitations of the SPM. To explore
this, we also consider the SPMe from [2] as a baseline com-
parison to quantify the error between pure electrochemical
models and hybrid electrochemical models. As shown in
Table II, the SPMe – which includes electrolyte dynamics –
has about 50 % lower error than SPM in all scenarios. The
hybrid modeling approach exhibits even better performance
than SPMe in many cases. Interestingly, the SPM+Elman
2 consistently outperforms its simpler SPM+Elman 1 coun-
terpart. This is not surprising, as SPM+Elman 2 has more
parameters in W3 that it may tune to reduce output error.
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Figure 5: Cumulative distribution function of absolute volt-
age error on UDDS profile, with 90% quantile errors anno-
tated.
However, as discussed before, analytic weight error conver-
gence guarantees are not available.

Input Profiles SPM (60) SPMe (90) SPM+Elman 1 (64) SPM+Elman 2 (64)
(Training Data) (No learning) (No learning) (Learning) (Learning)

1C discharge 20.0mV 10.0mV 1.8mV 1.8mV

2C discharge 39.4mV 19.0mV 3.0mV 5.2mV

5C discharge 107.2mV 54.6mV 67.6mV 38.7mV

Sine wave† 67.6mV 31.0mV 34.7mV 29.3mV

UDDS 20.8mV 14.7mV 10.1mV 7.6mV
†min:1C, max:5C

Table II: RMSE comparison for different models (w/ and
w/o learning) and input profiles in the training phase. The
number in parentheses is the number of states in the model.

Consider the Urban Dynamometer Driving Schedule
(UDDS), which is a standard fuel economy test cycle.
The input current data in Fig. 4(a) is generated from two
concatenated UDDS cycles. Fig. 4(b) shows the voltage error
for the SPMe and SPM relative to DFN, while Fig. 4(c),(d)
presents the voltage errors for the proposed hybrid modeling
scheme and SPM only, relative to the DFN. Note that we
use the fixed weights after learning to verify the training per-
formance. In addition, the cumulative distribution function
(CDF) of the absolute voltage error in UDDS is computed
for measuring model output precision, as shown in Fig. 5.We
comment that applying adaptive learning rate η(k) from (27)
to the Elman 2 model yields divergent weights for UDDS.
This corroborates our analysis that suggests a condition on
η(k) is not available to guarantee convergent weights for
Elman 2, however such a condition is derived for Elman
1. This is a fundamental tradeoff balanced by the increased
error reduction potential of the Elman 2 model.
B. Testing Phase

In this phase, we use the fixed weights obtained from the
training phase to test the accuracy of hybrid electrochemical
model. Here, we simply illustrate the robustness of the
hybrid modeling framework. Specifically, we select the RNN
models trained on UDDS data and test the performance
with different input profiles. The UDDS data is selected
for training, since it contains the richest frequency content.
The numerical results in Table III illustrate two important
observations: (i) The hybrid models do not degrade the
voltage prediction accuracy compared to a stand-alone SPM



model. (ii) The hybrid models yield comparable accuracy to
the SPMe.

Input Profiles SPM (60) SPMe (90) SPM+Elman 1 (64) SPM+Elman 2 (64)
(Testing Data) (No learning) (No learning) (Learning) (Learning)

1C discharge 20.0mV 10.0mV 10.5mV 9.2mV

2C discharge 39.4mV 19.0mV 20.9mV 18.5mV

5C discharge 107.2mV 54.6mV 73.8mV 66.5mV

Sine wave† 67.6mV 31.0mV 42.7mV 37.9mV
†min:1C, max:5C

Table III: RMSE comparison for different models (w/ and
w/o learning) and input profiles in the testing phase, using
RNNs trained on UDDS. The number in parentheses is the
number of states in the model.

VI. CONCLUSION

This paper proposes a hybrid electrochemical model-
ing framework that integrates recurrent neural networks
(RNNs) with a reduced electrochemical model. Contrary
to conventional approaches of integrating more physics
into the electrochemical model, we examine the poten-
tial of data-driven models to recover model-measurement
mismatch. Specifically, we study a simple RNN, called
the Elman network, which mimics dynamical phenomena
from observed data. Additionally, we prove convergence of
estimated weights to their true values for a special case
of the Elman network. This stability analysis yields an
adaptive learning rate for the real-time recurrent learning
(RTRL) update law. Simulation results demonstrate that our
hybrid battery modeling significantly improves the predicted
voltage accuracy compared to other reduced electrochemical
models. On-going work involves validating our proposed
hybrid approach experimentally with different types of Li-
ion batteries.
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