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Abstract— Boundary observers for radial diffusion equations
can be derived to achieve exponential convergence of the
estimation error system provided that coefficients are known;
which can be either constant or possibly spatially and time
varying. When the coefficients depend on the state, their values
are not longer known and this might prevent the estimation
error to converge to zero. Here, we address the state estimation
problem for a radial diffusion equation in which the diffusion
coefficient depends on the spatial average of the state value;
using an observer with a constant diffusion coefficient. The
error introduced to the observer, in this particular situation, can
be quantified from an input-to-state stability (ISS) analysis. This
study is motivated mainly by the problem of state estimation
from electrochemical models of lithium-ion batteries, namely
the Single Particle Model (SPM). In this application, the
variation in the diffusion coefficient as a function of the spatial
average of the states is of several orders of magnitude. We
consider this result an additional effort in the broader goal of
designing estimation algorithms from electrochemical models
of lithium-ion batteries without relying in the discretization of
the PDEs in these models.

I. INTRODUCTION

A. Motivation

Lithium-ion technology is a common choice among the
rechargeable battery family due to several attractive char-
acteristics: high power and energy storage density, lack of
memory effect and low self-discharge [1]. It has a wide
employment in portable electronics and an increasing interest
for electrified transportation [2] and grid energy storage.

The safe and optimal use of lithium-ion batteries relies on
accurate estimation of electrochemical states and parameters
[3]. The availability of detailed electrochemical models [4] is
driving a recent effort to design of model-based estimation
algorithms; however, the complexity of these models also
pose various challenges. One aspect of the models that adds
complexity is the dependence of some parameters on the
states. The rate at which lithium ions diffuse through the
porous electrodes in the battery is one of such parameters.
For example, in [5], it was noted that the diffusion coefficient
of an NMC electrode varies almost three orders of magnitude
as a function of the state of charge.

B. Contribution

We derive an observer for a radial diffusion equation
in n-dimensional balls with boundary measurements. When
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coefficients are constant and known, the observer provides
exponentially convergence with an arbitrary convergence
rate. On the other hand, if the diffusion coefficient is a
function of the state, in particular of the spatial average of
the state, an error arises in the estimation due to the fact the
value of the diffusion coefficient is not longer known. The
main contribution of this paper is the derivation of bounds in
the estimation error that arises in this particular situation. The
derivation of these bounds follow recent results on the input-
to-state stability of one-dimensional parabolic equations [6],
[7]. The main technical challenge is to verify the results in
[6], [7] are also valid for radial diffusion equations in n-
dimensional balls.

The observer design follows the PDE backstepping
method. This method has been used for the stabilization
of various unstable PDE systems [8]. In [8], backstepping
boundary controllers and observers are designed for some
unstable parabolic, hyperbolic PDEs and other types of
PDEs. Boundary stabilization and estimation of diffusion-
reaction equations in n-dimensional balls was introduced
in [9], [10]; the extension to spatially varying coefficients
was derived for the case n = 2 in [12] and for the case
n = 3 in [11]. Boundary observers have been derived
previously for simplified electrochemical models of lithium
ion batteries, namely, the Single Particle Model (SPM): state
and parameter estimation was studied in [13] and [14],
state estimation for cells with multiple active materials in
[15], an observer for the SPM with electrolyte dynamics
was derived in [16] and one for the SPM with averaged
thermal dynamics in [17]. In all of these cases, the diffusion
coefficients appearing in the SPM model were assumed to
be known and independent of states.

We consider the result presented in this paper as an
additional step in the broader effort to design estimation
and control algorithms for lithium-ion batteries from elec-
trochemical models without relying on the discretization of
the PDEs in these models.

C. Organization

The rest of this paper is organized as follows. The problem
statement is presented in Section II. The main result appears
in Section III. The single particle model is briefly described
in Section IV and the corresponding observer is derived in V.
Final remarks appear in Section VI. The proof that conditions
and assumptions in [6], [7] are satisfied for radial diffusion
equations are included in the Appendix.



II. PROBLEM STATEMENT

A. Diffusion with Average-Value-Dependent Coefficients

Consider the radial diffusion equation

ut(x, t) =
ε (u(t))

xn−1
[
xn−1ux(x, t)

]
x
, (1)

for x ∈ (0, 1), t > 0, n ∈ N, with boundary conditions

ux(0, t) = 0, (2)
ε(u(t))ux(1, t) = f(t), (3)

and initial condition u0(x) ∈ C2 ([0, 1]) and some
f(t) ∈ C2((0,∞)) given. The diffusion coefficient ε :
[umin, umax] → (0,∞) in (1) is an affine function of the
spatial average value u(t), defined as

u(t) = n

∫ 1

0

u(x, t)xn−1dx. (4)

Equation (1) with boundary conditions (2)-(3) describe the
radial diffusion of the quantity u in a n-dimensional sphere.
The boundary value y(t) = u(1, t) is known and the
goal is to find an estimate of u(x, t) from the boundary
measurements f(t) and y(t).

B. Observer Design

The proposed observer is copy of the plant (1)-(3) with
linear output error injection, that is

ût(x, t) =
ε(u?)

xn−1
[
xn−1ûx(x, t)

]
x
+ P (x)ũ(1, t), (5)

for x ∈ (0, 1) , t > 0 with boundary conditions

ûx(0, t) = 0, (6)
ε(u?)ûx(1, t) = f(t) +Qũ(1, t), (7)

initial conditions are û0(x) ∈ C2 ([0, 1]) and a fix value
u? ∈ [umin, umax] used to compute a constant diffusion
coefficient. In (5) and (7), P (x) and Q are in-domain and
boundary observer gains, respectively. Since ε is affine, the
difference between the diffusion coefficient in the plant and
the diffusion coefficient in the observer is proportional to
the error between u(t) and u?, that is, for some ε1 ∈ R and
δu(t) = u(t)− u?, it follows that

ε(u(t))− ε(u?) = ε1δu(t). (8)

The estimation error is defined as ũ(x, t) := û(x, t)−u(x, t),
and the estimation error system is obtained by subtracting
(5)-(7) from (1)-(3), that is

ũt(r, t) =
ε (u?)

xn−1
[
xn−1ũx(x, t)

]
x
− P (x)ũ(1, t)

+ δu(t)
ε1
xn−1

[
xn−1ux(r, t)

]
x
, (9)

for x ∈ (0, 1), t > 0, with boundary conditions

ũx(0, t) = 0, (10)
ε (u?) ũx(1, t) = −ε1δu(t)ux(1, t)−Qũ(1, t), (11)

and initial conditions ũ0(x) = u0(x) − û0(x), ũ0(x) ∈
C2 ([0, 1]). The estimation problem is now the problem of

choosing gains P (x) and Q to guarantee some stability
properties of the estimation error system. More precisely,
we will choose P (x) and Q such that ‖ũ(x, t)‖2 is bounded
by a term that is asymptotically proportional to ε1. Thus,
when ε1 = 0, this choice of P (x) and Q, will imply that
‖ũ(x, t)‖2 → 0 as t→∞.

III. STABILITY OF THE ESTIMATION ERROR SYSTEM

Before showing the stability properties of the estimation
error system in (9)-(11), a set of constants need to be defined.

Definition 1: The positive scalars A2 and A3 quantify the
effect of a discrepancy in the value of the diffusion coefficient
on the value of the estimation error. These two quantities are
computed from the plant and observer parameters as follows

A2 = T−1B2, (12)

A3 = T−1 (B1D1 +B2D2) , (13)

with

B1 =β

√√√√(1 + γ)

∫ 1

0

[
Iv

(√
λ

ε (u?)
x

)]2
xdx, (14)

B2 =

√√√√(1 + γ−1)

∞∑
m=1

1

σ2
m

dx, (15)

for some λ > 0 and γ > 0. The function Iv(·) in (14) is the
modified Bessel function of first kind. The term β, in (14),
is

β =

√
1 + b2∣∣∣bIv (√ λ

ε(u?)

)
−
√

λ
ε(u?)

Iv+1

(√
λ

ε(u?)

)∣∣∣ , (16)

for some b > 0, chosen for (16) to be finite. For each m ∈ N,

σm = ε (u?)µ
2
m + λ, (17)

where µm are the positive roots of

µJ ′v(µ) + [b− v]Jv(µ) = 0, (18)

in ascending order, and Jv(·) is the Bessel function of first
kind with v = n/2− 1. The positive scalars T−1 and T are
defined as

T =1 + ‖K(x, s)‖2, (19)

T−1 =1 + ‖L(x, s)‖2. (20)

Functions K(x, s) and L(x, s) take values on R and are
defined on the unit square S := {(x, s) : 0 ≤ x, s ≤ 1} as
follows

K(x, s) = −s λ

ε (u?)

I1 [ζ(x, s)]

ζ(x, s)
, (21)

L(x, s) = −s λ

ε (u?)

J1 [ζ(x, s)]

ζ(x, s)
, (22)

with

ζ(x, s) =

√
λ

ε (u?)
(s2 − x2). (23)



Constants D1 and D2 are

D1 =
1

ε (u?)
2 , (24)

D2 =
1

ε (u?)
T−1 max

x∈[0,1]
K(x, 1). (25)

Finally, a third positive scalar A1 is defined as

A1 = T−1 · T . (26)
Now, with A1, A2, and A3 defined, the main result regarding
the stability of the estimation error system can be stated.

Theorem 1: Consider the estimation error system in (9)-
(11) with initial conditions ũ0(x) ∈ C2 ([0, 1]), for n ≤ 4,
and observer gains chosen as

P (x) =
λ

z(x)

[
λ

ε (u?)

I2 (z(x))

z(x)
+ (2 + b− n)I1 (z(x))

]
,

(27)

Q = b+
λ

2ε (u?)
, (28)

for some λ, b > 0, and z(x) defined as

z(x) =

√
λ

ε (u?)
(1− x2). (29)

Then, it follows that

‖ũ(·, t)‖2 <A1

√
exp [−σ1t]

2− exp [−σ1t]
‖ũ0(·)‖2

+A3|ε1||δu(t)| max
τ∈[0,t]

|f(τ)|,

+A2|ε1||δu(t)| max
τ∈[0,t]

|g(τ)| (30)

with σ1, A1, A2 and A3 computed following Definition 1,
and

g(t) = max
x∈[0,1]

|h(x, t)| , (31)

h(x, t) =
1

xn−1
[
xn−1ux(x, t)

]
x
, (32)

provided that f(t) ∈ C2(R+) and h(x, t) ∈ C1(R+× [0, 1]).
Proof: The proof of Theorem 1 is a results of the

next two lemmas. First, in Lemma 2, we derive an invertible
transformation T that maps the estimation error system (9)-
(11) to an auxiliary system; the target system. Then, in
Lemma 3, we derive an ISS result for the target system.
The ISS result for the target system and the invertibility of
the transformation T imply the ISS property (30) for the
estimation error system.

Remark 1: The regularity condition h(x, t) ∈ C1(R+ ×
[0, 1]) is a condition on the solutions of the nonlinear PDE
(1)-(3). Whenever the system (1)-(3) satisfies this condition,
or the additional requirements, is beyond the scope of this
paper.

Lemma 2: There exists a bounded and invertible transfor-
mation T : L2([0, 1]2)→ L2([0, 1]2) of the form

T [v] = v(x, t)−
∫ 1

x

K(x, s)v(s, t)dx, (33)

with inverse

T−1[v] = v(x, t) +

∫ 1

x

L(x, s)v(s, t)dx, (34)

and K(x, s), L(x, s) defined in (21) and (22), which maps
the error system (9)-(11) to the target system

wt(x, t) =
ε (u?)

xn−1
[
xn−1wx(x, t)

]
x
− λw(x, t)

+ ε1δu(t)T
−1
[

1

xn−1
[
xn−1ux(x, t)

]
x

]
− ε1δu(t)T−1 [K(x, 1)]ux(1, t), (35)

for x ∈ (0, 1), t > 0, with boundary conditions

wx(0, t) = 0, (36)

wx(1, t) = −bw(1, t)−
ε1δu(t)

ε (u?)
ux(1, t), (37)

and initial conditions w0(x) = T−1[ũ0(·)].
Proof: Lemma 2 is actually an special case of the

results in [9], [10] and the proof follows the same steps.

Lemma 3: Consider w(x, t) satisfying equation (35) with
boundary conditions (36)-(37) and initial conditions w0(x) ∈
C2 ([0, 1]). Then, w(x, t) satisfies the following inequality

‖w(·, t)‖2 ≤

√
exp [−σ1t]

2− exp [−σ1t]
‖w0(·)‖2

+ |ε1||δu(t)| (B1D1 +B2D2) max
τ∈[0,t]

|f(τ)|

+ |ε1||δu(t)|B2 max
τ∈[0,t]

|g(τ)|, (38)

for t > 0, with g(t) defined in (31) and σ1, B1, B2, D1, D2

from Definition 1.
Proof: This lemma is a particular, but singular, case of

the ISS results in [6], [7]. This singularity originates from the
radial diffusion operator and force us to certify that the ISS
results are still valid. There are two items that we need verify.
First, we need to check that the singular Sturm–Liouville
problem

ε (u?)
d

dx

[
xn−1

dφm
dx

(x)

]
− λxn−1φm(x)

= −σmxn−1φm(x), (39)

for x ∈ (0, 1) with boundary conditions

φ′m(0) = 0, (40)
φ′m(1) + bφm(1) = 0, (41)

has all the same properties as a regular Sturm–Liouville
problem; this is in fact true and the proof is in Lemma 4.
Then, we need to verify the convergence of the series

∞∑
m=1

1

σm
max
x∈[0,1]

|φm(x)|, (42)

where {σm, φm(x)} are the eigenvalues and eigenfunctions
of (43) - (45). We show in Lemma 5 that the series (42) is
in fact convergent for n ≤ 4.



Lemma 4: The singular Sturm-Liouville problem

ε (u?)
d

dx

[
xn−1

dφm
dx

(x)

]
− λxn−1φm(x)

= −σmxn−1φm(x), (43)

for x ∈ (0, 1) with boundary conditions

φ′m(0) = 0, (44)
φ′(1) + bφ(1) = 0, (45)

preserves the same elementary properties as regular Sturm-
Liouville problems, namely:

1) eigenvalues σm ∈ R form an infinite, increasing
sequence σ1 < σ2 < · · · < σm < . . . , with σm → ∞
as m→∞,

2) to each eigenvalue σm corresponds exactly one real
valued eigenfunction φm(x) ∈ C2 ([0, 1]), satisfying
(43) and boundary conditions (44), (50). Furthermore,
eigenfunctions φm(x) form an orthonormal basis of
L2
(
(0, 1);xm−1dx

)
.

Proof: The solution to equation (43) is of the form

φ(x) = c1φ1(x) + c2φ2(x). (46)

Here, functions φ1(x) and φ2(x) are two independent solu-
tions of (43) and a closed-form expression is available

φ1(x) = x−vJv(µx), (47)

φ2(x) = x−vYv(µx), (48)

where Jv and Yv are the Bessel functions of first and second
kind of order v and

µ =

(
σ − λ
ε

)1/2

, v =
n

2
− 1. (49)

Boundary condition (44) is to be replaced with a condition
on the regularity of solutions; specifically, we require φ(x)
to be square integrable, i.e.∫ 1

0

φ(x)2dx <∞. (50)

The regularity condition implies that c2 = 0. Boundary
condition (45) provides a characteristic equation, that is, an
equation that defines the eigenvalues of the system

µJ ′v(µ) + [b− v]Jv(µ) = 0, if b > 0, (51)
µJv+1(µ) = 0, if b = 0. (52)

Note that the left hand side of equation (51) is the Dini
function [18, p.580], that is, Db,v(µ) := µJ ′v(µ) + [b −
v]Jv(µ). Let µb,v,m denote the m-th positive zero of Db,v ,
then µb,v,m satisfies (51) and defines the value of the m-
th eigenvalue for the singular Sturm-Liouville problem for
b > 0, that is

σm = ε (u?)µ
2
b,v,m + λ. (53)

The corresponding m-th eigenfunction is

φm(x) = c1,mx
−vJv (µb,v,mx) , (54)

and c1,m is chosen to normalize (59), that is

c1,m =

√
2

Jv (µb,v,m)
. (55)

Note that c1,m is well defined in (55), since zeros of the
Dini function can not be zeros of Bessel functions because
the (non zero) zeros of Jv, Jv+1 never coincide. The m−th
positive zero µv+1,m of Jv+1, and zero itself, are solutions
of (52). Thus for b = 0 and n ≤ 2 the eigenvalues of the
problem are

σm = λ, for m = 1 (56)

σm = εµ2
v+1,m−1 + λ, for m > 1, (57)

and, for n > 2 the eigenvalues of the problem are

σm = εµ2
v+1,m + λ, (58)

The corresponding eigenfunctions are

φm(x) = c1,mx
−vJv (µv+1,mx) , (59)

and c1,m is chosen to normalize (59), that is

c1,m =

√
2

Jv (µv+1,m)
. (60)

The statements in the lemma follow directly from properties
of the Bessel functions:

1) For b > 0 and v > −1, the positive zeros of Db,v

are real and form an infinite increasing sequence [18,
p.580, p.597].1 Similarly, for v > −1, the positive
zeros of Jv are real and form an infinite and increasing
sequence [18, p. 479]. Thus, from (49) and (51), (52)
it follows that the eigenvalues of the singular Sturm-
Liouville problem are real, positive and form an infinite
and increasing sequence.

2) Let {µb,v,m} and {µv+1,m} be the zeros of Db,v and
Jv+1, respectively. The fact that {c1x−vJv[µb,v,mx]}
and {c1x−vJv[µv+1,mx]} are orthonormal basis of
L2
(
(0, 1);xn−1dx

)
is known [18, Chapter 18]2, [19,

Theorem 3].

Lemma 5: Let {σm} and {φm(x)} be the eigenvalues and
eigenfunctions of the singular Sturm-Liouville problem in
Lemma 4. Then, it holds that

σ1 > 0, (61)

and, in the case n ≤ 4
∞∑
m=1

1

σm
max
x∈[0,1]

|φm(x)| <∞. (62)

Proof: For any v > −1/2, the m-th positive zero µα,m
of the Bessel function Jα is lower bounded [20] as follows

µα,m > mπ − π − 1

2
+ α. (63)

1Although these properties hold for v ≥ −1, the exposition in [18]
assumes v ≥ −1/2, yet for our problem n ≥ 1 implies v > −1/2.

2For the space L2 ((0, 1);xdx) the orthogonal basis {c1Jv [µmx]} is
known as the Fourier-Dini series



Let µb,α,m be the m-th positive zero of the Dini function
Db,α. From the Dixon’s theorem on interlacing zeros of Dini
functions [18, p.480] it follows that

µb,α,m > µb′,α,m−1, (64)

If we let b′ = 0, zeros µb′,α,m−1 are actually the positive
zeros of Jα+1, and zero itself, therefore

µb,α,1 > 0, (65)
µb,α,m > µα+1,m−1, for m > 1 (66)

In the case b = 0, equation (63) implies

σm > λ, for m ∈ {1, 2}, (67)

σm > ε(m− 2)2π2 + λ, for m > 2. (68)

In the case b > 0,

σm > λ, for m ∈ {1, 2, 3}, (69)

σm > ε(m− 3)2π2 + λ, for m > 3. (70)

Clearly the first inequality in the lemma holds.
We use a known bounds on Bessel functions

max
x∈[0,1]

|φm(x)| ≤
√
2

Jv (µb,v,m)
µvb,v,m. (71)

For any m > 0 we have Jv (µb,v,m) 6= 0, and thus all terms
in the series are bounded. This allows us to neglect the first
M terms of the series, for any M > 0, and concern only
about the convergence of the tail. From this observation and
from (68) and (70) it follows that convergence of

∞∑
m=M

1

Jv (µb,v,m+3)

µvb,v,m+3

m2
, (72)

implies convergence of the original series (62). Let

am =
1

µ
1/2
b,v,m+3Jv (µb,v,m+3)

, (73)

bm =
µ
v+1/2
b,v,m+3

m2
, (74)

It can be verified that

inf
m>0

∣∣∣µ1/2
b,v,m+3Jv (µb,v,m+3)

∣∣∣ > 0, (75)

thus, the sequence {|am|} is bounded. From the asymptotic
location of zeros of Bessel functions, there is M > 0 such
that for m > M we have

|bm| <
((m+ 3) + (v + 1)/2)

v+1/2

m2
πv+1/2. (76)

Using a one-sided comparison test, the convergence of the
series is guarantee to converge if v + 1/2 < 2; this is the
case if n ≤ 4. Boundedness of {|am|} and convergence of
{|bm|} implies that the original series converges for n ≤ 4.

Now that the proof of the main result is complete, we can
proceed with a brief description on how this results is applied
to state estimation for lithium-ion batteries from the SPM.

IV. THE SINGLE PARTICLE MODEL

A simple electrochemical model accounting for some of
the main dynamic phenomena in lithium-ion batteries is the
SPM [21]. The model includes a pair of diffusion equations
describing the diffusion of lithium ions in the intercalation
sites of active materials in the electrodes

∂cs,±
∂t

(r, t) =
Ds (cs±(t))

rn−1
∂

∂r

[
rn−1

∂cs,±
∂r

(r, t)

]
, (77)

for r ∈ (0, Rp,±), t > 0, n ∈ {1, 2, 3}, with boundary
conditions

∂cs,±
∂r

(0, t) = 0, (78)

Ds,± (cs(t))
∂cs,±
∂r

(Rp,±, t) = −j±(t). (79)

The diffusion coefficients Ds,± are functions of the average
concentration of lithium ions cs,±(t). The terms j±(t) are
molar fluxes of lithium ions, i.e., the rate of lithium entering
or exiting the intercalation sites. The parameters Rp,± are
the average, or representative, radii of the particles. We view
(77) - (79) as a dynamic system with states cs,±(r, t), input
jn,±(t) and output css,±(t) = cs,±(Rp,±, t). Molar fluxes
are computed as a proportion of the current I(t) (per unit
area) applied to the lithium-ion cell

j−(t) =
nRp,−
εs,−FL−

I(t), j+(t) = −
nRp,+
εs,+FL+

I(t). (80)

Where εs,± are the volume fractions of active material in
the electrode, L± are the lengths of the electrodes and F is
the Faraday constant. Overpotentials η±(t) are computed by
solving a set of nonlinear algebraic equations (in terms of
j± and css,±(t))

j±(t) =
i0,±(t)

F

[
e
αaF
RT η±(t) − e−

αcF
RT η±(t)

]
, (81)

i0,±(t) = k± [css,±(t)]
αc [ce (cs,max,± − css,±(t))]αa , (82)

where k± are (effective) reaction rates, ce is the concen-
tration of lithium-ions in the electrolyte (assumed to be
constant), T is the mean temperature in the cell, and R
is the gas constant. Electric potentials in the electrodes are
computed from

φs,±(t) = η±, (t) + Ui−(css,±(t)) +Rf,±Fj±(t), (83)

where U± are open-circuit potentials. Finally, the measured
voltage in the cell is the difference between the positive and
negative electric potential,

V (t) = φs,+(t)− φs,−(t). (84)

Concentrations cs(r, t) are positive and bounded by cs,max,±,
where the possible values of cs,max,± depend on the specific
active material. The current applied to the cell is bounded
to keep the concentration within these bounds. For an ex-
perimental determination of the dependence of diffusion on
the mean concentration of lithium-ions in the electrodes, for
a particular material, one can see the results in [5]. An
observer, based on the SPM, can be derived to estimate
the concentration of lithium ions in the electrode; and thus,
estimating the state of charge.



V. OBSERVER FOR THE SINGLE PARTICLE MODEL

We assume css,±(t) can be recover perfectly from mea-
surements of current and voltage. Thus, the problem of
estimating cs,±(r, t) from known values of jn(t) and css,±(t)
can be solved using the analysis in the previous sections. We
consider an observer in the form

∂ĉs,±
∂t

(r, t) =
Ds

(
cs±,?

)
rn−1

∂

∂r

[
rn−1

∂ĉs,±
∂r

(r, t)

]
(85)

+ P (r)
[
css,±(t)− ĉss,±(t)

]
, (86)

for r ∈ (0, Rp,±), t > 0, n ∈ {1, 2, 3}, with boundary
conditions

∂ĉs,±
∂r

(0, t) = 0, (87)

Ds,±
(
cs±,?

) ∂ĉs,±
∂r

(Rp,±, t) = −j,±(t) (88)

+Q
[
css,±(t)− ĉss,±(t)

]
. (89)

Gains P (r) and Q are the ones appearing in Theorem 1; with
the parameters of the model and after proper scaling of the
domain. With this observer, the estimation error is bounded
as follows

‖c̃s±(·, t)‖ <A1,±

√
exp [−σ1t]

2− exp [−σ1t]
‖c̃s±(·, 0)‖

+ |Ds,±,1||δcs±(t)|A2,± max
τ∈[0,t]

|g(τ)|

+ |Ds,±,1||δcs±(t)|A3,± max
τ∈[0,t]

(90)

with

g±(t) = max
r∈[0,1]

∣∣∣∣ 1

rn−1
∂

∂r

[
rn−1

∂cs,±
∂r

(r, t)

]∣∣∣∣ (91)

and
δcs±(t) = cs±(t)− cs±,?. (92)

Constants A1,±, A2,± and A3,± are the ones in Definition
1, using the with the parameters of this model.

Remark 2: Note that if Ds,± is constant, then Ds,±,1 = 0,
thus recovering the convergence properties of the boundary
observer for diffusion equations with constant parameters.

VI. CONCLUSIONS

This paper discusses the problem of state estimation for
a diffusion equation with a diffusion coefficient depending
on the value of the spatial average of the state. The main
contribution of this paper is the derivation of bounds in the
estimation error that arises in this particular situation. The
derivation of these bounds follow recent results on the input-
to-state stability of one-dimensional parabolic equations. The
main technical challenge is to verify that conditions and
assumptions for the ISS results to hold are valid for radial
diffusion equations in n-dimensional balls.
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