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Abstract— This paper proposes a robust optimal eco-driving
control strategy considering multiple signalized intersections
with uncertain traffic signal timing. A spatial vehicle velocity
profile optimization formulation is developed to minimize the
global fuel consumption, with driving time as one state variable.
We introduce the concept of ‘effective red-light duration’
(ERD), formulated as a random variable, to describe the
feasible passing time through signalized intersections. A chance
constraint is appended to the optimal control problem to
incorporate robustness with respect to uncertain signal timing.
The optimal eco-driving control problem is solved via dynamic
programming (DP). Simulation results demonstrate that the
optimal eco-driving can save fuel consumption by 50-57% while
maintaining arrival time at the same level, compared with a
modified intelligent driver model as the benchmark. The robust
formulation significantly reduces traffic intersection violations,
in the face of uncertain signal timing, with small sacrifice on
fuel economy compared to a non-robust approach.

I. INTRODUCTION

Connected and automated vehicle (CAV) technology is
revolutionizing the automotive industry. In particular, CAVs
may significantly improve safety, energy economy, and con-
venience. CAVs are able to realize autonomous driving, vehi-
cle to infrastructure (V2I) communication and/or intelligent
path/velocity planning [1], [2]. Optimal eco-driving control
– a novel technology brought by CAVs – is defined as
a velocity control method to achieve the most economical
fuel, energy or cost performances [3]. Intuitively speaking,
optimal eco-driving seeks the best velocity profile, in some
sense, over a specific driving mission. Fig. 1 illustrates the
optimal eco-driving concept through V2I communication
with a number of traffic signals incorporated.

In the literature, optimal eco-driving is also known as eco-
logical driving, speed trajectory planning, driving advisory or
driver assistance systems. Over the past 10 years, in partic-
ular, the optimal eco-driving problem has been intensively
studied in the published literature. A heuristic optimal eco-
driving strategy is proposed in [4] to minimize the vehicle
fuel consumption based on instantaneous fuel performance.
With velocity constraints derived from real driving data,
another dynamic programming (DP) based optimal eco-
driving control is developed in [5] for trajectory optimization
of an internal combustion engine (ICE) vehicle. Similar
approaches are found in [6], [7], for the optimal energy
management as well as speed control of electric vehicles
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Fig. 1. Optimal eco-driving based on V2I communication when multiple
traffic signals are incorporated, with vehicle speed control as the main task.

(EV). Experimental results showed a significant increase
in energy efficiency. More comprehensively, a cloud-based
velocity profile optimization approach is designed in [8],
under a spatial domain formulation. Historical velocity data
is gathered for speed advising. Spatial domain optimization
is further adopted by [9] for ecological driving. Uniquely, a
short-term adaptation level is added to avoid traffic conges-
tion. Optimal eco-driving has also been integrated into the
energy management strategy of hybrid electric vehicles, with
interactive Pontryagin’s Minimal Principle used to solve the
optimization problem in [10].

Signal phase and timing (SPaT) information is critical in
addressing the optimal eco-driving problem. In [11] and [12],
hierarchical model predictive control (MPC) is employed
for eco-driving in varying traffic environments. Assume
the SPaT information is known a priori, [13] solved the
optimal eco-departing problem at signalized intersections.
Furthermore, [14] developed a sophisticated on-board driver
assistance, which is able to calculate the optimal speed
profile with deterministic traffic signals. By considering
each signalized intersection as one stage, a multi-stage
pseudospectral control method is proposed by [15] in an
arterial road structure. Hierarchical MPC is also adopted
in [16], and has demonstrated effective online eco-driving
control capabilities. Reference [17] considers the car waiting
queue in a multi-lane road scenario, and designed an eco-
cooperative adaptive cruise control scheme. With a simplified
powertrain model and assuming the engine mainly operates
along the optimal brake specific fuel consumption (BSFC)
line, sequential convex optimization therefore is applied to
the speed trajectory planning problem [18].

In the aforementioned studies, either signalized intersec-
tions are not considered, or SPaT information is assumed
to be deterministic in the optimal eco-driving control ap-
proaches. Ideally, when CAVs have realized V2I communi-

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 American Control Conference.
Received September 25, 2017.



Uncertainty 1:
Car Waiting Queue

Uncertainty 3:
Pedestrian Crossing

Uncertainty 2:
Traffic Light Time Variation

Fig. 2. Uncertain factors when passing the road intersections.

cation, SPaT can be communicated to vehicles for optimal
eco-driving. This future, however, would require significant
penetration of V2I-equipped intersections, which may take
decades to realize. Even with V2I-equipped intersections,
uncertainty exists due to car waiting queue, pedestrians,
bicyclists, varying patterns of traffic lights and other fac-
tors, as demonstrated in Fig. 2. Moreover, an optimal eco-
driving approach assuming deterministic SPaT will often
pass through intersections exactly at the phase transitions,
and thus risks collision. The issue of SPaT uncertainty in
optimal eco-routing is significant, and not fully addressed in
the existing literature.

This paper investigates a fuel-minimizing eco-driving ap-
proach that is robust to uncertain feasible vehicle passing
times through multiple signalized intersections. The goal is
to simultaneously achieve energy economy and safety. The
main contributions include:

• ‘Effective red-light duration’ (ERD) is proposed to
describe the stochastic feasible passing time of vehicles
at signalized intersections, composed of a deterministic
base red-light duration and a random delay;

• Signalized intersections are modeled and integrated into
the spatial optimal eco-driving formulation, which elim-
inates the requirement for prior knowledge of accurate
arrival time;

• A robust optimal eco-driving control variant is devel-
oped and solved via dynamic programming. The con-
troller robustness – and therefore safety – is significantly
improved with little sacrifice of fuel economy.

The remainder of the paper is organized as follows. Section
II describes the vehicle, traffic signal and driver models.
Section III introduces the spatial optimal eco-driving control
strategy. Section IV details a robust formulation that consid-
ers uncertain feasible passing time at signalized intersections.
Section V exhibits the main results, and Section VI draws
the main conclusions and future work.

II. VEHICLE, TRAFFIC SIGNAL AND DRIVER MODELING

A. Vehicle dynamics

The subject vehicle is equipped with a gasoline ICE
and a 6-speed gearbox. Since speed control is the main
objective of optimal eco-driving, we consider longitudinal
vehicle dynamics and disregard the lateral dynamics. The

longitudinal acceleration is calculated by

ma =
rgbTeng
Rwhl

−mgcos (θ)Cr−mgsin (θ)−
1

2
ρACdv

2−Tbrk
(1)

Cr = Cr1 + Cr2v (2)

where m is the vehicle mass, a is the acceleration, rgb is
the integrated ratio of gearbox and final drive, Teng is the
ICE output torque, Rwhl is the rolling radius of wheel, g
is the gravitational acceleration, θ is the road grade, and
Cr is the rolling resistance coefficient. Parameters ρ, A, Cd

are the air density, frontal area, and air-dragging resistance
coefficient respectively. Variable v is the vehicle velocity,
Tbrk is the braking force enforced on the wheels, Cr1 and
Cr2 are rolling resistance constants. The longitudinal velocity
is computed by

v =
ωeng

rgb
(3)

where ωeng is the ICE rotation speed. The ICE fuel con-
sumption is modeled as a nonlinear map ψ(·, ·) that depends
on the engine torque and speed:

ṁfuel = ψ(Teng, ωeng) (4)

where ṁfuel is the instantaneous fuel consumption, and
ψ is the pre-stored fuel map (e.g. a look-up table). The
transmission efficiency is ignored in this study. Assume rfd
is the final drive ratio. The integrated transmission ratio is
formulated as a function of the gear number Ngb,

rgb = f(Ngb)rfd, Ngb ∈ {1, 2, 3, 4, 5, 6} (5)

B. Traffic signal model

The traffic signal at an intersection is a spatial-temporal
system in the optimal eco-driving control problem. Assume
the total length of the target driving route is Df . The
position of the ith traffic signal is noted as Di if we treat
the signalized intersection as a single point on the road.
Therefore,

Di ∈ [0, Df ], i = {1, 2, 3, 4, 5...I} (6)

where I is the total number of traffic signals along the route.
Each traffic signal is modeled with an independent signal-

cycling clock in this paper. The universal traveling time of the
vehicle is denoted as t ∈ R, and the periodic cycling clock
time of the ith traffic signal has a period of cif ∈ R (clock
time zero denotes the beginning of the red light phase).
Normally, the period cif varies at different intersections. The
red-light duration is denote by cir. Then we have

cir ∈ [0, cif ] (7)

Consider the time when the vehicle departs from its origin.
Denote by ci0 the periodic signal clock time at this moment.
Suppose tip is the time at which the subject vehicle passes
through the ith intersection in the universal time domain. We
can compute the corresponding time in the periodic traffic
signal clock timing by

cip = (ci0 + tip) mod cif (8)
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where cip is the vehicle passing time in the signal-cycling
clock. The modulo operator allows for conversion from the
universal time domain to the periodic traffic signal clock time
domain. Note that un-signalized intersections or crossings
can also be integrated into the model above, which might
require on-board cameras or radars to detect the passing
conditions.

C. Modified intelligent driver model

A modified intelligent driver model (IDM) is introduced
for comparison with the optimal eco-driving, by imitating
human driving behaviors. IDM is originally developed by
Treiber et. al., based on the computation of desired distance
between the subject vehicle and the vehicle in front or speed
limit [19]. We enhanced the driver model with an ability to
preview traffic signals and adjust speed accordingly. Assume
the desired distance between the subject vehicle and front
vehicle is Ddes, then

Ddes = Dmin
des + v · thw −

vDsf

2
√
amaxac

(9)

where Dmin
des is the minimal vehicle distance, thw is the

desired time headway to the preceding vehicle, Dsf is the
real distance between the subject vehicle and preceding
vehicle, amax is the maximal vehicle acceleration ability,
and ac is the preferred deceleration for comfort.

The vehicle acceleration at each time step is computed by
comparing the desired gap distance with the current distance.
An additional speed limit term is added to ensure safety,

a = amax

[
1−

( v

vmax

)4
−
(
Ddes

Dsf

)2
]

(10)

To interact with traffic signals or stop signs, we modify
the IDM by enabling the driver model to preview the traffic
signal or stop line status at a human-vision distance Dv .
Assume the current location of the vehicle is D, the vehicle
longitudinal velocity dynamics in (10) thus becomes

a =

amax[1−
(

v
vmax

)4 − (Ddes

Dsf

)2
], if Stss(D +Dv) = 0

− v2

2Dsf
, if Stss(D +Dv) = 1

(11)
where Stss(D+Dv) is the traffic signal and stop sign status
Dv in front of the vehicle, with the value of 1 meaning the
traffic signal is red or there is a stop sign in front, with the
value of 0 meaning the traffic signal is green or there is no
stop sign. Variable Dsf here indicates the distance to the
traffic light or stop sign when no vehicle is in front.

III. DETERMINISTIC OPTIMAL ECO-DRIVING

The optimal eco-driving control problem is formulated as a
nonlinear spatial trajectory optimization problem to minimize
vehicle fuel consumption. The cost function J is defined as

minimize J =

∫ Df

0

ṁfuel(Teng(D), ωeng(D)) dD (12)

The engine torque, wheel braking torque and transmission
gear number are chosen as the control variables.

u = [Teng(D), Tbrk(D), Ngb(D)] (13)

The vehicle velocity and traveling/driving time are chosen
as the state variables.

x = [v(D), t(D)] (14)

dv(D)

dD
=
a(D)

v(D)
;
dt(D)

dD
=

1

v(D)
(15)

Subject to the following vehicle physical constraints,

Tmin
eng ≤ Teng(D) ≤ Tmax

eng , ∀ D [0, Df ]

Tmin
brk ≤ Tbrk(D) ≤ Tmax

brk , ∀ D [0, Df ]

Ngb(D) ∈ {1, 2, 3, 4, 5, 6}, ∀ D [0, Df ]

v(0) = v(Df ) = 0

amin ≤ a(D) ≤ amax, ∀ D [0, Df ]

vmin(D) ≤ v(D) ≤ vmax(D), ∀ D [0, Df ]

(16)

Subject to the following final arrival time and traffic signal
passing constraints,

t(Df ) ≤ tf (17)

cip ≥ cir (18)

A key beneficial feature of a spatial trajectory formulation
(as opposed to temporal) is that the signal and final destina-
tion arrival times do not need to be known a priori. A pre-set
maximal arrival time constraint tf is imposed on the final
state variable t(Df ), to balance fuel economy and traveling
speed. The traffic signal constraint in (18) enforces vehicles
to pass through signalized intersections only at green lights.

The above nonlinear optimization problem is solved via
dynamic programming adopted from [20]. Detailed formula-
tions are omitted here. Interested readers please refer to [21],
[22].

IV. ROBUST OPTIMAL ECO-DRIVING

In Section III, it is assumed the SPaT information is
deterministic and perfectly known. Mathematically, cir in (18)
is known and deterministic. However, as illustrated in Fig. 2,
the feasible passing time through signalized intersections or
crossings is usually uncertain and random. Here, an effective
red-light duration (ERD) variable is defined to describe the
feasible passing time, denoted as ciERD:

ciERD = cir + α (19)

Fig. 3 exhibits the ERD concept. Parameter cir is the base red-
light duration, which is the minimal red-light time. Random
variable α is a stochastic time of delay, caused by signal
uncertainties or vehicle waiting queue. In this paper, we
assume the total signal cycling-time is not affected by these
uncertain factors, meaning cif is deterministic and known.

Intuitively, α is a random variable over time 0 to (cif−cir),
whose distribution could be (truncated) Poisson, Gaussian,
Beta or completely non-parametric. Assume the probability
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Fig. 3. Effective red-light duration, meaning the feasible passing time of
a vehicle through an intersection.

density function of α is f(α). Therefore, the traffic signal
passing constraint in (18) can be modified to

cip ≥ ciERD = cir + α, ∀ α (20)

However, enforcing the constraint above for all values in the
support of α is too restrictive. Consequently, we relax this
constraint via chance constraints.

Denote by η a required reliability for the subject vehicle
to pass through a specific signalized intersection, and F (α)
indicates the cumulative distribution function (CDF) of α.
Equation (20) can be relaxed into the following chance
constraint,

Pr(cip ≥ cir + α) ≥ η (21)

Pr(α ≤ cip − cir) = F (cip − cir) ≥ η (22)

We assume the CDF F (·) is bijective, and therefore has
an inverse function F−1(·). Thus, we can solve for the
optimization variable cip to obtain

cip ≥ cir + F−1(η) (23)

Again, cip is the passing time of subject vehicle through
the ith intersection in the signal-cycling clock, which is a
function of the control and state variables, cip(x, u).

It should be noted that the real world probability distribu-
tion of ERD might vary at different times of day, seasons
or locations, and may not be accurately modeled by a
parametric distribution. Investigating the actual probability
distribution of α via measured data is planned as future work.
DP is also used to solve the above robust optimal eco-driving
control problem.

V. SIMULATION

The vehicle parameters and engine fuel map used for sim-
ulation are extracted from Autonomie [23], and summarized
in Table I. The maximum and minimal velocity limits are set
as 16 and 0m/s, respectively. The acceleration constraints are
not activated, since the engine output torque constraint is able
to restrict the vehicle acceleration within a feasible domain.
Three different cases are considered for comparison in the
simulation:

• Modified IDM. with the human preview-vision distance
Dv set as 100 meters;

TABLE I
SUBJECT VEHICLE PARAMETERS

Parameter
(Unit)

Value Parameter
(Unit)

Value

m (kg) 1745 rfd 3.51
Rwhl (m) 0.3413 ωmax

eng (rad/s) 600
A (m2) 2.841 Tmax

eng (Nm) 240
ρ (kg/m3) 1.1985 gearbox ratios 4.58, 2.96,
Cd 0.356 1.91, 1.46,
Cr 8.4e-3, 1.2e-4 1, 0.74

• Optimal eco-driving with traveling time as cost, denoted
as “Op-time”. Equation (12) is re-formulated as

J =

∫ Df

0

t(D)) dD (24)

• Optimal eco-driving with fuel consumption as cost,
denoted as “Op-fuel”.

A. Deterministic optimal eco-driving

Two sample driving routes with 3 and 7 signalized inter-
sections, named route 1 and route 2 respectively, are studied
in this paper. All of the full cycling periods cif and red-light
durations cir are intentionally set as 60s and 30s, respectively,
for easier analysis of the results. The beginning time ci0 is
arbitrarily selected between 0 to 30s. However, other realistic
selections of the full cycling time and red-light duration can
also be incorporated in the proposed optimal eco-driving
control strategy. The position and SPaT information for the
two sample routes are shown in Table II.

TABLE II
POSITION AND SPAT INFORMATION OF SAMPLE ROUTES

Route 1 Route 2 1&2
No. Type Di (m) ci0* Type Di (m) ci0* cif cir

1 signal 200 10 signal 200 0 60 30
2 signal 400 30 signal 400 20 60 30
3 signal 600 0 signal 600 0 60 30
4 stop 800 – signal 800 20 60 30
5 signal 1000 0 60 30
6 signal 1200 25 60 30
7 signal 1400 10 60 30
8 stop 1600 – 60 30
* Arbitrarily selected values

For sample route 1, the vehicle velocity and traveling time
results derived from the three driving strategies are plotted
in Fig. 4. It can be seen in the modified IDM approach, the
driver started decelerating the vehicle at D=100m when the
it ‘sees’ a red traffic signal in front. Because of the lack
of full SPaT information, the modified IDM is not able to
preview the future signal dynamics. About 10 seconds later,
it had to switch to accelerate the vehicle again at D=170m,
as the signal turned to green. This behavior wastes fuel.

At the 2nd traffic signal, the red light blocks the in-
tersection. Modified IDM waits for 20 seconds until the
light turns green. A similar scenario happened at the 3rd
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Fig. 4. Modified IDM, Op-time and Op-fuel results with deterministic formulation of route 1. The green circle highlights a dangerous driving behavior,
where the vehicle passed the intersection at the exact signal transition time.
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Fig. 5. Modified IDM, Op-time and Op-fuel results with deterministic formulation of route 2. Three dangerous intersection driving behaviors occurred
in the Op-fuel case. The proposed robust eco-driving in Section IV is intended to reduce these dangerous activities, with results presented in Section V-B.

signalized intersection, but with a shorter waiting time.
The vehicle eventually arrived at the stop sign (also its
destination) at t=117s. The Op-time strategy accelerates the
vehicle whenever possible until the velocity hits the maximal
boundary. Under this strategy, the vehicle commonly meets
red lights. In the 800-meter-long route constructed in this
section, the vehicle cumulatively waited for 50s at all three
intersections. The vehicle arrived at the final stop sign at
t=107s, which is the shortest time among the three driving
strategies.

In the Op-fuel case, tf is set as 115s in order to make
sure the vehicle arrives to the destination at the same time
scale as the other two cases. The Op-fuel strategy smoothly
passes through the first two intersections, by adjusting the ve-

locity between 7 and 9m/s. A deeper deceleration happened
just before driving through the 3rd signalized intersection
(D=600m) to wait for a green light. After that, the vehicle
velocity restored to about 12m/s to ensure it can arrive the
final destination within the time limit. The total driving time
in the Op-fuel case is t=110.5s, which is 3.5s longer than
the Op-time case.

The vehicle velocity and traveling time results for route
2 are shown in Fig. 5, where similar trends are observed.
The modified IDM avoided complete stops at 3 signalized
intersections out of 7, with a final arrival time of 226s.
This indicates that even without any future information of
the traffic signals, the vehicle can still catch green light at
normal driving pattern. However, in the Op-time case, the
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Fig. 6. Vehicle velocity, acceleration, engine speed, torque results versus
time of route 1.
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Fig. 7. Engine operating points on the BSFC map of route 1.

vehicle encountered 6 red lights in order to minimize the
arrival time. The final arrival time is 217.9s, which is about 8s
(3.5%) smaller that the modified IDM. As expected, the Op-
fuel controller refused to aggressively accelerate the vehicle,
and crossed most of the intersections at lower speeds without
any complete stops. Eventually, the Op-fuel arrived at the
destination at t=228.5s.

The vehicle velocity, acceleration, engine speed, and en-
gine torque trajectories for route 1 are shown in Fig. 6. The
engine speed is restricted between 200 and 300 rad/s in the
Op-fuel case, and the engine torque is relatively smaller than
the other two approaches, forming a milder driving style.

The operating points on the brake specific fuel consump-
tion (BSFC) map for route 1 are shown in Fig. 7, which
may seem counter-intuitive, but are actually very interesting.
The engine operating points from the Op-time case are
located more in the high efficiency area of the BSFC map
(the lower value the better), compared with the Op-fuel and
modified IDM approaches. This is usually preferable in the
operation of engines, and often results in better fuel economy.
However, the simulated fuel consumption in the Op-time case
is, in fact, the highest one and much higher than the Op-fuel
result. The main reason is that although the average engine
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Fig. 8. Probability density function and cumulative density function of α.

TABLE III
ARRIVAL TIME, AVERAGE BSFC AND FUEL CONSUMPTION RESULTS OF

ROUTE 1 AND 2 WITH DETERMINISTIC SPAT

Route Method t(Df ) (s) B�
avg (g/kWh) Fuel (g)

Modified IDM 117 478.26 88.24
800m Op-time 107 485.94 91.49
3 lights Op-fuel 110 568.19 43.95

Change* +2.8% +16.9% -51.9%
Modified IDM 226 477.31 172.84

1600m Op-time 217.9 486.62 182.15
7 lights Op-fuel 228.52 586.53 73.79

Change* +4.9% +21.2% -59.5%
* Indicates the performance change of Op-fuel compared with Op-time;
� Bavg is the average BSFC value.

fuel efficiency in the Op-fuel approach is lower, its total
engine power requirement is much less. Thus, better fuel
economy is achieved with modified IDM and Op-fuel.

The arrival time, average BSFC value, and total engine fuel
consumption results of route 1 and 2 are reported in Table
III. The average BSFC of Op-fuel is 16.9-21.2% higher than
that of Op-time, while the overall fuel consumption is 51.9-
59.5% less. This significant fuel economy improvement is
achieved by sacrificing 2.8-4.9% of the arrival time, which
is trivial in daily driving.

B. Robust optimal eco-driving

In this section, we assume α is a truncated Gaussian
random variable for illustrative purposes, with the PDF and
CDF drawn in Fig. 8. The true probability distribution for
the ERD is generally unknown. Future work will focus on
this challenge.

Three possible scenarios are shown in Fig. 8: light, mod-
erate and heavy traffic situations. When traffic is light, the
high-probability values of α are around 0 to 6s, indicating
small time delays. For heavy traffic scenarios (for example,
at rush hours), the average α value is much larger at around
15s. It is even possible that the vehicle would have to wait
for the next green signal, which is normal in real life. The
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fuel consumption and arrival time results of Op-fuel control with different reliabilities enforced along route 1.

TABLE IV
ARRIVAL TIME, AVERAGE BSFC AND FUEL CONSUMPTION RESULTS OF

ROUTE 1 AND 2 WITH STOCHASTIC SPAT

Route Method Type t(Df ) B�
avg Fuel

Modified Deterministic 117 478.26 88.24
IDM Robust η=0.3 121 479.33 89.48

Robust η=0.6 125 478.10 91.09
Robust η=0.9 129 481.93 90.63

Op-time Deterministic 107.2 485.94 91.49
800m Robust η=0.3 111.1 485.52 92.11
3 lights Robust η=0.6 114.0 485.31 92.22

Robust η=0.9 118.2 485.38 91.78
Op-fuel Deterministic 110.4 568.19 43.95

Robust η=0.3 112.3 557.59 48.14
Robust η=0.6 114.6 562.23 50.43
Robust η=0.9 118.4 567.61 53.16

Modified Deterministic 226 477.31 172.84
IDM Robust η=0.3 229 478.90 172.72

Robust η=0.6 233 480.97 172.71
Robust η=0.9 237 482.98 172.70

Op-time Deterministic 217.9 486.62 182.15
1600m Robust η=0.3 221.5 486.66 181.24
7 lights Robust η=0.6 224.6 487.08 181.80

Robust η=0.9 227.7 485.87 183.18
Op-fuel Deterministic 228.52 586.53 73.79

Robust η=0.3 229.6 579.84 72.66
Robust η=0.6 230.8 576.53 72.98
Robust η=0.9 232.4 564.48 72.85

� Bavg is the average BSFC value.

moderate traffic situation is adopted for simulation, where

α ∼ N[0,30](6, 16) ∈ [0, 30] (25)

The vehicle traveling trajectories of Op-fuel control along
route 1 with various chance reliability η are illustrated in
Fig. 9.

As can be seen in Fig. 9(a), the arrival time increases
as reliability parameter η increases. For η=0.1, the optimal
velocity trajectory has very little robustness to delay beyond

the base red-light time. This can be clearly seen from the
vehicle trajectories at the 600-meter traffic signal, where
the vehicle passed the intersection immediately after the
light switched to green. As η increases, the passing time
gradually increases as the solution becomes more cautious to
delayed ERD. Yet at the 200-meter and 400-meter signalized
intersections, the originally planned passing time has already
avoided most of the possible delays. Thus, the trajectories
with chance reliability η from 0.1 to 0.8 are quite identical.

Fig. 9(b) shows the normalized fuel consumption and
arrival time results of Op-fuel with different reliabilities
enforced along route 1. When η is 0.9, the fuel consumption
increased 16% compared with η=0.1. The arrival time change
is much smaller, with an increase of only 5%. At the η=1.0
point, the arrival time is raised by nearly 8%, yet the fuel
consumption decreased by 2%.

Table IV summaries the arrival time, average BSFC and
fuel consumption results of robust optimal eco-driving and
modified IDM with both driving route 1 and 2. Comparing
deterministic control with robust control across the three
methods, we find that the final arrival time grows as the
reliability η increases. However, the fuel consumption in-
crease is not as significant. Obviously, the fuel consumption
of Op-fuel is less than that of Op-time and modified IDM.
Its arrival time is slightly longer than Op-time, but mostly
shorter than modified IDM.

Fig. 10 shows the driving failure likelihood results of
robust Op-time and Op-fuel control when η=0.9, 0.95, 0.97
and 0.99 at the 2nd signalized intersection of route 1, through
massive simulations. Here, failure means the vehicle failed
in securely driving through the signalized intersection during
feasible passing time. In this case, the vehicle might run a
red light, or collide with other vehicles or pedestrians. We
can see that when η=0.9, the failure likelihoods are 5.7%,
which is still very high and might cause great danger. When η
increases to 0.95 and 0.97, the failure likelihood is reduced to
2.5% and 1.7%, respectively. If we request the driving failure
likelihood must be restricted within 0.1% to ensure vehicle
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safety, the minimum value setting of η should be greater
than 0.999, in the driving scenario assumed for simulation.
The proposed robust optimal eco-driving control approach is
able to significantly reduce traffic intersection violations via
carefully tuning of the chance constraint reliability η.
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Fig. 10. Failure likelihood results of robust Op-time and Op-fuel control
when η=0.9, 0.95, 0.97 and 0.999, at the 2nd signalized intersection of
route 1. The histogram is randomly produced ERD used in the massive
simulations. Black dashed line is the passing time cip.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel robust optimal eco-driving
control strategy to solve the vehicle velocity planning prob-
lem with multiple signalized intersections, based on a spatial
optimization formulation. The requirement for prior knowl-
edge of the destination arrival time is eliminated. We propose
a novel traffic signal modeling approach. Effective red-light
duration (ERD) is proposed to capture the random feasible
passing time at signalized intersections. The optimal control
problem is solved via dynamic programming (DP). Simula-
tion results indicate that the developed optimal eco-driving
strategy is able to reduce fuel consumption by approximately
50-57%, while maintaining the arrival time at the same level
compared with the modified intelligent driver model. The
controller robustness to signal timing uncertainty is greatly
improved with slight sacrifices to vehicle fuel economy.

Future work includes real-world traffic SPaT probability
distribution study. We also plan to develop methods to reduce
the optimal eco-driving control computation complexity.
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