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Abstract— This paper investigates dynamical systems where
system inputs are induced by human behavior. In particular, we
consider linear time-invariant systems with a stochastic discrete
choice actuation model. We are motivated by increasingly
important cyber-physical-social systems (CPSS), such as smart
mobility, smart energy, and smart cities. Existing literature
regarding random dynamical systems (RDS) predominantly
considers additive noise models with well-defined probability
distributions. Furthermore, the role of human interactions is
usually considered a disturbance. The closed-loop system must
not be designed explicitly for this disturbance, but must be
robust to it instead. This paper adds two original contributions
to the existing literature. First, we integrate Discrete Choice
Models (DCM) from behavioral economics into dynamical
systems to incorporate human decision making, yielding a
Dynamical System with Discrete Choice Models (DSDCM).
System inputs are triggered by human actuators, who act
selfishly by taking actions that maximize their own utility
functions. Second, we formulate a convex optimization problem
for DSDCM that seeks to incentivize human decision making to
achieve a system-wide objective. Finally, we apply DSDCM in
the context of demand response and provide potential directions
for future work.

I. INTRODUCTION

This paper investigates dynamical systems where system
inputs are induced by human behavior. We mathematically
model these systems using discrete choice models (DCM)
from behavioral economics for the actuator model, yielding
a Dynamical System with Discrete Choice Model (DS-
DCM). We analyze DSDCM for stationarity, stability, and
controllability. Moreover, we derive a convex optimization
problem for control synthesis, which incentivizes human
decision making to achieve a given objective. Our proposed
models will prove useful to system operators in coping
with challenges that arise due to randomness resulting from
human components, such as in cyber-physical-social systems
(CPSS). In addition, optimal system operations that result
from solving the convex optimization problem introduced in
this paper may provide economic benefits to system operators
in various contexts.

Existing literature on dynamical systems with random
inputs provides multiple approaches to addressing uncertain-
ties. These approaches are useful in systems where human
inputs are regarded as sources of noise. The intersection
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between probability theory and dynamical systems is referred
to as random dynamical systems (RDS) in this paper. RDS
represent systems that are perturbed by noise, and have
been thoroughly scrutinized throughout the literature [1].
Various concepts in stochastic processes, e.g. Markov chains
and martingales, have been used to address randomness in
dynamical systems [2]–[4]. Optimal control schemes for
RDS, concerning additive noise models with well-defined
probability distributions, have also been extensively studied
[5]–[8]. We can also directly apply discrete-time RDS with
statistical signal processing techniques when RDS are viewed
as random processes [9].

The aforementioned literature provides fundamental the-
ories that are necessary to address dynamical systems in-
volving human components. In the field of robotics, human-
in-the-loop dynamical systems with human actuators have
been analyzed [10]. However, human roles have always been
restricted to improving system performances [11] in this
area. This paper extends the existing literature on dynamical
systems involving human actuators by integrating DCM into
dynamical systems to handle a set of possible behaviors,
or alternatives [12], [13]. Individual human behavior is
random by nature, and is determined with only his or her
interest in mind. DCM evaluate the probabilities of possible
alternatives and provide mathematical formalism that allows
us to model human behavior in dynamical systems. With the
model for human behavior fixed, we can develop control and
optimization schemes for the dynamical systems where the
system inputs are induced by human behavior. Determining
attributes of alternatives that impact probability distributions
of possible behaviors is of specific interest in this paper. We
offer a different perspective on studying dynamical systems
with DCM. Dynamical systems with DCM usually take
attributes as given constants of the system. Here, we treat
attributes as decision variables of an optimization problem.

Attribute optimization in DCM can be interpreted as
pricing optimization in settings where prices can be repre-
sented by attributes that are dynamically adjustable. Pricing
optimization has been extensively studied in various contexts
[14]–[16]. However, existing approaches are not tailored to
the specific needs of our problem, so we propose to solve the
problem of optimizing over the DCM attributes using convex
optimization techniques. It is possible to draw parallels
between DSDCM and stochastic hybrid system frameworks.
DSDCM can be represented as a stochastic hybrid system
where discrete states represent human decisions and transi-
tions between states occur in continuous time, induced by
incentive controls. This idea of extending CPSS modeling in



the context of stochastic hybrid systems remains as future
work.

We add two original contributions. First, we present a
mathematical framework and system analysis of DSDCM.
Second, we formulate a convex optimization problem for
the control of DSDCM, and derive a closed-form, analytic
expression for the gradient of the objective function, yielding
an algorithm that solves the control problem. Additionally,
we demonstrate the applicability of the DSDCM framework
on a demand response example.

This paper is organized in the following manner: Section
II presents the DSDCM system analysis. Section III presents
the convex optimization problem, and proposes an algorithm
for solving the optimization problem effectively. Section IV
presents a practical application of DSDCM in the context of
demand response. Conclusions are drawn in Section V.

II. SYSTEM ANALYSIS OF DYNAMICAL SYSTEMS WITH
DISCRETE CHOICE MODELS

In this section, we introduce a system overview of DS-
DCM and mathematically represent it as a state space model.
We further analyze the system for equilibria, stability, and
controllability.

A. System Overview

Consider a dynamical system x(k+1) = Ax(k)+Bu(k),
where the input u(k) is determined by human choices.
Humans select from a discrete set of choices, called al-
ternatives. The probability of selecting a given alternative
depends on a utility function. These utility functions are
functions of controllable variables, e.g. a price incentive, and
uncontrollable variables, e.g. the weather. Such models are
known as discrete choice models in the behavioral economics
literature. This framework characterizes many CPSS. For
example, the dynamics of a store’s inventory is governed
by consumer purchases. A consumer purchase is a random
event, which can depend on store-controlled variables, e.g.
a sale, and non-store-controlled variables, e.g. the weather.
Other examples include on-demand mobility services, and
demand response programs in power systems, which we
explore in Section IV. We seek a rigorous mathematical
framework to analyze and manage these CPSS.

Mathematically, we formulate DSDCM in the canonical
linear time-invariant discrete-time state space representation
as

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) denotes the system state and u(k) is the random
system input obtained by DCM. The system inputs are
constrained, i.e. u(k) ∈ {u1, u2, · · · , uJ}, to a finite set of
J alternatives. Each system input alternative has a specific
utility function, and an alternative is chosen when its utility
is higher than that of others. For the j-th alternative, j ∈
{1, 2, · · · , J}, the utility function is

Uj = fj (z(k))
.
= β>j z(k) + γ>j w(k) + β0j + εj , (2)

where z(k) is a set of controllable inputs, w(k) is a set
of uncontrollable inputs at time-step k, βj and γj are sets

of parameters for the controllable inputs and uncontrollable
inputs, respectively, βj0 is an alternative specific constant,
and εj accounts for all unspecified errors. Fig. 1 illustrates
this system.

Fig. 1. Block diagram of Dynamical Systems with Discrete Choice Model
where z(k) is a set of controllable inputs, w(k) is a set of uncontrollable
inputs, and u(k) ∈ {u1, u2, · · · , uJ}.

The distribution of the error terms εj determines the prob-
ability mass function of u(k). The two most popular models
of the distributions of εj for every j are i.i.d extreme value
distribution and Gaussian distribution, which correspond to
(multinomial) logit models and probit models, respectively.
In DSDCM, errors are assumed to follow the i.i.d extreme
value distribution because under the logit model, the proba-
bility of choosing the j-th alternative can be written

Pr(u(k) = uj) = Pr

⋂
j 6=i

(Uj > Ui)

 =
eVj∑J
i=1 eVi

, (3)

where Vj
.
= β>j z(k)+γ>j w(k)+β0j . We exploit the potential

predictive power of the logit model [17], [18] to evaluate
human components in CPSS.

B. Stationarity and Boundedness

Assume that the probability of choosing the j-th alter-
native does not vary over time for all j ∈ {1, 2, · · · , J}
and that independence holds across all time-steps. We can
interpret this system as a stochastic process where the system
input is an i.i.d. random variable. Since the system is a
random process, the traditional definition of an equilibrium
for deterministic systems does not apply. Instead, the system
equilibrium can be analyzed in terms of stationarity, summa-
rized by the following proposition.

Proposition 1: Consider the DSDCM (1)-(3). Assume the
inputs u(k) are i.i.d. In the limit k → ∞, the states x(k)
are wide-sense stationary if |λmax(A)| < 1, where λmax(A)
denotes the largest eigenvalue of A.

Proof: If x(k) ∈ Rn and u(k) ∈ Rm, then A ∈
Rn×n and B ∈ Rm×m. For elegance in presentation, let
A = a and B = b, a, b ∈ R, without loss of generality.
The system is said to be wide-sense stationary if the first
moment of the states does not vary with respect to time and
the autocovariance between states at two time-steps can be
written as a function of only the time difference.

The closed-form, analytic solution to the discrete time-



invariant dynamical system with random variable input is

x(k) = akx(0) +

k−1∑
i=0

ak−i−1bu(i). (4)

In the limit k →∞, the expected value of the state (4) is

lim
k→∞

E[x(k)] = lim
k→∞

E

[
k−1∑
i=0

ak−i−1bu(i)

]

= bµ lim
k→∞

k−1∑
i=0

ak−i−1

=
bµ

1− a
, (5)

where µ is the mean of u(k) over all time-steps k. The
summation in the proof converges if |a| < 1 in the scalar
case and if |λmax(A)| < 1 in the general n-dimensional
case. This indicates that the mean is constant over time.

The covariance of the analytical solution with respect to
the two time-steps k1 and k2, k1 ≤ k2, is

Cxx(k1, k2)

= Cov
(
b

k1−1∑
i=0

ak1−i−1u(i), b

k2−1∑
j=0

ak2−j−1u(j)

)

= b2
k1−1∑
i=0

ak1+k2−2i−2σ2

=
b2aτσ2

1− a2
, (6)

where σ is the variance of u(k) over all time-steps k, and τ
is the time delay, i.e. τ .

= k2 − k1.
The aforementioned results can be extended to the general

n-dimensional case by replacing the denominator with the
matrix inverse, exponentiation of a and b with the corre-
sponding matrix exponentials, and using the identity matrix
in place of 1.

If the probability distribution of u(k) varies over time,
then wide-sense stationarity of the system is not guaranteed.
However, the mean and variance of x(k) can be bounded
from above.

Proposition 2: In the limit k → ∞, the absolute value
of the expectation and the variance of the above system are
upper-bounded by

∣∣∣ bµmax

1−a

∣∣∣ and b2σ2
max

1−a2 , respectively, where
µmax is the maximum mean, and σ2

max is the maximum
variance of the input random variables over all time-steps
k.

Proof: In the limit k → ∞, the absolute value of the
expected value of the analytic solution to the state (4) is

lim
k→∞

|E[x(k)]| = lim
k→∞

∣∣∣∣∣E
[
k−1∑
i=0

ak−i−1bu(i)

]∣∣∣∣∣
≤ |bµmax| lim

k→∞

∣∣∣∣∣
k−1∑
i=0

ak−i−1

∣∣∣∣∣
=

∣∣∣∣bµmax

1− a

∣∣∣∣ , (7)

where µmax is the maximum mean of u(k) over all time-
steps k. In the limit k →∞, the variance of (4) is

lim
k→∞

Var (x(k)) = lim
k→∞

Var

(
k−1∑
n=0

ak−i−1bu(i)

)

≤ b2σ2
max lim

k→∞
a2(k−1)

k−1∑
i=0

a−2i

=
b2σ2

max

1− a2
, (8)

where the second equality follows from the independence
of the random variable inputs, and σ2

max is the maximum
variance of u(k) over all time-steps k.

C. State Mean Analysis

We further investigate the mean state, denoted by x̄(k). It
is useful to analyze the mean state, since we often seek to
control the mean state. We define the system mean dynamics
with respect to x̄(k) as

x̄(k + 1) = Ax̄(k) +Bµ(z(k)), (9)

where z(k) is the controlled input in (2) and µ(z(k))
.
=

E[u(k)]. Fixing the controlled input z(k) = z0 and neglect-
ing uncontrolled inputs, i.e. w(k) = 0, the system can be
represented by

x̄(k + 1) = Ax̄(k) +B

∑J
j=1 uje

Vj∑J
i=1 eVi

, (10)

where Vj = β>j z0+β0j . By replacing x̄ with the equilibrium
x̄eq, we can calculate the system mean equilibrium in closed-
form and write

x̄eq = (I −A)−1B

∑J
j=1 uje

Vj∑J
i=1 eVi

, (11)

assuming that I − A is invertible, i.e. |λmax(A)| < 1.
Consequently, this equilibrium is also stable.

Under time-varying control inputs z(k), the utility function
is

Vj = g (z(k))
.
= β>j z(k) + β0j , (12)

where we again neglect uncontrolled inputs. This is a non-
linear system with respect to the inputs z(k). We therefore
linearize µ(z(k)) with respect to z(k) using Taylor series
expansion around za ∈ R. Without loss of generality, we
simplify the problem to the case where z(k) ∈ R. Then, we
have

µ(z(k)) ≈ µ(za) +

∂µ(z(k))

∂z(k)

∣∣∣∣∣
z(k)=za

 (z(k)− za)

= µ(za) + P (z(k)− za), (13)

where

P
.
=

 J∑
j=1

uje
Vj |za∑J

i=1 eVi|za

(
J∑

m=1

(βj − βm)eVm|za

) .
(14)



The new input matrix B̃ is then defined as

B̃
.
= B

[
P (µ(za)− Pza)

]
, (15)

which allows us to write the system representation as

x̄(k + 1) = Ax̄(k) + B̃

[
z(k)

1

]
. (16)

Local controllability of the system mean is determined by
investigating the column rank of the controllability matrix

C =
[
B̃ AB̃ A2B̃ · · · An−1B̃

]
. (17)

Finally, consider the dynamics of the mean of a closed-
loop system. This is the dynamics of the above system with
the control input

z(k) = Kx̄(k), (18)

where K is a control gain. The equilibrium of the afore-
mentioned closed-loop system is calculated by solving the
equation

(I−A)x̄eq
J∑
i=1

eβ
>
i Kx̄

eq+β0i = B

J∑
j=1

uje
β>
j Kx̄

eq+β0j , (19)

which can also be written as
J∑
j=1

((I −A)x̄eq −Buk) eβ
>
j Kx̄

eq+β0j = 0. (20)

Note that this equation is nonlinear in x̄eq, and can be
numerically solved via, for example, a Newton-Raphson
scheme. However, there are no a priori guarantees for the
existence or uniqueness of the solution.

III. CONVEX OPTIMIZATION FRAMEWORK

In this section, we present a convex optimization frame-
work for optimizing the controllable inputs, the attributes
z(k), of DCM.

A. Objective Function

We first consider the state regulation problem, where the
objective function is simply the sum of all expected states
over a specified time period T . Such objectives can find
multiple applications where the states represent errors we
seek to minimize. This objective function, although simple
in formulation, is not convex in the decision variables

Z =

←− z1 −→
...

←− zT −→

 ∈ RT×L.

We discuss how to circumvent this complication in the next
section. For brevity of expression, we consider the case
where there are one sole human actuator, i.e. N = 1, a
one-dimensional state, i.e. A = a, a ∈ R, and a time-varying
scalar B, i.e. B(m) = b(m), b(m) ∈ R for every m. Then,
the objective function becomes

f(Z) =

T∑
k=1

(
k−1∑
m=0

ak−m−1b(m)ū(m)

)
, (21)

where ū(m) is the expected value of the random variable
u(m). Under the discrete choice model framework and sub-
stituting in the extreme value error with logistic regression
for u(m), we obtain

f(Z) =

T∑
k=1

(
k−1∑
m=0

ak−m−1b(m)

∑J
i=1 eβ

>
mizmui(m)∑J

j=1 eβ
>
mjzm

)
,

(22)
where the attribute coefficient βmj is defined

βmj
.
= [βmj0 , βmj1 , · · · , βmjL ]> ∈ RL+1, (23)

and L is the number of controllable attributes. Note that
βmj0 contains utilities for alternative specific constants and
exogenous variables w(m) that are not controllable.

We can extend the objective function further by adding the
sum of variances of the states. Let f0 denote the objective
function with the added variance term. Then, we obtain

f0(Z) =

T∑
k=1

[
k−1∑
m=0

ak−m−1b(m)

(∑J
i=1 eβ

>
mizmui(m)∑J

j=1 eβ
>
mjzm

)

+ λk

(
k−1∑
`=0

a2(k−`−1)b2(`)σ2
`

)]
, (24)

where

σ2
`
.
=

J∑
i=1

eβ
>
`iz`∑J

j=1 eβ
>
`jz`

(
ui(`)−

∑J
p=1 eβ

>
`pz`up(`)∑J

q=1 eβ
>
`qz`

)2

,

(25)
and λk > 0 is the regularization factor associated with the
variance term.

B. Convexity Constraints
Each term inside the inner sum of the objective function

(22) can be interpreted as a posynomial, which is in general
not convex. Therefore, there is no guarantee that global op-
tima exist. We can however enforce convexity by restricting
the domain of the search for optima.

Theorem 1: Consider the simpler case where the number
of alternatives J = 2, i.e. ui(k) ∈ {0, 1} and we have a
binomial logit model. Also, assume the decision variables
zm are scalars for every time-step m ∈ {0, 1, . . . , T − 1}.
Then, the optimization problem that minimizes the objective
function f(Z) in (22) with respect to the attributes z(k) can
be formulated as a convex optimization problem if zm(βm0−
βm1) ≥ γm1−γm0, u0(m) = 0, and u1(m) = 1. Parameters
βm0 and βm1 are the attribute coefficients and γm0 and γm1

are the exogenous variables for the decision variables zm for
Um0 and Um1, respectively.

Proof: In the binomial logit model, the expected value
of the input random variable ū(m) is

ū(m) =
eβm1zm+γm1

eβm0zm+γm0 + eβm1zm+γm1
. (26)

Define β̃m
.
= βm0 − βm1 and γ̃m

.
= γm0 − γm1. Then, the

first derivative of ū(m) can be written

∂ū(m)

∂zm
=
−β̃mezmβ̃m+γ̃m(
1 + ezmβ̃m+γ̃m

)2 , (27)



and the second derivative of ū(m) can be written

∂2ū(m)

∂z2
m

=
β̃2
me

(zmβ̃m+γ̃m)

(1 + e(zmβ̃m+γ̃m))2

(
2e(zmβ̃m+γ̃m)

1 + e(zmβ̃m+γ̃m)
− 1

)
.

(28)
If ∂2ū(m)

∂z2m
≥ 0, ū(m) is convex in zm [19]. Observe that

∂2ū(m)

∂z2
m

≥ 0 ⇐⇒ 2e(zmβ̃m+γ̃m)

1 + e(zmβ̃m+γ̃m)
− 1 ≥ 0 (29)

if and only if

ezmβ̃m+γ̃m ≥ 1 ⇐⇒ zmβ̃m ≥ −γ̃m. (30)

Therefore, the necessary and sufficient condition for convex-
ity is

zm(βm0 − βm1) ≥ γm1 − γm0. (31)

The objective function f(Z) in (21) is convex with respect
to zm under the above constraint because a non-negative
weighted sum of convex functions is convex. Moreover, the
set of constraints (31) forms a convex set since it is affine in
zm. Consequently, we have a convex program and the proof
is complete.

Similar argument holds for the general case of J >
2, but the convexity constraint becomes cluttered in form
and results in loss of brevity. Furthermore, increasing J
monotonically decreases the size of the optimization domain,
which may raise concerns in terms of practicality.

C. Gradient of Objective Function

Now that we have established conditions under which the
above optimization problem becomes a convex optimization
problem, we derive the gradient of the objective function
so that efficient first-order oracle-based algorithms can be
applied to find solutions.

Proposition 3: For Z ∈ RT×L, the gradient of f(Z) is

∂f(Z)

∂Z
=

[
∂f(Z)

∂z0
,
∂f(Z)

∂z1
, · · · , ∂f(Z)

∂zT−1

]>
, (32)

where

∂f(Z)

∂zm
= −

(
T−m−1∑
i=0

ai

)
b(m)

β̃me
zmβ̃m+γ̃m(

1 + ezmβ̃m+γ̃m

)2 , (33)

where β̃m and γ̃m were defined above for every m =
0, . . . , T − 1.

Proof: We show by induction that the objective function
can be written

f(Z) =

T−1∑
m=0

(
T−m−1∑
i=0

ai

)
b(m)ū(m). (34)

For the base cases, let T = 1 and T = 2. Note that for
T = 1,

f(Z) = b(0)ū(0) =

0∑
m=0

(
0∑
i=0

ai

)
b(m)ū(m), (35)

and for T = 2,

f(Z) = b(0)ū(0) + ab(0)ū(0) + b(1)ū(1)

= (a0 + a1) (b(0)ū(0)) + a0 (b(1)ū(1))

=

1∑
m=0

(
1−m∑
i=0

ai

)
b(m)ū(m), (36)

where ū(m) is defined as above for all m = 0, . . . , T − 1.
As the induction hypothesis, assume that for T = M ,

f(Z) =

M−1∑
m=0

(
M−m−1∑
i=0

ai

)
b(m)ū(m) (37)

holds true. Then, for T = M + 1 we have

f(Z) =

M∑
m=0

(
M−m∑
i=0

ai

)
b(m)ū(m), (38)

and we are done. Because f(Z) is dependent on zm only
through ū(m), we can simply ignore all other terms that do
not have zm and substitute the expression we obtained for
∂ū(m)/∂zm in (27) into our expression for f(Z), which
yields ∂f(Z)/∂zm in (33) for every m = 0, . . . , T −1. This
concludes the proof.

D. Projected Gradient Descent Algorithm

Observe that with the aforementioned constrained domain,
the problem becomes a convex optimization problem. We
can apply the projected gradient descent [20] algorithm to
obtain the global minimum. The projected gradient descent
has updates of the form

z`+1 = ΠD

(
z` − α ∂f

∂Z
(z`)

)
, (39)

where D .
= {zk(βk0 − βk1) ≥ γk1 − γk0} is a closed,

convex subset of RT , α is the step-size carefully chosen,
∂f/∂Z(z`) is the gradient derived in Proposition 3, and ΠD
is the Euclidean projection operator defined as

ΠD(y)
.
= arg min

x∈D
‖x− y‖22. (40)

The convergence rate of this algorithm depends on the
complexity of the projection operator, which we do not
investigate further in this paper and is detailed in textbooks
such as [19].

IV. APPLICATION TO DEMAND RESPONSE

In this section, we apply the above convex optimization
framework of DSDCM to demand response (DR). In DR, an
electric power system operator requests a reduced level of
power consumption from specific DR participants. Examples
of DR participants include residential air conditioners, freez-
ers in grocery store distribution centers, or electric vehicle
charging stations. In many cases, the power system operator
is not able to directly command a power reduction from the
loads. Instead, the operator can indirectly adjust the prob-
ability of participation by providing (typically economic)
incentives. This application properly fits our framework,
where we seek to control the system trajectory where system
inputs are randomly generated from human choices, but
conditioned on incentive signals that we can provide.



A. System Dynamics and Discrete Choices

From (1), we extend the system to consider N human
actuators, or participants, in a DR contract, uniquely defined
by DCM. We then simplify the system by considering only
the total non-complied power load over all participants at
time-step k, which is represented by a one-dimensional state
x(k) ∈ R. The system is further simplified by defining the
system dynamics as the cumulative sum of the system inputs,
i.e. A = a = 1. We finally take the expectation of the system
dynamics to fit the aforementioned optimization framework.
The state mean dynamics is then captured by

x̄(k + 1) = x̄(k) +B(k)>ū(k), (41)

where B(k) is the vector of reducible power loads over all
participants at time-step k. The choice of the n-th participant
at time-step k is binary; it is either compliance (un(k) =
0) or non-compliance (un(k) = 1). We assume knowledge
of their baseline power consumption behavior and reducible
power over the operating hours. It is also assumed that the
parameters β(n)

m0 , β
(n)
m1 , γ

(n)
m0 , γ

(n)
m1 of the utility functions for

compliance and non-compliance are known and fixed for all
participants.

B. Formulation of the Optimization Problem

The objective of the service operator is to minimize non-
complied power loads while also minimizing price compen-
sations by determining a sequence of price compensations
zm for the participants. We only consider one controllable
attribute at every time-step k, i.e. Z ∈ RT . The optimization
problem is then formulated as

min
Z∈RT

T∑
k=1

(
k−1∑
m=0

B(m)>ū(m)

)
+ λ‖Z‖2 (42)

s.t. x(0) = x0 = 0

B(m) = [b1(m) b2(m) · · · bN (m)]
> ∈ RN×1

(43)

ū(m) = [ū1(m), ū2(m), · · · , ūN (m)]> ∈ RN×1

(44)

ūn(m) =
eβ

(n)
m1zm+γ

(n)
m1

eβ
(n)
m0zm+γ

(n)
m0 + eβ

(n)
m1zm+γ

(n)
m1

(45)

zm(β
(n)
m0 − β

(n)
m1) ≥ γ(n)

m1 − γ
(n)
m0 , (46)

where Z = [z0, z1, · · · , zT−1]>, bn(m) is the non-complied
power load of the n-th participant at time-step m, and λ is the
regularization parameter penalizing price compensations–i.e.
control effort.

The first term in the objective function (42) denotes the
expected sum of non-complied power loads and the second
term denotes the penalty of price compensations. Equation
(43) is the vector of non-complied power loads over N
participants at time-step m. Equation (44) represents the
vector of expected decisions of N participants at time-step
m and (45) denotes the expected decision value of the n-
th participant at time-step m. Parameter γ(n)

mi , i ∈ {0, 1},
is an exogenous uncontrolled variable, such as temperature.

Equation (46) is the inequality constraint that retains the
convexity of the optimization problem, as derived in Section
III-B. Note that the expected sum of states is convex in the
domain of zm that satisfies the constraints (c.f. III-B) and
that the L2 regularization norm is convex. The sum of two
non-negative convex functions is still convex, and thus we
have a convex optimization problem.

C. Simulation

We simulate a simple instance of the above case study.
We consider totals of 5 DR participants (N = 5) and 10
operating hours (T = 10). In the simulation, the optimization
problem was solved 100 times. Denote by Z∗ the solution to
the above optimization problem. At each trial, the parameters
in the discrete choice models of DR participants were fixed
and known, and exogenous attributes of DCM were sampled
from the standard normal distribution. Fig. 2 illustrates that
the optimal power compensations and the average reducible
power by DR over all participants are strongly correlated,
as expected. This result implies that accurate prediction of
reducible power is important in practice.

Fig. 3 implies that the expected non-complied power load
sum and price compensation are negatively correlated. The
correlation is linear; linear regression yields R2 value of
0.997. Z∗ is the solution to the optimization problem and
ū∗(m) is ū(m) evaluated with zm = Z∗.

D. Discussion

The formulated optimization problem can be extended in
several practically useful ways while retaining convexity. For
example, one can incorporate uncertainties in non-complied
power loads (43) and exogenous variables in DCM (45).
This implies that the above optimization problem can be
integrated with power load forecasting methods [21], [22]
and also exogenous variable forecasting, e.g. temperatures
[23]. These applications remain open for future work.
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Fig. 2. Simulation result for the case study where the total operating
hours T = 10 and total participants N = 5. Exogenous attributes γ(n)

mi ,
i ∈ {0, 1}, were sampled randomly from the standard normal distribution.
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Fig. 3. Trade-off between the sum of expected non-complied power
load and price compensation. The compensation penalty parameter was
set to λ = 10. The sum of expected non-complied power load and price
compensation are negatively and linearly correlated.

There are several limitations to the proposed optimization
problem. The convexity constraints (46) confine the optimal
solutions to reside within the constrained domain. The con-
strained domain may yield suboptimal solutions with respect
to the original unconstrained optimization problem. That
said, the convex optimization problem can be easily solved.
Therefore, retaining convexity by constraining the domain,
for many applications, is reasonable and acceptable. Another
limitation is that collecting reasonable amount of data to
model human behavior can be quite difficult. Consequently,
using DCM in the suggested framework could be disputable
in application settings where human decisions are hardly
observable. Nevertheless, this paper demonstrates how data
can be utilized, if available, which provides intuition on how
to address human behavior in dynamical systems.

V. CONCLUSION

This paper provided a first investigation of dynamical
systems with human actuation, where system inputs are
generated according to Discrete Choice Models (DCM). We
referred to such system as a Dynamic System with Discrete
Choice Models (DSDCM), defined this class of systems, and
provided mathematical analyses of the system equilibrium,
stability, and controllability. We also proposed an optimal
control framework of DSDCM that could be formulated as
a convex program. Finally, we applied the above convex
optimization problem to the demand response (DR) problem,
where the probability of DR participation was determined
by DCM. Future work consists of developing a control
scheme for DSDCM under uncertainties, and extending to
modeling human actuated system in stochastic hybrid system
framework.
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