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Abstract— This paper develops a nonlinear observer for
lithium-ion battery electrode particle stress and state-of-charge
(SOC) estimation using the single particle model (SPM) coupled
with mechanical stress. Particle fracture due to stress generation
is a critical mechanism causing capacity fade, and thus reducing
battery life. The stress sub-model captures stress developed
during lithium ion intercalation and deintercalation. State
estimation based on coupled SPM and mechanical stress model
is particularly challenging because the coupled model is given
by nonlinear partial differential equations (PDEs). We address
this problem by reducing the coupled model to a system of
nonlinear ordinary differential equations (ODEs), and then
apply nonlinear observer design methods. The key novelty of
this design is a nonlinear internal state estimation algorithm,
from which the internal stress can be monitored from current
and terminal voltage measurements only. Simulation studies
illustrate the performance of the proposed estimation scheme.

NOMENCLATURE

αj Charge transfer coefficient [-]
νj Poisson’s ratio [-]
Ωj Partial molar volume [mol/m3]
σj
h Hydrostatic stress [MPa]
c̃js Concentration change from initial value [mol/m3]
εjs Volume fraction of solid phase [-]
A Cell cross sectional area [m2]
aj Specific interfacial surface area [m2/m3]
c0e Li-ion concentration in electrolyte phase [mol/m3]
cjs,max Max Li-ion concentration in solid phase [mol/m3]
cjss Li-ion concentration at particle surface [mol/m3]
cjs Solid phase lithium-ion concentration [mol/m3]
Dj

s Solid phase diffusion coefficient [m2/sec]
Ej Young’s Modulus [GPa]
F Faraday’s constant [C/mol]
I Applied current [A]
ijn Particle surface current density [A/m2]
j Negative (-) or positive (+) electrodes [-]
kj Charge transfer reaction rate [A·m2.5/mol1.5]
Lj Electrode thickness [m]
R Universal gas constant [J/mol-K]
r Radial coordinate [m]
Rf Contact film resistance [Ω]
Rj

s Particle radius [m]
T Battery cell temperature [K]
U j Open circuit potential [V]
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I. INTRODUCTION

Lithium-ion (Li-ion) batteries have drawn significant re-
search attention, owing to their various benefits for energy
storage applications. Nonetheless, degradation and safe op-
eration of Li-ion batteries become critical as the usage of
Li-ion batteries gets ubiquitous. To address this problem,
a battery management system (BMS) implements real-time
control and estimation algorithms to enhance performance
while improving safety [1]. One of the important functions
of a BMS is battery state-of-charge (SOC) and state-of-
health (SOH) estimation. However, SOC and SOH estimation
is intricate due to (i). limited measurements, (ii). complex
electrochemical-thermal-mechanical physics, and (iii). lim-
itations of control theory - especially for nonlinear partial
differential equation models.

Battery models are typically used in a BMS for estimating
internal states based on measured current, voltage and tem-
perature [2], [3]. High-fidelity electrochemical models, e.g.
[2], capture the underlying physical and chemical processes,
yet their mathematical structures are often complicated for
control/estimation design. This motivates model reduction
of full order electrochemical models. Among the numerous
reduced order models, the single particle model (SPM) is
the most commonly used. The SPM is derived from the
full order electrochemical model, and hence it inherits some
important properties. Each electrode of the SPM is assumed
to be a single spherical particle and the current distribution
is uniform across both electrodes. Moreover, the electrolyte
concentration is assumed constant in space and time [3].
Various SOC/SOH estimation technique has been developed
based on the SPM. A Kalman filter was designed for SOC
estimation in [4], [5]. Moura et al. created an adaptive
PDE observer for combined SOC and SOH estimation in
[6]. An important drawback of the SPM is that it does not
accurately predict voltage at high C-rate, since the electrolyte
dynamics are neglected. In order to compensate this, models
that combine the SPM with other components are proposed,
e.g. electrolyte dynamics [7]–[9].

In recent years, battery SOH has gained increased focus
due to concerns over battery safety and life. Numerous
factors contribute toward battery aging, e.g. capacity fade
and resistance growth. See [10] for a particularly excellent
review. A crucial capacity fade mechanisms is particle frac-
ture due to intercalation and deintercalation-induced stress
[11]. The stress field generated inside the particles affects the
energy of the subsequent intercalated lithium ions, leading
to a modified diffusion phenomenon from the stress-free



scenario [12]. A particle can fracture if the generated stress
exceeds the yielding stress of the material [13], which
depends on both radial and tangential stresses [14], [15].
This phenomenon motivates the development of models
to describe stress influences. Seminal work conducted by
Christensen and Newman created mathematical models to
capture volume expansion and contraction during lithium
insertion [16]. Later, models that combine the SPM with
diffusion-induced stress was introduced in [17], relying on
an analogy to thermal stress. An interesting BMS application
of these models is introduced in [13], where the authors
performed optimal charging under stress constraints.

In summary, there now exists a keen interest to address
the state-of-health estimation problem, and recent model
developments on diffusion induced-stress can be enabling.
However, no work currently exists on state estimation with
coupled SPM-stress models. In the present work, we design
a nonlinear observer based on this model to estimate the
electrode particle stress profile and bulk SOC from current
and voltage measurements. The internal stress developed
inside the electrode particle can be monitored in real time to
ensure safe operation.

The remainder of the paper is organized as follows:
Section II presents the battery single particle model with
intercalation-induced stress. Section III discusses model
reduction, state-space formulation, and nonlinear observer
design with stability analysis. The estimator is demonstrated
via simulation studies in Section IV. Conclusions are drawn
in Section V.

II. MODEL DESCRIPTION

Figure 1 portrays the concept of the SPM. In the full
order electrochemical model [18], lithium ion transports in
the solid and electrolyte phase. The key idea of the SPM
is that the solid phase of each electrode can be modeled
as a single spherical particle, and lithium ion concentration
in electrolyte phase is assumed to be constant in space and
time [6]. The SPM specifically does not include mechanical
responses, whose effect on diffusion becomes significant
when the material has high modulus and high partial molar
volume. The model equations for the coupled SPM and
mechanical stress presented here closely follow the paper
by Zhang et al. [17].

For the case of a spherical particle, the intercalation of
lithium ions in the solid phase is modeled as a process due
to diffusion and stress generation, given by
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Fig. 1: Sketch of the Single Particle Model concept

and time to hydrostatic stress in electrode j. The stress tensor
consists of radial stress σr and tangential stress σt:
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The hydrostatic stress is a weighted sum of σr and σt:
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Substituting (5) into (1) yields
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where θj = (Ωj/RT )[(2ΩjEj)/9(1 − νj)] is a constant
depending on electrode material mechanical properties. The
boundary condition is obtained by substituting (5) into (2):
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where the current density ijn is proportional to the input
current by the relation ijn = ±I/ajALj . For well-posedness,
the Neumann boundary condition at r = 0 is required:

∂cjs
∂r

(0, t) = 0. (8)

Therefore, the governing equations for the solid phase
lithium ion concentration with intercalation-induced stress
is described by (6)-(8).

The output terminal voltage is a function of solid phase
surface concentration, electric overpotential, and Butler-



Volmer kinetics:
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where the exchange current density ij0 is
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cjss(t) = cjs(Rj , t). (11)

U+(·) and U−(·) in Eq. (9) are the equilibrium potentials of
positive and negative electrode material as functions of solid
phase surface concentrations.

An important property of the coupled SPM-stress model is
given by the following proposition, which will be leveraged
for model reduction in the next section.

Proposition 1 (Conservation of solid-phase lithium). The
moles of lithium in the solid phase is conserved. Mathemat-
ically, d

dt (nLi(t)) = 0 where
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∑

j∈{+,−}
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4
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Proof: The proof is straight-forward. Differentiate (12)
with respect to t, substitute (6), apply integration by parts
and the boundary conditions (7) and (8).

III. STATE OBSERVER DESIGN

This section presents observability analysis, model re-
duction, and the nonlinear observer design procedures. The
convergence of the proposed estimation scheme is mathe-
matically analyzed by Lyapunov stability theory.

A. Observability and Model Reduction

The observability of (6) (both anode and cathode dynam-
ics) from voltage measurements (9) in the linear sense can
be checked by the following procedure [19]:

1) Approximate PDEs with ODEs using finite difference
method

2) Linearize the nonlinear ODEs about the states at the
equilibrium to produce matrix Al

3) Linearize the nonlinear output function about the states
at the equilibrium to produce matrix Cl

4) Compute the observability matrix for the pair (Al, Cl),
and check the rank

The above calculation reveals that the PDEs given by (6)
with boundary conditions (7)-(8) is not observable from the
voltage measurements. Hence, we adopt the model reduction
technique from [6], where the cathode diffusion dynamics are
approximated by its equilibrium. This reduction produces a
reduced system where the states are locally observable in
the linear sense. The equilibrium of the cathode states can
be calculated using the property in (12):
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)
, (13)

and the output function (9) can be adjusted accordingly:
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where γ = −(ε−s L
−)/(ε+s L
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+
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+A). The
reduced system is then modeled by diffusion equation (6)
with boundary conditions (7)-(8) for the anode (c−s -system),
and output function (14). Local observability in the linear
sense for the reduced system can be verified by the procedure
introduced previously.

B. State-Space Model Formulation and Analysis

The central difference method is used for discretizing
the PDEs into ODEs. Henceforth, we will only consider
dynamical equations and boundary conditions for anode, and
let c = c−s , D = D−s , Rs = R−s , a = a−, L = L−, and
θ = θ− to simplify notation. Suppose N nodes are used for
discretization in the r direction, and ∆r = Rs/N . Define
the time constant

τ =
D

(∆r)2
. (15)

The system of ODE for the internal nodes of the anode
diffusion dynamics are

∂ci
∂t

=τ

[
(1 + θci)(ci−1 − 2ci + ci+1)

+

(
2

i
+ θ

ci+1 − ci−1
2

+
2θ

i
ci

)(
ci+1 − ci−1

2

)]
,

(16)

where i ∈ {1, 2, · · · , N−1}. At the right boundary point i =
N , the method of imaginary points is utilized to discretize
the governing equations:
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Remark 1. Equation (33) in [17] provides a particular PDE
for solving lithium concentration at the center of the sphere
considering the singularity at r = 0. However, including
this equation in the state-space model leads to unobservable
condition. We tackle this problem by simply ignore this
equation and set c0 = c1 based on forward difference method
at r = 0, where the dynamics of c1 is expressed by (16). In
this way, the observability in the linear sense is guaranteed.

The state-space model can be written in the following form
based on (16) and (17):

ẋ = Ax+ f(x, u),

y = h(cN , u), (18)



where the states x =
[
c1 c2 ... cN

]T ∈ RN , input
u = I ∈ R is the applied current, output terminal voltage
y = h(xN , u) = VT ∈ R, nonlinear function f(x, u) =[
f1(x) f2(x) ... fN−1(x) fN (x, u)

]T ∈ RN , and ma-
trix A ∈ RN×N . Following the derivation from (16), we have
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and
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The state estimation problem is to design an observer
system to reconstruct the unknown states x in (18) with the
knowledge of output measurement y and input u.
Assumption 1. It has been verified by numerous literature,
e.g. [20], that the nonlinear output function h(cN , u) is
strictly increasing with respect to the state cN . Therefore we
conclude that for any given input u and any two different
cm, cn ∈ [0, c−s,max], the following expression holds:

sgn(h(cm, u)− h(cn, u)) = sgn(cm − cn), (22)

where operator sgn(·) is the signum function.
Remark 2. Let F (x) =

[
f1(x) f2(x) ... fN−1(x)

]T
.

It is evident that F (x) is continuously differentiable with
respect to the states, a sufficient condition for Lipschitz
continuity [20]. For any two vectors z1, z2 ∈ RN−1, where

each entry of z1 and z2 is in [0, c−s,max], a Lipschitz constant
can be obtained by computing the infinity norm of ∂F/∂x,
i.e., K = ‖∂F/∂x‖∞, so that

‖F (z1)− F (z2)‖ ≤ K‖z1 − z2‖. (23)

Remark 3. Note that fN (cN−1, cN , u) in (21) is bounded
within the compact operating interval cN−1, cN ∈ [0, c−s,max]
as long as the current density in is finite. Mathematically,
for any two points (cN−1, cN ), (c∗N−1, c

∗
N ) ∈ [0, c−s,max] ×

[0, c−s,max],

|fN (cN−1, cN , u)− fN (c∗N−1, c
∗
N , u)| ≤M, (24)

where 0 < M <∞.

C. Nonlinear Observer Design

In this section, we detail the observer design for model
(18) utilizing the equivalent control concept. As one may
observe, mathematically, the input u only appears in the
dynamics of cN . We first seek to estimate the state of the
forced cN subsystem, and the estimation of rest of states c1 to
cN−1 is based on an autonomous subsystem with estimated
cN being the output signal for those subsystems.

We separate state x into two parts, x =
[
ξT cN

]T
, where

ξ =
[
c1 c2 · · · cN−1

]T
, and consider the following

observer structure:
˙̂
ξ = Aξ̂ + F (ξ̂) + L∗(t)v, (25)

˙̂cN = τ
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N
ĉN−1 − τ
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N
ĉN + τθf̂N + L · sgn(y − ŷ)

(26)
ŷ = h(ĉN , u), (27)

where scalar observer gain L > 0 and time-varying observer
gain vector L∗(t) ∈ RN−1 are to be designed. The estimated
states ξ̂ =

[
ĉ1 ĉ2 · · · ĉN−1

]T
, and A is the matrix A

excluding the last row and last column. v is the filtered
version of L·sgn(y−ŷ). Furthermore, f̂N , f(ĉN−1, ĉN , u).

D. Observer Convergence Analysis

We first present the convergence analysis of the observer
(26) in the following Lemma.

Lemma 1. Consider the surface concentration dynamics
(17) and estimated surface concentration from observer (26).
If the scalar observer gain L verifies

L > τ
N − 1

N
|c̃N−1|max + τθM, (28)

where |c̃N−1|max is the maximum absolute error of cN−1 es-
timation, then the estimation error c̃N = cN − ĉN converges
to zero in finite time.

Proof: Consider the estimation error c̃N = cN − ĉN .
Subtracting (26) from (18), and the error dynamics can be
written as:

˙̃cN = τ
N − 1

N
c̃N−1−τ

N − 1

N
c̃N+τθf̃N−Lsgn(c̃N ), (29)



where f̃N = fN (cN−1, cN , u)− fN (ĉN−1, ĉN , u). Note that
we utilize the monotonicity property of y (see Assumption
1) to substitute sgn(ỹ) with sgn(c̃N ). We analyze error
dynamics (29) using the Lyapunov function V1 = 1

2 c̃
2
N , and

the derivative of V1 along the trajectory of c̃N is

V̇1 = c̃N ˙̃cN
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(
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(
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)
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If the gain L is chosen high enough such that

L > τ
N − 1

N
|c̃N−1|max + τθM, (31)

then we have that V̇1 ≤ 0. Therefore it can be concluded
that c̃N → 0 in finte time [21], and the sliding mode is
attained. At the sliding mode, we have c̃N = 0 and ˙̃cN = 0.
Substituting these expressions in (29), we can write

v = τ
N − 1

N
c̃N−1 + τθf̃N , κ(t)Cξ̃, (32)

where

κ(t) =τ
N − 1

N
+ τθ
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2N
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1

2
τθ

in ·∆r
D · F · (1 + θcN )

+
1

4
τθ(cN−1 + ĉN−1), (33)

C =
[
0 0 · · · 0 1

]
∈ R1×(N−1). (34)

Remark 4. Note that the coefficient κ(t) is a time-varying
function. We can re-write L∗(t) as L∗(t) = L†/κ(t), where
L† ∈ RN−1 is a scalar vector, to cancel the time-varying
term κ(t) in v. In this way, the design parameter in observer
(25) becomes time-invariant vector L†.

The following theorem provides the convergence condition
of the observer (25) and (26).

Theorem 2. Consider the plant model (18) with state
observer (25) and (26), where function F (X) is Lipschitz
continuous with Lipschitz constant K. If there exists gain
vector L† and a positive definite matrix Q such that

(A− L†C)T + (A− L†C) = −Q, (35)
λmin(Q) > 2K, (36)

where λmin(Q) denotes the minimum eigenvalue of Q, along
with the properly selected scalar gain L as stated in Lemma
1, then the state estimation error c̃N converges to zero in
finite time and ξ̃ = ξ − ξ̂ converges to zero exponentially.

Proof: The convergence of observer (26) has been
proved in Lemma 1. Subtracting (25) from (18), the esti-
mation error dynamics of ξ̃ = ξ − ξ̂ can be written as

˙̃
ξ = (A− L†C)ξ̃ + F (ξ)− F (ξ̂). (37)

Choose the Lyapunov function candidate V2 = ξ̃T ξ̃, and the
derivative of V2 is

V̇2 =
˙̃
ξT ξ̃ + ξ̃T

˙̃
ξ

= ξ̃T [(A− L†C)T + (A− L†C)]ξ̃ + 2ξ̃T [F (ξ)− F (ξ̂)]

= −ξ̃TQξ̃ + 2ξ̃T [F (ξ)− F (ξ̂)]

≤ −λmin(Q)‖ξ̃‖2 + 2‖ξ̃‖ ·K‖ξ̃‖
= −ξ̃T (λmin(Q)− 2K)ξ̃. (38)

Define R , λmin(Q)− 2K, and rewrite Eq. (38) as

V̇2 ≤ −R · ξ̃T ξ̃ ≤ −RV2. (39)

Integrating Eq. (39) over an closed interval
[
t0, t

]
shows that

ξ̃ has exponential decay according to

‖ξ̃(t)‖ ≤ ‖ξ̃(t0)‖e− 1
2R(t−t0), (40)

from which we conclude that the estimation error ξ̃ ap-
proaches zero exponentially as t→∞.

IV. SIMULATION RESULTS AND DISCUSSION

We present numerical simulation results that demonstrate
the observer performance. The parameters used in the sim-
ulation studies are adopted from the DUALFOIL simulation
package that is publicly available [22]. The mechanical
parameters for graphite anode are En = 60GPa, νn = 0.25,
and Ωn = 4.926 × 10−6m3/mol [12]. We illustrate the
observer performance by initializing the state estimates at
incorrect values.

We apply an electric vehicle-like charge-discharge cycle to
imitate real-world driving scenarios. This input current signal
is generated by concatenating two Urban Dynamometer
Driving Schedule (UDDS) drive cycles, which is a highly
transient input with large C-rate magnitude. Figure 2 portrays
the evolution of current, lithium ion surface concentration,
voltage, and bulk SOC in the plant simulation generated by
(6), as well as their estimated values from nonlinear observer
(25)-(27). It also provides the plot of maximum radial and
tangential stresses over time, which are located at the center
and the surface of the particle, respectively [15], [17]. The
lithium ion surface concentration is initialized with 15%
error. The bulk SOC used in this work is defined as the
normalized average over spherical coordinates:

SOC(t) =
3

(R−s )3c−s,max

∫ R−
s

0

r2c−s (r, t)dr. (41)

With an appropriate choice of gain as presented in Section
III-C, the estimates effectively converge to their true values.
It is worth mentioning that the internal radial stress can be
monitored in real time to prevent it from getting higher than
the yielding stress of the electrode material.

V. CONCLUSION

This paper presents a nonlinear observer for mechanical
stress estimation in lithium-ion batteries, along with solid
phase lithium ion concentration - i.e. state-of-charge. A key
feature is utilizing a single particle model coupled with
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Fig. 2: Evolution of state estimation for UDDS×2 charge-discharge
cycle. The estimates of states are initialized with incorrect values.

an intercalation-induced stress model. A model reduction
technique is applied to express the equilibrium of the cathode
states in terms of anode states, to achieve observability. The
reduced system is further approximated by nonlinear ODEs
using the finite difference method. A nonlinear observer
based on the equivalent control concept is proposed for
estimating the states from current and voltage measurements.
The observer’s convergence is mathematically proven using
Lyapunov stability theory. Real-time monitoring of internal
mechanical stress enables a battery management system to
apply optimal control methods that protect against particle
fracture, and consequently extend battery life. Simulation
study demonstrates observer performances.
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