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Abstract— Planning the long-term expansion of a power sector 

requires anticipating future technology, fuel costs, and new 

carbon policies. Many state-of-the-art models rely on exogenous 

data for cost and performance projections where the inherent 

uncertainty is either ignored or addressed only with sensitivity 

analysis and scenarios. For the few models accounting for 

uncertainty, the transition from the research field to policy 

making has not occurred because of important practical 

barriers in the latter field: higher reliance on time-tested 

models, impossibility to constantly adopt new models, run-time 

issues. To streamline this process, we present a new modular 

two-step methodology, based on mean-variance optimization, to 

help policy makers adjust for risks on costs their findings from 

current cost-minimizing tools, while sparing them the hurdles of 

adopting a new model. To illustrate this, we refine the SWITCH-

China least-cost electricity pathway by minimizing its cost 

uncertainty. 

Index Terms— China, Planning, Optimization, Power Sector, 

Uncertainty 

I. INTRODUCTION (HEADING 1) 

The ability of the world to meet its growing electricity needs 

while reducing carbon emissions will depend on countries’ 

capacity to forecast and plan optimal actions to take now and 

in the next decades. Given the large numbers of parameters at 

stake, multiple modeling tools have been developed to help 

governments, policy makers, utilities, and investors plan and 

optimize long-term expansion of the power sector. 

Traditional linear programming (LP) cost-minimization tools 

give insight into the energy sources to be considered. 

However, among a set of possible expansion trajectories for 

the future electricity mix with similar yet not identical costs, 

LP models choose least-cost options without accounting for 

the probability that the projected costs might not match actual 

future costs. Because of the inherent uncertainty on 

exogenous cost projections, the stability of the costs, i.e. the 

affordability of the mix, is not ensured by such cost-

minimizing tools. Yet, policy makers seek to include in their 

decision-making the likelihood that future costs would remain 

close to projected costs should the scenario be implemented. 

In this case, optimizing an electricity portfolio is a trade-off 

between the minimization of expected cost: E[c], and the 

minimization of uncertainty, or “risk’, on costs: σ[c]. The best 

LP tools currently used by policy makers are, in fact, 

complex, joint optimization efforts, where often the variables 

of interest (such as reliability, cost effective emissions 

minimization) operate at cross purposes.  It is critical for 

energy planners to not only receive advice from experts, but 

to be able to understand the basis and implications of those 

recommendations. Creating a tool that can be used to 

simultaneously minimize costs and risk on costs would surely 

prove to be a valuable asset for long-term planning of the 

energy mix. However, given the myriad of existing models 

presenting various – sometimes very similar – approaches for 

planning the future electricity mix, and the adaptation time 

that is required to transition the new modeling tool from a 

research-based usage to a policy-making usage, decision 

makers tend to favor time-tested tools over newer, more 

efficient models. Unfortunately, the majority of those time-

tested tools do not account for risks. In this paper, we propose 

a new approach to account for risk aversion while allowing 

decision makers to use cost minimization tools they are 

familiar with. 

A common way to address uncertainty in energy 

planning modeling tools is the use of scenarios [1], such as 

current versions of the SWITCH model [2] [3] [4], or 

sensitivity analysis, such as in the HOMER model [5]. The 

amplitude of these approaches is limited as it relies on human 

imagination, often qualitative rather than quantitative (for 

e.g., “high gas price” and “low gas price” scenarios). There 

exist two methods to account for risks that combine well with 

‘static programming’ tools of used by policy makers: 

repeated random sampling (e.g. Monte Carlo simulations) and 

portfolio management. The former is based on simulations 

while the latter is based on optimization. The main caveat of 

random sampling is the impossibility to ensure that all 

possible, rare but high-consequence events have been 
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simulated. This is related to the problem of induction 

illustrated by the inference: Every swan that I have ever seen 

is white, therefore there is no black swan [6].  Another related 

issue is the large number of outcomes from the simulations 

leaving policy makers with a range of options and possible 

futures almost as broad as the initial set of options.  

Mean-variance optimization poses some reliability challenges 

too, as it often assumes no uncertainty on the uncertainty: the 

standard deviation is assumed to be known. While this can be 

problematic in branches of finance subject to a selection bias 

[7], centralized long-term expansion planning of a national 

electricity mix is usually less subject to this bias. Past data 

that energy planners rely on to create cost projections is 

comprehensive, based on existing data such as historical 

market prices for fuel and past construction and operation 

costs for energy systems. While the average values of this 

past data cannot be considered as an accurate prediction of 

future costs, the typical scope embraced is usually old and 

large enough to represent an accurate landscape of the range 

of future possibilities. For these reasons, we choose mean-

variance optimization over random sampling in the present 

study.  

Policy makers could comprehensively plan 

expansion of the electricity mix through two successive steps. 

The first one, already performed by most energy planners, 

involves the identification of least-cost installed capacity or 

generation levels for various power sources or technologies, 

via a thorough linear cost-minimization with an existing 

modeling tool. The second step, proposed in this study, 

consists in allowing slight deviations around each energy 

source generation levels previously identified. By setting a 

sufficiently narrow limit for allowed deviations – i.e. a 

‘reliability net’ –, this second step refines results of least-cost 

electricity mixes obtained from complex cost-minimizing 

modeling tools by confronting them against a simpler risk-

minimization model, while preserving the grid reliability 

ensured by the LP tool.  

China’s power system is an ideal laboratory as the 

country presents a centrally-planned power sector facilitating 

the optimization of the mix at the national scale. Moreover, 

the extent of China’s future demand is such that adapting the 

electricity supply will require novel, unconventional 

technologies, for which taking risk on costs into account is 

crucial. 

The second section of this paper presents the methodology 

on risk calculation and the quadratic program formulated to 

perform the mean-variance analysis. The third section is a 

case study of the two-step optimization process applied to the 

Chinese power sector. In this last section, we use the 

SWITCH model as a proxy for advanced linear programming 

cost-minimizing models used by policy makers.  

 

From its original purpose in the field of finance [8], 

modern portfolio theory (MPT) has been extended to other 

contexts. The application of MPT to energy portfolio 

management can be traced back from 1976 [9], however it has 

only significantly expanded these last years [10] [11] [12] 

[13], together because of increasing environmental awareness 

and subsequent regulations, novel technologies resulting in 

uncertain risk and return, and deregulation of electricity 

markets. However, loose assumptions lead to important 

discrepancies between Pareto optima modeled with different 

beliefs, illustrated for example by comparing these two 

analyses performed on the Chinese power sector [14] [15]. 

The novelty of the current study lies in several areas. First, 

we propose a high-fidelity method as we constrain the risk-

minimization analysis in order to preserve the grid reliability 

ensured by the high-resolution linear-program model. 

Second, we use several hundred thousand historical hourly 

capacity factors for central PV and wind turbines across 

China in order to assess the magnitude of the uncertainty 

resulting from generation intermittency. Third, as our study 

focuses on improving the quality of energy planning from a 

policy making perspective, we create an original two-step 

process ensuring easy adoption of the tool by policy makers. 

 

II. METHODOLOGY 

A. Risk factors 

Mean-variance portfolio analysis uses the variance of 
return or cost projections as a metric to quantify the impact of 
uncertainty on the objective. Here, we assume that cost 
probabilities are normally distributed. Therefore, cost 
projections found in the literature correspond to the mean of 
the probability distribution. Variances are either obtained from 
the literature or calculated based on multiple data. 

The following factors of uncertainty are taken into 

account: overnight costs (σovernight); uncertainty resulting from 

fuel price volatility and future carbon tax (σfuel); fixed 

operation and maintenance costs, including potential future 

safety regulations for nuclear power (σO&M); intermittency of 

wind and solar power output (σintermittent) 

While the risk on costs resulting from short-term 

intermittency of variable renewable energies have not, to the 

best of our knowledge, been covered in the existing literature, 

here we present a simple methodology to calculate the 

standard deviations resulting from the variability renewable 

energies. For a given region, we use capacity factors for solar 

PV and wind turbines from historical data. In order to 

translate these into risk on costs, we make the assumption that 

intermittency from technology t must be backed by peaker 

plants, typically gas combustion turbines. : 

The standard deviations for the cost components 

(overnight costs, fuel costs, fixed O&M costs, intermittency 

costs) are aggregated following the Bienaymé formula.  

Levelized Cost of Electricity (LCOE) per energy 

technology per year is calculated using cost projections, 

based on the EIA formula [16]. A standard deviation of 

LCOE per technology per year, expressed in $/MWh, is 

calculated. These values are the components of the Hessian 

matrix. 

 

B. Quadratic-programming model description 

The program formulated in this study is a quadratic 

program (QP) with linear constraints. Since it is designed as a 
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module to be used after a thorough cost-minimization, it must 

not be redundant to the first step. The LP used in the first step 

is assumed to optimize transmission lines, storage capacity, 

and hourly dispatch of the electricity grid in order to ensure 

reliability of the grid; therefore these components are not 

taken into account in the QP. The ‘reliability net’ within 

which the QP is allowed to minimize risk is outlined by 

boundaries of  15% around the generation levels of each 

energy technology in the least-cost portfolio calculated by the 

LP. We assume that a change of 15% in new capacity does 

not lead to major siting issues, eliminating the need to 

account for additional infrastructure/transmission costs in the 

QP than planned in the LP. 

Our objective is to minimize the system’s total variance 

on cost. The subscript -S in the constraints designates the 

outputs of the cost-minimization model, used as inputs in the 

risk-minimization model. 

 

 min
1

2
𝑥𝑇𝑄𝑥 (2) 

With:   

 𝑥 = (𝑥𝑖) ∈ ℝ𝑛×1 (3) 

 𝑄 =  (𝜎𝑖 × 𝜎𝑗 × 𝜌𝑖𝑗) ∈ ℝ𝑛×𝑛  (4) 

 

Subject to: 

∀𝑖, 𝑥𝑖 ≥ 0 (5) 

Reliability net: ∀𝑖, 0.85𝑥𝑖−𝑆 ≤ 𝑥𝑖 ≤ 1.15𝑥𝑖−𝑆 (6) 

Carbon emissions are capped at LP level: ∑ 𝑒𝑖 ×𝑛
𝑖=1

𝑥𝑖 ≤ ∑ 𝑒𝑖 × 𝑥𝑖−𝑆
𝑛
𝑖=1  (7) 

Preserving intermittency back-up (gas plants here): 
𝑥𝑤𝑖𝑛𝑑+𝑥𝑠𝑜𝑙𝑎𝑟

𝑥𝑔𝑎𝑠
≤

𝑥𝑤𝑖𝑛𝑑−𝑆+𝑥𝑠𝑜𝑙𝑎𝑟−𝑆

𝑥𝑔𝑎𝑠−𝑆
 (8) 

Annual demand: ∑ 𝑥𝑖 =𝑛
𝑖=1 ∑ 𝑥𝑖−𝑆

𝑛
𝑖=1  (9) 

Total cost: ∑ 𝑐𝑖 × 𝑥𝑖 = 𝑇𝐶𝑛
𝑖=1   (10) 

TABLE 1 NOMENCLATURE 

Symbol Definition 

n Number of technologies 

xi Power generation from technology i (MWh/y)  

x Vector of xi 

σi Standard deviation of LCOE for technology i ($/MWh) 

ρij Correlation coefficient between technologies i and j 

ci LCOE of technology i ($/MWh) 

TC Total power production cost ($/y) 

Q Covariance (or Hessian) matrix: Q = 2*[ ρij×σi×σj] 

A Inequality constraint matrix (left-hand side) 

b Inequality constraint matrix (right-hand side) 

Aeq Equality constraint matrix (left-hand side) 

Beq Equality constraint matrix (right-hand side) 

ei Intensity of CO2 emissions from technology i (tCO2/MWh) 

  

III. CASE-STUDY: CHINA’S ELECTRICITY MIX EXPANSION 

PLANNING 

We apply the two-step methodology to the example of 
China’s power sector. 

A. SWITCH-China cost minimization 

SWITCH is a linear programming tool used to simulate 
least-cost generation, transmission and storage capacity 
expansion pathways of the power sector under various policy 

and cost scenarios. Several versions of SWITCH exist 
including one for China [2]. Here, the SWITCH model is used 
as a proxy for cost-minimization models used by policy 
makers. It combines high spatial and temporal resolutions, and 
optimizes long-term capacity expansion and hourly generation 
dispatch simultaneously, ensuring a reliable operation of the 
grid on both small and large time scales. Investment decisions 
in SWITCH are divided into four ten-year long periods: 2015-
2024, 2025-2034, 2035-2044 and 2045-2054. 

For this study, besides SWITCH’s usual constraints such 

as ensuring hourly matching of load and supply, we use a 

Business-As-Usual scenario with a carbon cap from 2030 on, 

as announced by President Xi Jinping in November 2014 

[17]. We use SWITCH to obtain the corresponding least-cost 

expansion pathway for the power sector over the 2015-2050 

period.  
SWITCH accounts for both existing (before 2015) and 

new plants, adding up to a total of 9 technologies. For 
practical reasons, the risk minimization is only performed over 
technologies whose total installed capacity is increased over 
time in the SWITCH simulation. These technologies are coal 
steam turbine, gas combustion turbine, wind turbine, solar PV, 
nuclear PWR and, from 2035 on, coal steam turbine with 
carbon capture and storage (CCS). The share of ‘new 
capacity’, added by SWITCH, is shown on Figure 1 for each 
of the six technologies. 

 
Figure 1 Share of average electricity generated over time from the six 

technologies in the least-cost energy mix trajectory (SWITCH optimization) 

Following this optimization, the resulting annual electricity 

generation per technology in the least-cost portfolio is used as 

input in the QP.  
Values for expected costs come from [2]. Values for 

standard deviations on cost components of generation 
technologies are found in [3] [10] [13] [15] [16] [18] [19] [20] 
for different countries. These values are updated and adapted 
to the case of China. Standard deviations from wind and solar 
intermittency are calculated based on average capacity factors 
from the SWITCH-China model. We assume that risks are 
independent except for fuel costs where covariance values are 
non-null, consistently with the literature. Projections for future 
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carbon price trajectories range from $0 and $115/t-CO2 in 
2050 [18]. 

Hereafter, the term ‘portfolio’ (and corresponding costs and 

risks) designates the average annual power generation level 

of each of the six technologies mentioned above. It does not 

include generation from technologies not developed after 

2015. The terms ‘SWITCH’, ‘LP’, and ‘cost minimization’ 

designates the first step of the methodology, while ‘QP’ and 

‘risk minimization’ are used to represent the second step. 

 

B. Risk minimization of portfolio in year 2030 

First, the QP risk minimization is applied to the year 2030 

only. Average annual electricity demand that must be met by 

the six technologoes in 2030 is projected to be 4300 TWh. 

The SWITCH least-cost portfolio, Ps, characterized by 

𝑥2030, presents an average electricity production cost of 

$72.60/MWh and a risk on cost of $15.80/MWh. Its carbon 

emissions for the year 2030 add up to 2.24*1009 tons. By 

allowing the generation level from each technology to vary 

within plus and minus 15% around their SWITCH least-cost 

generation levels, the QP identifies least-risk portfolios, 

subject to the set of constraints presented in the previous 

section. For a given costs the corresponding energy mix with 

lowest risks is called the Pareto efficient portfolio, or efficient 

portfolio. In Figure 2, the Pareto efficient frontier (left branch 

of the black curve) correspond to all efficient portfolios with 

costs ranging from $72.63/MWh to $73.47/MWh. 

 

 

Figure 2 Feasible portfolios and frontier of Pareto efficient portfolios, 
displayed by expected LCOE and standard deviation of LCOA, for the year 

2030 (QP optimization). Red-cross represents the SWITCH portfolio PS. Pie 
charts represent generation shares for the six technologies in portfolios PS, P1 

and P2.  

  We distinguish two notables Pareto-optimal portfolios: 

P1 and P2. P1 is the least-cost efficient portfolio, presenting 

slightly higher costs than the non-Pareto efficient least-cost 

portfolio PS identified by SWITCH. P2 is the feasible 

portfolio with lowest risks. By definition, it is a Pareto 

efficient portfolio. In this particular case, P1 also meets the 

condition below:   

min 
𝑃𝑖

(𝑅𝑖𝑠𝑘(𝑃𝑖) − 𝑅𝑖𝑠𝑘(𝑃𝑆)) + (𝐶𝑜𝑠𝑡(𝑃𝑖) − 𝐶𝑜𝑠𝑡(𝑃𝑆)) (11) 

 

The composition of electricity mixes between P1 and P2 

do not considerably vary between each other, as the QP 

optimization is limited around 15% of SWITCH generation 

levels. 

Two factors induce the changes in power generation levels 

made by the QP compared to SWITCH least-cost mix. The 

first one result from energy systems that have high LCOE –

penalized in the SWITCH optimization – but low standard 

deviations – favored in the QP. The second factor is the 

positive impact of diversification on decreasing risks: even 

the addition of a risky technology in the energy mix can, 

under some conditions, lower the overall risk of the portfolio.  

Changes induced by the risk minimization approach for 

China’s 2030 electricity mix vary between -169.6 TWh (coal) 

and +77.2 TWh (nuclear) for P1, -288.8 TWh (coal) and 83.4 

TWh (gas) pour P2, as shown in Figure 3. The total change in  

generation source across all technologies compared to Ps is 

8% for P1, 13% for P2. In practice, this results in a higher 

change in installed capacity for renewable energies than 

thermal energies, because of the limited capacity factors for 

wind (national average is 0.18 [19]) and solar systems 

(national average is 0.19 [20]) 

Coal steam turbines have low average LCOE in China 

compared to other technologies, which makes them a 

preferential energy source by cost-minimization models. 

However, the uncertainty on future coal prices and on future 

CO2 emission regulations, significantly impacts the variance 

of coal steam turbine LCOE. For this reason, and because of 

the effect of diversification, the coal share in all efficient 

portfolios including P1 is decreased compared to Ps, as coal is 

by far the dominant source of power in the SWITCH 

portfolio. P1, the Pareto-optimal portfolio with lowest costs, 

generates more electricity from coal than the other Pareto-

optimal portfolios. Following the same reasoning, the share 

of natural gas is increased in Pareto optimal portfolios 

compared to Ps. While gas is greatly increased in P2, its high 

costs in China do not make it a good candidate when costs are 

limited, therefore its share is only slightly increased in P1 

compated to Ps. The larger the reduction in coal and increase 

in gas, the lower the total variance of the corresponding 

efficient portfolio. For the same reason, the small share of 

solar PV is increased up to its maximum (+15%) compared to 

the SWITCH results in all efficient portfolios. On the other 

hand, the relatively high cost and variance of wind and large 

share compared to solar in PS do not make this technology a 

good candidate for risk minimization when total cost is 

limited. In all portfolios on the efficient frontier, conventional 

nuclear reactor technology is increased up to its maximum in 

the QP optimization.  

In all efficient portfolios, increase in renewable generation 

resulting from the risk optimization is higher than increase 

fossil-fuel generation, despite the cap on wind and solar 

shares as a function of gas share to maintain grid operability. 
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The cap on CO2 emissions is not an active constraint in any 

of the Pareto-optimal portfolios. Therefore, accounting for 

risk on costs leads, in the case of China, to a reduction in 

carbon emissions compared to a simple cost minimization.  

 

 
Figure 3 Annual change in electricity generation per technology for the two 

efficient portfolios P1 (top graph) and P2 (bottom graph) compared to the 

SWITCH portfolio for the year 2030. 

Any of the portfolios between P1 and P2 could be favored 

over Ps by policy makers, depending on their level of risk-

aversion, i.e. on how much they are willing to increase the 

costs from the least-cost portfolio in order to reduce the 

uncertainty on costs. 

Choosing P1 or P2 instead of the least-cost portfolio would 

have the following consequences on overall risks and costs 

(Table 2): 

TABLE 2 CHANGE IN 2030 COSTS AND RISKS FOR EFFICIENT 

PORTFOLIOS P1 AND P2 FROM LEAST-COST PORTFOLIO PS 

 Total change in 

costs in $/year 

(%total cost) 

Total change in 

risks in $/year 

(%total risk) 

ΔCost + ΔRisk in 

$/year  

P1 +1.43x108 (0.46%) -3.04x109 (-4.49%) -2.90x109 

P2 +3.72x109 (1.19%) -5.10x109 (-7.52%) -1.38x109 

 

P1 demonstrates smaller changes in cost and risk than P2. 

Any portfolios on the efficient frontier between P1 and P2 

would yield a decrease in risks on costs of at least $3.04 

billion/year and at most $5.10 billion/year. In this case, all 

efficient portfolios yield higher decrease in risks than 

increase in costs compared to the original least-cost portfolio, 

and can therefore be of high value for energy planners.  

 

C. Risk minimization over time and impact of introducing a 

new technology on overall risk 

The efficient frontier of an electricity mix evolves over 

time for two reasons in our model. First, the overnight costs 

of some technologies – here, wind turbines, solar PV and coal 

CCS – are assumed to decrease in the future following R&D 

programs and gain in experience. This learning curve impacts 

both the LCOE value and its standard deviation. Second, the 

introduction of a new technology – coal CCS – from 2035 on 

impacts the SWITCH optimization, the Hessian matrix and 

the constraints of the risk optimization. 

The QP is run over the four ten-year long periods of 

SWITCH. In all years, changes induced by risk minimization 

lead to lower carbon emissions. However, Figure 4 shows 

that the magnitude of this change varies according to the 

initial least-cost mix in each year. In period 1, maximum 

allowed deviation are binding constraints for wind, solar and 

nuclear, limiting the potential for carbon emissions reduction. 

In the third period, decarbonization is favored by the risk on 

carbon price, which leads to a high decrease in carbon 

emissions between PS and efficient portfolios. In the fourth 

period, projected carbon regulations result in an optimal 

SWITCH portfolio that is cleaner than in previous periods, 

therefore the following impact of risk minimization on 

emissions reduction is relatively lower. 

 
Figure 4 Annual change in carbon emissions for the two efficient portfolios 

P1 and P2 compared to the SWITCH portfolio. 

At time of first implementation, in 2035, the optimal 

generation share of coal with CCS equals 4.5%, and the share 

of coal 30%. A hypothetical situation where these 4.5% 

would instead be additional conventional coal leads to an 

increase in total portfolio risk on costs of 1.75% or $0.92 

billion per year. Although coal with CCS shows significantly 

higher variance on technology cost than conventional coal, 

the advantage of coal CCS against carbon price uncertainty 

makes it a valuable asset to decrease overall risk on costs in 

the mix.  

IV. CONCLUSION 

In all four periods from 2015 to 2054, we find that it is 

possible to create portfolios within plus or minus 15% around 

the least-cost portfolio generation levels that show lower risks 

on generation costs without significantly increasing the costs. 
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While the specific portfolio choice depends on policy 

makers’ aversion to risks, any of the efficient portfolios 

should be favored by policy makers willing to increase 

generation costs of least-cost portfolios from conventional LP 

tools, provided that it yields a reduction in risks higher in 

amplitude.  

Despite nuclear power’s costly safety regulations and risk 

of accidents, its low costs and relatively low share in China 

give this technology a key role in reducing financial risks 

over the 2050 horizon. Wind and solar are favored in latter 

periods, while the share of gas is mostly increased in the first 

two periods, despite its emissions, high costs, and high 

variance. The increase in gas share is a new phenomenon in 

reality, currently observable in the Chinese power sector. In 

all periods, risk minimization leads to a decrease in coal, 

although at no time is carbon cap a binding constraint.  

Uncertainty on the possibility of a carbon regulation can 

significantly increase the share of renewable energies, 

therefore reduce the CO2 emissions, of an energy mix even 

without the actual implementation of regulations. As a 

consequence, the transition to a clean power sector occurs 

earlier with a risk minimization than with a cost 

minimization. The ‘fear of regulation’ can be seen as a first 

step towards the reduction of greenhouse gas emissions.  

This analysis shows that, while cost-minimizing modeling 

tools provide a valuable insight into the nature of the future 

energy mix that policy makers seek to plan, it should only 

constitute the first step of a thorough energy planning 

procedure. Reliable sources from which policy makers obtain 

cost projection data usually provide standard deviations, error 

bars, or other metrics to represent the uncertainty on the 

validity of their projections. While cost-minimization models 

only use half of the available information – the expected 

value – the other half can be used, with not much additional 

effort, in the two-step methodology we presented.  

On the short term, our two-step module makes the 

transition easier for policy makers, since it integrates well 

with existing, ‘legacy’ linear tools. Compared to simple cost-

minimization, this two-step optimization process provides, at 

low costs, a more accurate picture of future consequences of 

energy planning decisions and on levers to strengthen energy 

affordability.  

However, the two-step process has several limitations. 

The somewhat arbitrary maximum deviation value, set at 

15%, aims at maintaining the reliability of the grid ensured by 

the LP in the absence of short time scale consideration in the 

QP. Yet, such consideration would also allow for including 

storage in our analysis, especially useful for calculating risk 

on costs resulting from renewable intermittency. Moreover, 

changes induced by the risk minimization may contradict one 

of the LP constraints. This two-step process is therefore 

suboptimal compared to a model that would optimize costs 

and risks in a single step. The use of mean-variance 

optimization creates one, well known, caveat: the hypothesis 

of normally distributed costs and quadratic utility function of 

stakeholders. Methods using more specific risk measures than 

the standard deviation could be implemented in the risk 

minimization step, however there is a crucial trade-off 

between increasing solution accuracy and increasing 

computing time. 

In the longer term, the objective is first to integrate these 

two steps into a single tool, a ‘super-SWITCH’ model 

optimizing costs, risks, and hourly dispatch, and second to 

encourage policy makers to adopt this higher-fidelity model 

instead of the existing limited cost-minimization tools.  
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