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Abstract—Safety and reliability remain critical issues for
Lithium-ion (Li-ion) batteries. Out of many possible degradation
modes, thermal faults constitute a significant part of critical
causes that lead to battery degradation and failure. Therefore,
it is extremely important to diagnose these thermal faults in
real-time to ensure battery safety. Motivated by this fact, we
propose a Partial Differential Equation (PDE) model-based real-
time scheme in this paper for diagnosing thermal faults in Li-ion
batteries. The objective of the diagnostic scheme is to detect and
estimate the size of the thermal fault. We utilize a distributed
parameter one-dimensional thermal model for cylindrical battery
cells in conjunction with PDE observer-based techniques to
design the scheme. Furthermore, we apply threshold-based tech-
nique to ensure robustness against modeling and measurement
uncertainties. The effectiveness of the scheme is illustrated by (i)
analytical convergence verification of the PDE observers under
heathy and faulty conditions utilizing Lyapunov stability theory,
(ii) extensive simulation case studies, (iii) robustness analysis
against model parametric uncertainties and, (iv) experimental
studies on a commercial Li-ion battery cell.

Index Terms—Lithium-ion Batteries, Thermal Faults, Detec-
tion, Estimation, Distributed Parameter Systems.

I. INTRODUCTION

AFETY and reliability are two critical aspects of Lithium-

ion (Li-ion) battery operation. Several failure mechanisms
can potentially deteriorate battery safety and reliability. Many
of such critical failures manifest themselves as thermal faults
in the battery irrespective of their physical origin [1]. A subset
of these thermal failures, e.g. thermal runaway, may even
lead to catastrophic events if not detected or diagnosed early
enough. Therefore, diagnosis of battery thermal failures is
extremely important to ensure safe and reliable operation. Mo-
tivated by this requirement, we propose a Partial Differential
Equation (PDE) model-based diagnosis scheme for thermal
faults in Li-ion batteries in this paper.

In the past decade, a substantial body of research has
emerged addressing the problem of battery State-of-Charge
(SOC) and State-of-Health (SOH) estimation. Several model-
based approaches have been proposed for such estimation
problems, e.g. Equivalent Circuit Model based approaches
[2] [3] [4], Electrochemical Model based approaches [5] [6]
[7]. Other than SOC and SOH estimation, battery temperature
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estimation problems have also started receiving attention since
past few years. For example, an adaptive observer is presented
for core temperature estimation in [8]. Observer design for
temperature estimation in battery packs is studied in [9]. In
[10], an internal temperature estimation algorithm is proposed
using combined impedance and surface temperature measure-
ments. An estimation algorithm for combined estimation of
SOC and internal temperature is presented in [11]. A generic
electro-thermal model is proposed in [12] to predict the cell
temperature evolution. In [13], an algorithm is presented for
estimation of the temperature distribution in cylindrical cells
under unknown cooling conditions.

Compared to the control/estimation problems, battery fault
diagnosis problems have received significantly less attention
in the existing literature. Majority of the existing battery
diagnostic approaches rely on limit checking on the measured
terminal voltage and surface temperature. However, the main
drawbacks of these limit checking approaches are: (i) they may
not be able distinguish the effects of abrupt input conditions
from faults and, (ii) they may not be able to detect the fault
at an early stage when the fault magnitude is smaller and
the measurable quantities are within the normal operating
limits. On the other hand, model-based diagnostic approaches
have the potential to mitigate these limitations significantly
by combining models with measurements. Very few efforts
have been made in the area of model-based battery diag-
nostics. Some of the existing model-based approaches deal
with sensor and actuator faults [14] [15], electrochemical
faults [16], overcharge/over-discharge faults [17]. However,
real-time diagnosis of thermal faults is almost unexplored in
the existing published literature, despite its critical importance
for battery safety and performance. A few efforts exist in
battery thermal fault diagnostics. In [14], a one state thermal
model capturing the averaged temperature of the battery cell is
used to diagnose a cooling system fault. A two-state thermal
model capturing the core and surface temperature dynamics is
used in [18] to diagnose certain thermal faults. However, the
drawbacks of these approaches are: (i) they rely on lumped
parameter thermal models which may not be sufficient to
capture the effect of distributed thermal faults inside the cell,
and (ii) they do not estimate the size of the thermal fault.
Note that the information on the thermal fault size can be
beneficial for thermal fault-tolerant control of batteries. In our
current paper, we extend the aforementioned research works by
proposing a PDE model-based thermal diagnostic scheme for
Li-ion batteries. The proposed diagnostic scheme is capable
of detecting and estimating thermal faults. The proposed
PDE-based approach bypasses two possible drawbacks of the
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lumped model-based approaches. First, the lumped models
may neglect the higher order but important modes of the
system, which in turn may lead to control/observation spillover
(for details of the spillover effect, please refer to [19]). Second,
they unnecessarily intertwine lumping/discretization methods
with the analysis and design process. In this particular case,
for example, if one realized that a different discretization
technique was superior, then they would have to completely re-
design and re-analyze the diagnostics observers. Consequently,
the generalizability of a lumped model approach is limited in
this sense. By synthesizing the observer in the PDE setting, we
untangle the design process from the discretization needed for
implementation. Hence, no re-design and analysis is necessary
in case one finds an alternative discretization method. The
current paper extends our preliminary study [20] by: (i)
analysis of the robustness of the scheme with respect to model
parametric uncertainties; (ii) development of the experimental
procedure for thermal fault induction in a Lithium-ion cell,
and (iii) demonstration of the effectiveness of the approach
using experimental studies.

In the proposed diagnostic scheme, we adopt a one-
dimensional distributed parameter thermal model of a cylin-
drical battery cell [21]. The scheme consists of two PDE
observers arranged in cascade and utilizes measured surface
temperature feedback. The first observer, denoted as Robust
Observer, estimates the distributed temperature inside the cell
under healthy and faulty conditions. Robust state estimation
is a bi-product of this scheme that provides convergent esti-
mates of the temperature distribution inside the battery cell
irrespective of healthy or faulty conditions. The second ob-
server, denoted as Diagnostic Observer, receives this estimated
temperature distribution information from Robust Observer
and in turn outputs a residual signal that provides the fault
information. The backstepping transformation and Lyapunov
stability [22] have been utilized to design and analyze the
observer. Furthermore, the residual signals are compared with
non-zero thresholds to incorporate robustness to modeling
and measurement uncertainties. These non-zero thresholds are
designed offline based on the probability distribution of the
residual signals under a fault-free condition.

The rest of the paper is organized as follows. Section II
introduces the distributed parameter thermal model of the
battery cell. Section III designs and analyzes the fault diag-
nosis scheme in detail. Section IV presents simulation and
experimental studies. Finally, Section V concludes the work.

Notations: The following notations are used in this paper:

1 2
lu()l =/ fy w?(@)dz, ue = Gt ue = G2, use = T4

II. DISTRIBUTED PARAMETER THERMAL MODEL FOR
LITHIUM-ION BATTERIES

Nominal Model: We adopt the following (nominal or fault-
free) one-dimensional thermal model that predicts the radially
distributed temperature dynamics of a cylindrical battery cell
[21]:
or o*T 1\ oT
—(r,t) = = (rt —(r,t) + == 1
P aﬂ(r’wr( )5‘7'(r’_)+ )

r

with Neumann boundary conditions

or
oT h =
E(R’QZE(TW_T(R’E))’ 3)

where ¢ € R represents time and r € [0, R] is the spatial
coordinate in the radial direction. The parameter k is the
thermal conductivity of the battery cell, Q(Z) is the volumetric
heat generation rate, and 3 = (pC,)/k is the inverse of
thermal diffusivity, where p is the mass density and C, is
the specific heat capacity.

Next, we: 1) transform the system to the Cartesian coordinate
system with spatial coordinate variable Z and time ¢ [23] and,
ii) scale the space and time variables in the Cartesian coor-
dinate system by defining T (z,t) = T (z,t) with z = /R,
t = t/BR? and k = k/R?. This transformation and scaling
results in the following system, known as a heat equation:

TG 1) = T, 1) + 2, @
with Neumann boundary conditions

T(0,t) =0, &)

T.(1,0) = (T~ T(1,1)), ©

k

where t € RT and = € [0,1]. The remainder of this paper
considers (4)-(6) as the plant model.

Furthermore, we adopt a second order electric circuit model
to capture the electrical dynamics of the battery (see Fig. 1)
[24]. The electrical circuit consists of an open circuit voltage
source (V,.), an internal series resistance (R;,:) and two
resistance-capacitance branches in series. Furthermore, it is
assumed that the SOC of the battery is computed online via
Coulomb-counting. The state-space equations for the electrical
model are:

dsoc . I(t)
dt (t) - Cbatt ’ (7)
dva . Vi@t | I(t)
ﬂ(t) T RGOy ®
dva . Wa(t)  I(t)
E(t) = TRG Ty )
Vierm(t) = Voo (SOC) — Vi (t) — Va(t) — RineI(t),  (10)

where I(t) is the battery current, Cp,y is the battery charge
capacity in Amp-sec and Vi, is the terminal voltage. The
open circuit voltage (V) is a function of the State-of-Charge
(SOC) and computed online. This function can be determined
via offline experimental studies. In this distributed parameter
model, R, is assumed to have Arrhenius dependence on the
average battery temperature 7T,,, given as:

Rint - f (Tavg) ’

(11)
where f (Tavg) = Tint,ref |:ET§ (Trlcf - Tu1, >:|

g and Rint,ref
is a known reference value at a known reference temperature
T,ey. The average temperature of the cell is given by:

1
Tovg(t) = /U T (z,t) dz. (12)
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Fig. 1. Battery electrical circuit model

Measurements: Measured variables include the current (1),
terminal voltage (Vie ), and surface temperature (7°(1)).

Remark 1. The heat generation rate Q is expressed as:

aVoc
oT

In this work we assume that ) is computed online using
the measured variables Vierm, I, and V,.(SOC), which is
computed using the SOC information from (7). Furthermore,
we assume that the electrical states V; and V5, are computed
online via the open-loop model (8)-(9). The term T% rep-
resents the entropic heat generation. The value of the entropic
coefficient % can be found by offline experimental studies
[25]. In this work, we consider a Lithium-Iron Phosphate
cell for which this entropic coefficient is significantly small
[25]. Hence, we ignore the entropic heat generation in the
subsequent discussions.

Q(t) = I(t)(voc(SOC) - Vter'rn(t) =T

). (13)

Fault Model: The faulty battery thermal dynamics can be
mathematically modeled as

Q)

Ti(z,t) = Ty (z,t) + % + Ag(x,t), (14)

with Neumann boundary conditions
T.(0,t) = 0, (15)
T.(1,t) = h (T — T (1,1)), (16)

k

where Ag(x,t) represents a distributed thermal fault.

Remark 2. The fault model Ag(x,t) in (14) captures the
effect of a range of physical failures, e.g. abnormal internal
heat generation from electrochemical side reactions, or internal
failure due to mechanical or thermal abuse [1][26]. Some
of the possible causes of such thermal failures are [26]: 1)
Internal short circuit caused by separator failure, poor cell
design and/or manufacturing; ii) Overcharging may generate
abnormal heating due to oxidative chemical reactions; iii)
External physical damage such as shock, puncture or vibration
can create short circuit in the battery cell leading to thermal
runaway condition; iv) Battery cells with flammable electrolyte
may cause secondary fire when the cell packaging is damaged
due to external physical abuse. Most of these failures are
essentially manifested by an abnormal heat generation in the
cell which is represented by the term Ag(z,t).

Li-ion Battery Cell Outputs:

Voltage (Vierm (t))
Ag Surface temperature (T(1,t))

Thermal Fault

Input:
Current (I(t))

T Fault Diagnosis Module !

: Robust Ty(x.t) |pi i 1 Ag

: Obsel:ver (;ignosm )

i Estimated SEIVer | Fault

i Distributed ! Information
i Temperature |

Fig. 2. Fault diagnosis scheme.

Assumption 1. We assume that only one fault can occur at
a time, i.e. no multiple faults. Furthermore, we focus on fault
detection and estimation. Isolation of multiple faults is not an
objective of the present work and subjected to future research.

III. FAULT DIAGNOSIS SCHEME

The fault diagnosis scheme is diagramed in Fig. 2. The
scheme consists of two observers working in a cascaded
manner. The first observer, Robust Observer, uses the surface
temperature feedback and estimates the distributed battery cell
temperature under healthy (non-faulty) and faulty conditions.
The second observer, Diagnostic Observer, receives the esti-
mated temperature distribution from Robust Observer and in
turn provides a residual signal. The residual signal is used for
detection and estimation of the thermal fault (Ag). In the next
subsections, we will discuss the design and analysis of these
two observers in detail.

Remark 3. The proposed diagnostic scheme provides an
accurate estimation of the temperature distribution inside the
battery cell irrespective of faulty or healthy condition. This is
an added beneficial feature of the scheme.

A. Robust observer

The following structure is chosen for the Robust Observer,

. . )t _
Tlt($,t) :TlTT(I,t)+ % +P1(I)T1(1,t), (17)
with Neumann boundary conditions
T1.(0,t) =0, (18)
) h .
Tl:p(lvt) = E(TOO_T(Lt))—’—PlOTI(Lt)v (19)

where Tl(m, t) is the estimated temperature distribution,
Ti(1,t) = T(1,t) — T1(1,t) is the boundary estimation error
and P;(z) and Py are the observer gains to be determined.

The error dynamics of the Robust Observer are given by
subtracting (17)-(19) from (14)-(16),

Tlt(zvt) = Tlrz(xvt> + AQ(xvt) - Pl(x)Tl(lat)a (20)
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T12(0,) = 0,
Ti2(1,t) = —PioTi(1,1).

21
(22)

Next, we follow the backstepping approach to analyze the
error dynamics and design the observer gains P;(z), Pio

[22]. The backstepping approach seeks the linear Volterra
transformation 7 (x,t) — w(zx,t)

1
Ty(e,1) = wla,t) / Pla.y)oly. )y, 23)

which transforms (20)-(22) to the following target error system

(Ut(l‘,t) :wwm(mvt) +AwQ(m7t) —CW(J?,t), (24)
we(0,4) = 0, (25)
Wm(la t) =0, (26)

with ¢ > 0 as a parameter of user’s choice and Ag(z,t) =
Aoz, t) — f; P(z,y)A,q(y,t)dy. One can show the gain
kernel P(x,y) in (23) must satisfy the following PDE [22]:

Pyy(x,y)—Pm(sc,y):CP(sc,y)7 (27)

for (z,y) € D = {z,y : 0 < y < z < 1} with boundary
conditions

P(z,z) = —cg, (28)
Py (0,y) =0, (29)
and the observer gains can be computed as:
Pi(z) = —Py(x,1), (30)
Py = —P(1,1), 31)

The expressions for the kernel PDE (27)-(29) and observer
gain conditions (30)-(31) can be derived following the steps
given in Section 5.3 of [22].

Remark 4. There exists a unique and closed-form solution of
the kernel PDE (27)-(29) [22], given by

L(yely? —a?))
c(y? —a?)
where [;(.) is first order modified Bessel function. Therefore,

the observer gains can be computed offline via (30)-(31) using
the closed form solution (32).

P(x,y) = —cy (32)

Remark 5. It can be proven that the transformation (23) is
invertible [22]. Hence, stability of the target system (24)-(26)
implies stability of the original system (20)-(22). Next, we
present a theorem for the convergence of the Robust Observer
via stability analysis of the target system.

Theorem 1 (Convergence of Robust Observer). Consider the
error dynamics (24)-(26). If ¢ > 0, then

(a) under Scenario 1: Ay,g = 0 i.e. in the presence of no fault,
the origin of the error dynamics w(x,t) = 0 is exponentially
stable in the sense of the spatial Lo norm, and

(b) under Scenario 2: A,q # 0 i.e. in the presence of a fault,
the error w(x,t) remains bounded in the sense of spatial Lo
norm defined by Rp = ”Ai‘c”‘g” as t — oo,

where c is the user-defined parameter, A, is the fault and
w(x,t) is the distributed estimation error defined in (24).

Remark 6. Note that the magnitude of Rp can be made
arbitrarily small by choosing c arbitrarily large. However, in
practical implementation, arbitrarily higher values of ¢ will
amplify measurement noise and might lead to instability of
the observer dynamics. This trade-off should be considered
while tuning the parameter c.

Proof. We consider the square of the spatial Lo norm of the
error as a Lyapunov function candidate to analyze the error
dynamics (24)-(26):
2
o]

1
Wity = 12l a %/O W2 (x, t)da.

along the state trajectory can be

(33)

2
The derivative of Wi(t)
written as:

1
Wi(t) = / wwyd. (34)
0

Now consider the right hand side of (34),

1 1 1 1
/ wwedx :/ wwmder/ wAdeozfc/ w2dz. (35)
0 0 0 0

Applying integration by parts on the first term and the Cauchy-
Schwarz inequality on the second term of the right hand side
of (35) yields

1
2 2
/Ow%dwé—ﬂwzll + @l Awell = ¢l (36)

Now, considering (36) we can write the upper bound of the
derivative of the Lyapunov function

Wi(t) < lwll (1Auqll = cllwl). (37)

Now considering Scenario 1: A,g = 0, we can write (37) as
Wi(t) < —2cW1(t). (38)

If ¢ > 0 the comparison principle applied to (38) gives
Wi (t) < Wi(0)exp(—2ct), which confirms the exponential
convergence of Wi (t). Hence, the origin of the error dynamics
w(z,t) = 0 is exponentially stable in the sense of the spatial
Lo norm.
Next, we consider Scenario 2: A,g # 0. From (37), the
sufficient conditions for the negative definiteness of 1/, (t) are
ol > 120 (39)
Squaring both sides of the condition in (39), we can write the
sufficiency condition as:

Augl®
>Ry 2 M. (40)

[l
Therefore, we can conclude that the negative definiteness of
W1 (t) will hold outside the ball of radius in the ||w|| ., Space
defined by Rp. Hence, IQ/Vl(t) will settle on or within a
bounded ball of radius %. This implies [jw|[,, < Rp as
t — oo. Note that the magnitude of R can be made arbitrarily

small by choosing a high value of c. O

Remark 7. In the above analysis, the robustness of the Robust
Observer is with respect to the fault as it suppresses the fault
effect to provide reasonably accurate estimate of distributed
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temperature. However, the robustness with respect to additive
uncertainty in the PDE dynamics can be easily shown. Es-
sentially, the same analysis applies with one modification: the
term Ag(z,t) in (20) would capture both the additive fault
and additive uncertainties.

Remark 8. The upper bound of the error in terms of original
error variable T'(x, t) can be derived in the following way. The
second term on the right hand side of (23) can be bounded
by:

—/Pmmww@géwwmwmmw

1 1
smm/wwmw=mm/wmmm,m>
0 0

where P = max,yepoq) |[P(r,y)|. From Cauchy-
Schwartz inequality, we have fol lw(z,t)|dz < ||w]||. There-

fore, from (41) and Theorem 1 we can write

1
_/ P(%y)w(yi)dy S Pma:v ||UJ|| S PmaxRB~ (42)
Applying the bound (42) on (23), we have

Ty (z,t) < w(z,t) + PraeRp. (43)

Applying triangle inequality on (43), we can find the following

upper bound HTH < Rp(1+ Praaz).

B. Diagnostic observer

The Diagnostic Observer utilizes the estimated temperature
distribution from Robust Observer as a feedback signal.

Assumption 2. The estimated temperature distribution from
Robust Observer can be written as:

Ty (x,t) = T(x,t) + e(x,t).

where €(x,t) represents the estimation error. However, we
have proven that € can be made arbitrarily small by selecting
¢ arbitrarily large. Therefore, we assume 7} (z,t) ~ T(z,t)
for all practical purposes in the following analysis.

Assumption 3. We assume the following structure of the fault
function

Aq(z,t) =0 - (x, T(x, 1), I(t)) (44)

where ¥(-,-,-) is a known basis function of space z, dis-
tributed state T'(x,t) and input current I, and 6 € R is an
unknown constant parameter which determines the fault size
or intensity. The main objective of the diagnostic observer is
to estimate the value of 6.

Remark 9. The assumption of known basis function (-, -, -)
enables the application of adaptive observer framework. Es-
sentially, the idea behind Assumption 3 is to separate the fault
information into two parts: a known part (basis function) and
an unknown part (fault intensity). Estimation of distributed
fault may not be possible if the fault characteristics are
completely unknown. Hence, we assume at least the basis
function is known. With the knowledge of this known basis
function, we estimate the unknown fault intensity. In practice,

the basis function of the fault should be identified offline based
on the thermal Failure Mode and Effect Analysis (FMEA).
For example, the knowledge about thermal hot-spots regarding
micro short circuit faults can be utilized to formulate the basis
function [27].

Considering Assumption 2 and Assumption 3, the following
structure is chosen for the Diagnostic Observer,

. . NE) - .
Toi(x,t) = Tgm(as,t)+¥+9¢(x,T(z,t), I(t))+LoTo(x,t),
(45
with Neumann boundary conditions
T»,(0,t) = 0, (46)
Toe(1,0) = 1 (T~ T(1,1)), @)

where Tg(x,t) is the estimated temperature distribution by
Diagnostic Observer, Ty(x,t) = T(x,t) — Ty(x,t) is the
distributed estimation error with T'(z, t) as the estimated tem-
perature distribution from Robust Observer, 0 is the estimated
size of the fault and, Ly € R is an observer gain to be
determined. The update law for 6 is chosen as

1 1 1 >
HZLT,/O W, T(@,t), [()Ta(x, )de,  (48)

where L3 > 0 is a user-defined gain that determines the
parameter convergence rate. Subtracting (45)-(47) from (14)-
(16), we can write the error dynamics of Diagnostic Observer
as

Toi(,t) = Toga(x, 1) + 00 (x, T(x, 1), I(t)) — LoTo(x, 1),
(49)
with Neumann boundary conditions

TQm(Oa t) = T2m(17 t) =0, (50)

where 6 = 6 — 6. In the following theorem, we analyze the
performance of the Diagnostic Observer.

Theorem 2 (Performance of Diagnostic Observer). Consider
the error dynamics (49)-(50) and the parameter update law
(48). If Assumption 2 and Assumption 3 are valid and Lo >
—i, Ls > 0, then the distributed state estimation error
Tg(x,t) and parameter estimation error 6 will be bounded.
ie. HTQJ/ , é‘ €Ly ast — o0,

where Lo 1s the observer gain defined in (45) and parameter
update law gain, L3 is the gain in parameter update law (48),
Tg(x,t) and 6 are the state and parameter estimation error
defined in (49).

Proof. We consider the following Lyapunov function candi-
date to analyze the error dynamics
1 [ Ls ~
Wa(t) = 7/ T2 (z,t)dz + 6> (51)
2 Jo 2
The derivative of Wo(t) along the state trajectories can be
written as:

1 .
Wa(t) = / TyToidx + L300 (52)
0
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Now considering (49) and the fact 0 = 0, we can write

1 1
Wg(t) = / TQTQIa;dx — LQ/ T;dl‘
0 . 0 . (53)
+9/ ’l/)(l’,T, I)TQdCU — L3¢90
0

Next applying integration by parts on the first term of the
rlght hand side of (53) and then applying Poincaré inequality:
f T2,dx < — T2dx we have

. 1 /1. 1.
Wa(t) < _Z/ ngx—LQ/ T2dx
~ 10 ~ 0 B (54)
+9/ (2, T, I)Todx — L3600
0

Finally, applying the update law (48) on (54), we can write:

1
Wa(t) < — (i +L2> / T2dzx.
0

From (55) it can be concluded that 15 (¢) is negative semidefi-
T@’ and Ty (z, t)

(55)

nite if Ly > —l . Hence, the estimation errors

will be bounded. i.e. HT2 € Ly as t — oo.

O

Remark 10. The parameter estimate 6 will be used as a resid-
ual signal which serves the purpose of detection (indicated by
6 = 0) and estimation (indicated by the magnitude of 0) of
the thermal fault Ag.

Remark 11. For improved accuracy of fault models, it is
possible to modify the fault structure (44) as:

N
=6 i(x)
i=1

where ;(x) can be chosen as typical basis functions like
trigonometric functions, exponential or Gaussian function.
The modified fault structure contains more free parameters
(0;,v:(-)) and hence will be able to capture more com-
plex fault distributions as compared to the fault structure
in (44). However, the design and analysis of the Diag-
nostic Observer will remain same even with the modified
fault structure. Referring to Theorem 2, w1th the choice of
Lyapunov function candidate W(t) = 3 fo T2 x,t)dx +

(56)

vazl(Lgi/2)9~f, the update law becomes © = LU where
© = [b,....08]", L = diag(+, 7L;N)’ v =
fo Vy (2)To(z, t)de, . fo U (z)To(z, t)dac] with diag(.)

denoting a dlagonal matrix.

Remark 12. The presence of uncertainties (unmodeled dy-
namics and measurement noise) prohibits the residual 6 from
having the idealized property of equaling zero in the absence
of a fault. We handle the effect of uncertainties by comparing
the residual with nonzero thresholds. The residuals are be
evaluated as follows: A fault is detected when 6 > th; no
fault when @ < th, where th is the predefined threshold. The
effect of the uncertainties on the residuals will be suppressed

below these threshold values. The threshold can be designed
using the following equation:

—th
Pry = / Do
— 00

where Pr 4 is the probability of false alarm (defined by the
user), th is the selected threshold and pg () is the residuals
probability distribution under no fault. The distribution pg ()
can be found by collecting residual data under non-faulty
conditions from Monte-Carlo simulations or experimental
studies.The goal here is to select th which will yield an user-
defined acceptable Pr 4. It is important to note that a smaller
choice of threshold may lead to improved detectability of the
fault, however, at the cost of higher false alarm rates. The
threshold design process remains same for the fault structure in
Assumption 3 and Remark 11 with the following exception: [NV
thresholds would be needed for the fault structure in Remark
11 (one threshold for each 6;).

(z) dx+/ po (z) dx 57
t

h

IV. SIMULATION AND EXPERIMENTAL STUDIES

In this section, we conduct simulation and experimental
studies to evaluate the performance of the proposed scheme.
We start with identifying the battery model parameters utiliz-
ing the experimental data collected from a commercial Li-ion
battery cell. The battery under consideration is a commercial
Lithium Iron Phosphate A123 26650 cylindrical cell with rated
capacity of 2.3 Ah. Note that, the electrical and thermal model
parameters have each been identified in [24] and [13], respec-
tively. However, due to variability in manufacturing, cooling
and other operating conditions, some of the crucial thermal and
electrical parameters can vary from cell to cell. Therefore, we
re-identify some of the parameters by solving parameter fitting
optimization formulation using Particle Swarm Optimization
(PSO) and data generated from our experimental facility. Es-
sentially, PSO minimizes the Root Mean Square (RMS) error
between the model and experimental voltage and temperature
data by optimizing the values of the following thermal and
electrical parameters: h, Riptref, Ri, Ra, Ci, Cy and Chgys.
The resulting values of the thermal and electrical parameters
are given in Table 1.

The experimental setup includes a cell placed on an Arbin
High Current Cylindrical Cell Holder inside of an ESPEC
BTL-433 environmental chamber to regulate the ambient
temperature at 25°C (298.15K). An OMEGA K-Type Ther-
mocouple (SA1-K-120) is placed on one side of the surface
of the battery to measure the surface temperature of the cell
T(1,t), and an OMEGA Silicone Rubber Heating Pad (SRFG-
101/10) is placed on the other side of the surface to emulate
heat generation faults Ag as shown in Fig. 3. A PEC SBT2050
cycler is used to control the input current to the battery. In Fig.
4 and Fig. 5, a comparison between the open-loop identified
model and the experimental data is shown for voltage and
surface temperature under no fault condition. The Root Mean
Square (RMS) error values for this case are 27 mV and 0.2°
C. Next, we utilize this identified model for simulation and
experimental fault diagnosis studies.
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TABLE 1
THERMAL AND ELECTRICAL PARAMETERS. (I) DENOTES IDENTIFIED
VALUES FOR THIS SPECIFIC STUDY.

Parameters Values Parameters Values
P 2047 kg/m3 [13] Chatt 2.26 Ah (I)
Cp 1109.2 J/kgK [13] [ 3260.9 F (I)
k 0.610 W/mK [13] Co 53149 F (I)
h 69.80 W/m2K (I) Ry 0.0029 Q2 (1)
Rint ref 0.015 Q2 (1) Ro 0.0021 2 (1)

Fig. 3. Fault emulating experimental setup.

A. Simulation studies

This section discusses several simulation studies. Simulation
studies enable us to rapidly study a wide variety of fault
conditions that might be costly, difficult, timely, or impractical
to perform experimentally. In simulation, the applied current
and corresponding voltage response are shown in Fig. 4, under
no fault condition. The temperature distribution is shown in
Fig. 6. To emulate measurement uncertainty, we inject zero
mean Gaussian noises in the measured quantities: 10mA cur-
rent (1) noise, 0.3°C surface temperature (7%) noise and 5mV
voltage (Vierm) noise. Under these assumed uncertainties, we
select a constant threshold value for the residual signal ()
following the procedure discussed in the previous section.
In the following results, the performance of the observers
will be shown in terms of spatially averaged temperature,
ie. Tuvg = [y T(x,t)dx and Tj_ g0y = [ Ti(x,t)dz where
T'(x,t) represents actual temperature and 7}(z,t) represent
estimated temperatures with ¢ € {1,2}. Furthermore, we
will quantify the convergence performance of the estimates
in terms of (i) steady-state error and, (ii) convergence time,
defined as the time taken to reach within +2% band of the true
value starting from the incorrect initial condition. The observer
estimates are provided in Fig. 7 under no fault condition.
To verify the convergence properties, both the observers are
initialized with incorrect temperature 295 K, 3 K less than
the true initial condition of 298 K. Recall from Theorem 1
that we have proven exponential stability of T} (z,t) to the
origin, in the sense of the spatial Lo norm. Theorem 2 proves
boundedness of the £, norm of Ty(z,t), i.e. | T3] € Loo. In
Fig. 7, both Tl_(wg and Tg_avg from the Robust Observer
and Diagnostic Observer, respectively, converge to the true
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s | | | |
o 32f 1
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£
g, W .
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€ 28 i
E Open-loop Model Vierm,
0 50 100 150 200
Time [s]

Fig. 4. Applied current and comparison of experimental and open-loop model
terminal voltage under no fault condition. Positive current corresponds with
discharge. Root mean square voltage error is 27 mV.
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Fig. 5. Comparison of experimental and open-loop model surface temperature
under no fault condition. Root mean square temperature error is 0.2 °C.

temperature T,,,. The convergence time for both observers
are within 0.1 sec with zero steady-state error.

Next we illustrate the effectiveness of the proposed
approach under the following faulty cases.
Case 1: A constant and uniformly distributed additive heat
generation fault is injected between 50 sec and 170 sec in
the battery. In this case we have ¢ (x, T(x,t),I(t)) = 1 and
Ag(z,t) = 6. The nature of the fault is abrupt/step-like. The
threshold is chosen th = 0.02. The temperature distribution
is shown in Fig. 8, which clearly exhibits higher temperatures
than Fig. 6. The corresponding performance of the observers
(in terms of estimated average temperature and estimation
error) is provided in Fig. 9. Similar to the nominal case,
both observers are initialized with incorrect temperatures to
test the convergence properties. In Fig. 9, both Tl,m,g and
Tg,avg from the Robust Observer and Diagnostic Observer,
respectively, converge to the true temperature T, ,. The
convergence time for both observers are within 0.1 sec with
less than 0.2°C' steady-state error. This is expected, of course,
since the fault does not occur until 50sec. Furthermore, the
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Temperature Distribution T'(x,t)
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Fig. 6. Radial temperature distribution under no fault condition.

Estimated Average Temperature
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Fig. 7. Temperature estimation performance under no fault condition. The
convergence time to reach within £2% band of the true temperature is less
than 0.1 sec for both observers.

fault estimation parameter 0 crosses the threshold shortly
after the fault occurrence at 50 sec, thus detecting the fault.
Moreover, converges to a neighborhood of the true fault
size 6, as shown in the bottom subplot in Fig. 9. Recall that
Theorem 2 only guarantees boundedness of 6, i.e. |0] € Lao.
Nevertheless, we find the estimate can be successfully used
to estimate fault size. In this case, the detection time is 1
sec whereas the fault estimate (é) converges to the true value
(6) within 5 sec. In addition, convergence of both observer
estimates Tl,m,g, Tg,m,g remains robust to the fault presence.

Case 2: In this case, we study an local internal short circuit
fault. Unlike previous case where the fault is uniformly
distributed over the spatial domain, the local fault occurs
only at a sub-region of the spatial domain. The fault has been
injected at 300 sec under 5A constant current. In this case,
we have Ag(z,t) = 0¢(z,T(x,t),1(t)) where 0 = I2 Ry,

Temperature Distribution 7T'(x,t)

35 ..
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305 L
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200
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100
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Fig. 8. Temperature distribution inside the battery under faulty condition. The
fault is injected between 50 sec and 170 sec. Nature of the fault: abrupt.
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Fig. 9. Temperature and fault estimation performance under fault case 1. The
fault is injected between 50 sec and 170 sec. Nature of the fault: abrupt.

with Iy, = 25A as the short circuit current and R,. = 40mf)
is the short circuit resistance, and (-, -,-) is a trapezoidal
function that captures the local fault distribution. In this case,
¥(-,+,-) is only a function of space and hence denoted by
1(x). The same threshold is used th = 0.02. Temperature
response under the fault is shown in Fig. 10. Fault estimation
performance along with the basis function ¢ (x) is shown in
Fig. 11. It can be noted that the fault estimation parameter
0 crosses the threshold shortly after the fault occurrence at
300 sec, signaling a detected fault. Furthermore, 6 accurately
estimates the fault magnitude #. The detection time is 0.4
sec and the fault estimate (é) converges to the true value (6)
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Fig. 10. Temperature distribution inside the battery under the local internal
short circuit fault. The fault is injected at 300 sec. Nature of the fault: abrupt.
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Fig. 11. Fault estimation performance under the local internal short circuit
fault. The fault is injected at 300 sec. Nature of the fault: abrupt.

within 40 sec. Note that the scheme can detect and estimate
the fault if the short circuit current I, is slowly varying (as
we have assumed @ is fairly constant or slowly varying). If
I, is highly dynamic, then we expect the scheme to detect
the fault perfectly, however, with possibly degraded fault
estimation performance.

Next, we evaluate the robustness of the proposed scheme
with respect several forms of uncertainties.

Robustness to Uncertain Basis Function: One of the en-
abling assumptions for our approach is Assumption 3. Here
we illustrate the robustness of the scheme with respect to
uncertain basis function (¢(-,-,-)). To inject uncertainty in
the knowledge of basis function, the basis function for the
plant (denoted by (-,-,-)) and the basis function used in
the scheme (denoted by zﬁ(, -,+)) are chosen to be different.
To illustrate the findings, we choose the simulation scenario
defined in Case 2 with the same threshold value (0.02). In
the first case, we choose the basis functions such that there
is an overlap between ¢ (z) and ¢ (z). The basis functions
and corresponding fault diagnosis performance is shown in
Fig.12. The fault estimation parameter 6 crosses the threshold
(th = 0.02) 0.7 sec after the fault occurrence at 300 sec,

Fault Estimation

50— — . E— = ; — ‘
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4| 05 () 1
0 I ‘ ‘

ol o 0.2 04 06 0.8 14
s T
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320 ——— Actual @

Threshold
) / ]
0

280 300 320 340 360 380 400 420 440
Time [s]
Fig. 12. Fault estimation performance under uncertain basis function ) (z).
The functions ¢ (z) and v (z) denote the basis function used in plant and

diagnostic scheme, respectively. There is some overlap between 1 (x) and
9 (). The simulation scenario is based on Case 2.
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3 20f ] ]
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or /\/\ ----------------------------- Threshold 1
’ |

| L | . 1 | | L
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Fig. 13. Fault estimation performance under uncertain basis function ) (z).
The functions (x) and () denote the basis function used in plant and
diagnostic scheme, respectively. In this case, there is no overlap between
1 (x) and 1 (x). The simulation scenario is based on Case 2.

signaling a detected fault. However, the fault estimation error
is approximately 50%. Next, we choose the basis functions
such that there is no overlap between ¢(x) and (z). The
basis functions and corresponding fault diagnosis performance
is shown in Fig.13. The fault estimation parameter 6 crosses
the threshold 0.8 sec after the fault occurrence at 300 sec,
signaling a detected fault. However, the fault estimation error
is much larger. From this study, we can conclude that the
proposed scheme retains its detectability even when the basis
functions are uncertain. However, the fault estimation perfor-
mance degrades depending on the level of uncertainty.

Robustness to Parametric Uncertainties: In this study, we
illustrate the robustness by examining the fault estimation
errors under parametric uncertainties. The fault estimation
error is defined as: 100(6 — éss) /60 where O, is the steady
state value of the estimated fault 6. To inject parametric
uncertainties, we deviate the crucial thermal parameters from
their nominal values in the plant model while designing the
observers based on the nominal parameter values. To illustrate
the findings, we choose the simulation scenario defined in
Case I and treat the thermal parameters h, k and C), as
uncertain parameters. In the first case, we inject 10%, 25% and
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Fig. 14. Fault estimation performance under different levels of uncertainties
in the parameter h. The simulation scenario is based on Case 1.

40% uncertainties in h which resulted in approximately 9%,
19% and 28% fault estimation error, respectively. The fault
estimation performance is shown in Fig. 14. In the second
case, we inject 10%, 25% and 50% uncertainties in k which
resulted in approximately 1%, 5% and 9% fault estimation
error, respectively. Finally, we inject 10%, 25% and 50%
uncertainties in C), which resulted in approximately 4%, 10%
and 12% fault estimation error, respectively. From this study
we can conclude that the proposed scheme is most sensitive to
the parameter i, among the set {h, k, C},}. Hence, parameter
h should be known with sufficient accuracy to achieve an
acceptable fault estimation error. To quantify the accuracy
according to our study, the parameter h should be within
90% of its true value defining 10% fault estimation error
as an acceptable limit. On the other hand, the scheme is
comparatively more robust to the uncertainties in k and C),
and can handle approximately up to 50% inaccuracy in these
parameters.

Robustness to Measurement Uncertainties: Next, we il-
lustrate the robustness of the proposed scheme with respect
to measurement uncertainties. To inject measurement uncer-
tainties, we include additive noise in the surface temperature
measurement with Gaussian distribution N'(u, 02) where p is
mean and o2 is variance. Similar to the parametric uncertain-
ties, we choose the simulation scenario defined in Case I for
illustration. In the first case, we inject measurement biases
by specifying 1 = 1°C,0? = 0 and p = 2°C,0% = 0.
The fault estimation error corresponding to these two biases
are 5% and 10% respectively. In the second case, we inject
measurement noise with 1 = 0°C, 02 = 0.8. The fault esti-
mation performance for these cases is shown in Fig. 15. From
this study we have found that the proposed scheme is able
to provide reasonable fault estimates when the measurement
uncertainty has the following properties p < 2°C and o2 < 1.
Here, reasonable fault estimate is defined by 10% or less error
in fault estimation. Beyond these limits, the fault estimation
performance is poor. The sensitivity of the scheme to high
magnitudes of measurement uncertainties is due the high gain
design of Robust Observer. In practice, the trade-off between
fault suppression and measurement noise amplification should

Fault Estimation
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Time [s]

Fig. 15. Fault estimation performance under different levels of measurement
noise A (u, o). The simulation scenario is based on Case 1.

be considered while designing the Robust Observer parameter
c in (24).

B. Experimental studies

In this section, we evaluate the effectiveness of the scheme
using experimental data. The applied current profile for this
experiment is same as shown in Fig. 4. The heat generation
fault is injected by turning on the heating pad at the desired
time to supply heat at 10W/in? to the surface of the A123
battery cell. In this case we have ¢ (z,T(z,t),I(t)) = 1 for
x =1, and ¢¥(z,T(x,t),I(t)) = 0 elsewhere. With this fault
structure, the fault magnitude € has been identified offline
minimizing the difference between the model temperature and
experimental temperature under faulty condition. Note that the
identified 6 is not provided to the online scheme and only used
to validate the performance of the scheme.

The surface temperature under nominal and faulty cases
are shown in Fig. 16, which clearly shows higher temperature
under faulty condition. Similar to the simulation studies, we
initialize the observers with incorrect temperatures except for
the surface temperature as it is measured. Note that we only
have experimental measurements/information of the surface
temperature and injected fault. Therefore, we evaluate the
effectiveness of the proposed scheme in terms of the surface
temperature estimation error (Ty(1) and Ty(1)) and fault
estimation error (¢). In Fig. 17, both Tl(l) and Tg(l) from
the Robust Observer and Diagnostic Observer, respectively,
tracks the true temperature 7'(1) despite the mismatch
between the experimental data and open-loop model evident
in Fig. 16. Therefore, both the observers are able to track the
true surface temperature even in the presence of fault and
modeling uncertainties, as per the desired objective stated
in Theorem 1 and Theorem 2. The steady-state estimation
error for both the observers remain bounded within 0.2°C.
Furthermore, the fault estimation parameter 6 crosses the
threshold shortly after the fault occurrence at 45 sec, thus
detecting the fault. In this case, the detection time is 5 sec.
Moreover, 6 converges to a neighborhood of the true fault
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Fig. 16. Comparison of experimental surface temperatures under nominal and
faulty conditions. For the faulty case, the fault was injected at 45 sec.
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Fig. 17. Temperature and fault estimation performance. The fault is injected
between 45 sec and 190 sec.

size 6 with the steady-state error within £15%, as shown
in the bottom subplot in Fig. 17. Note that the steady-state
error of +15% can be deemed reasonable considering the
small magnitude of the injected fault and the presence of
the modeling uncertainties. The estimate 6 converges to the
+15% band of the true fault size § within 10 sec and remain
within the band for subsequent times. Recall that Theorem 2
only guarantees boundedness of 0, i.e. \§| € L. However,
we find the estimate is a reasonable approximation of the
actual fault size.

Remark 13. Fig. 16 shows that the surface temperature
(T'(1)) stays below 37°C even after 2 minutes of consis-
tent fault occurrence. Therefore, traditional limit checking
approaches would consider this within normal operating tem-

perature range resulting in a miss-detection of the fault. On the
other hand, the proposed approach diagnoses the fault within
5 sec of its occurrence and estimates the fault size within 10
sec. This clearly shows the potential of the proposed approach
in early diagnosis of the thermal faults.

V. CONCLUSION

This paper presents a PDE-observer based diagnostic
scheme for diagnosing thermal faults in Li-ion batteries. We
consider a distributed parameter thermal model coupled to
a second order electrical model for diagnostic scheme de-
sign. The scheme consists of two PDE observers working in
cascade. The first observer, Robust Observer, estimates the
internal temperature distribution. We prove the distributed state
estimate (i) converges exponentially to the true distributed
temperature state under nominal conditions, and (ii) converges
within a neighborhood of the true temperature state, which
can be made arbitrarily small, under fault conditions. The
second observer, Diagnostic Observer, utilizes this estimated
temperature distribution and in turn detects and estimates

thermal faults. We prove the fault estimation error 6 is
bounded in terms of the L, norm. The proposed scheme is
tested via simulation and experimental studies. Case 1 of the
simulation study considers an internal heat generation fault.
Case 2 considers an internal short circuit fault. Furthermore,
the robustness of the scheme is evaluated under parametric
uncertainties. The robustness study reveals relatively high sen-
sitivity to the convective heat transfer coefficient h. Finally, the
effectiveness of the scheme is tested using experimental faulty
data from a commercial Lithium-ion cell under a additive heat
generation fault. Simulation and experimental results illustrate
the convergence and robustness properties of the proposed
scheme.
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