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Abstract

Building Energy Modeling and Control Methods
for Optimization and Renewables Integration

by

Eric M. Burger

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Assistant Professor Scott J. Moura, Chair

This dissertation presents techniques for the numerical modeling and control of building
systems, with an emphasis on thermostatically controlled loads. The primary objective
of this work is to address technical challenges related to the management of energy use
in commercial and residential buildings. This work is motivated by the need to enhance
the performance of building systems and by the potential for aggregated loads to perform
load following and regulation ancillary services, thereby enabling the further adoption of
intermittent renewable energy generation technologies. To increase the generalizability of
the techniques, an emphasis is placed on recursive and adaptive methods which minimize
the need for customization to specific buildings and applications.

The techniques presented in this dissertation can be divided into two general categories:
modeling and control. Modeling techniques encompass the processing of data streams from
sensors and the training of numerical models. These models enable us to predict the energy
use of a building and of sub-systems, such as a heating, ventilation, and air conditioning
(HVAC) unit. Specifically, we first present an ensemble learning method for the short-term
forecasting of total electricity demand in buildings. As the deployment of intermittent renew-
able energy resources continues to rise, the generation of accurate building-level electricity
demand forecasts will be valuable to both grid operators and building energy management
systems. Second, we present a recursive parameter estimation technique for identifying a
thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs
to perform demand response services in real-time markets, online methods for parameter es-
timation are needed. Third, we develop a piecewise linear thermal model of a residential
building and train the model using data collected from a custom-built thermostat. This
model is capable of approximating unmodeled dynamics within a building by learning from
sensor data.

Control techniques encompass the application of optimal control theory, model predictive
control, and convex distributed optimization to TCLs. First, we present the alternative
control trajectory (ACT) representation, a novel method for the approximate optimization
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of non-convex discrete systems. This approach enables the optimal control of a population of
non-convex agents using distributed convex optimization techniques. Second, we present a
distributed convex optimization algorithm for the control of a TCL population. Experimental
results demonstrate the application of this algorithm to the problem of renewable energy
generation following.

This dissertation contributes to the development of intelligent energy management sys-
tems for buildings by presenting a suite of novel and adaptable modeling and control tech-
niques. Applications focus on optimizing the performance of building operations and on
facilitating the integration of renewable energy resources.
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Chapter 1

Introduction

In developed countries around the globe, commercial and residential buildings are responsible
for between 20% and 40% of energy consumption [78]. In developing countries, particularly
India and China, rising standards of living and the impacts of climate change are expected to
significantly increase the energy use of buildings. Studies suggest that global energy demand
for air conditioning may increase by 70% over the next century due to climate change effects.
Within the U.S., commercial and residential buildings account for 40% of primary energy
consumption, more than either the transportation sector or the industrial sector (29% and
30%, respectively) [94]. In particular, heating, ventilation, and air-conditioning (HVAC)
compose 43% of commercial and 54% of residential building site energy end-use. Space
heating alone accounts for 45% of residential energy use. Additionally, it is estimated that
nearly 10% of all greenhouse gas emissions within the U.S. are due to HVAC [94].

HVAC systems are an integral part of buildings responsible for regulating temperature,
humidity, carbon dioxide, and airflow, conditions which directly impact occupant health and
comfort. Estimates suggest that component upgrades and advanced HVAC control systems
could reduce building energy usage by up to 30% [11]. Such advanced systems can improve
the efficiency of building operations and better regulate indoor conditions to improve air
quality and occupant comfort.

Advances in HVAC control, as well as the control of other electric loads, would also en-
able buildings to participate in demand response markets. Maintaining a continuous and
instantaneous balance between generation and load is a fundamental requirement of the
electric power system [34]. The variability of renewable energy resources, particularly wind
and solar, poses a challenge for power system operators [45]. Namely, as renewable penetra-
tion increases it will be necessary for operators to procure more ancillary services, such as
regulation and load following, to maintain balance between generation and load [60, 107].
Responsive thermostatically controlled loads (TCLs) have a high potential for providing
such ancillary services [87, 18]. By shifting loads, building energy management systems will
improve power grid stability and reduce energy related carbon emissions [5, 13].

The study of building energy use is an ever expanding research topic which crosses the
fields of engineering, architecture, computer science, and mathematics. This dissertation
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contributes to the ongoing development of monitoring and control systems for building energy
use. By its very nature, the study of building energy use is also the study of people and
their needs and habits. Accordingly, we seek to understand and optimize a building and its
systems as observed in operation as opposed to by design. We place an emphasis on the
development of theory as well as validation through experimentation. Whenever possible,
we incorporate sensory data collected from systems in operation. In this way, we seek to
advance theory as well as practice.

The techniques presented in this dissertation can be divided into two general categories:
modeling and control. Modeling techniques are presented in Part I and encompass the
processing of data streams from sensors and the training of mathematical models. These
models enable us to predict the energy use of a building and of sub-systems, such as a HVAC
unit. Control techniques are presented in Part II and encompass the application of optimal
control theory, model predictive control, and convex distributed optimization to TCLs. This
allows us to control the energy use of a building to meet local or grid objectives.

The novel contributions of this dissertation include:

• Ensemble learning method for the electricity demand forecasting of buildings : The
method combines the predictions from multiple minimally-customized forecasting mod-
els to produce a single short-term prediction of electricity demand. We demonstrate
that the proposed method produces accurate electricity demand forecasts and that by
continuously updating the forecaster’s parameters, responds to changes in electricity
demand patterns.

• Kalman filter-based recursive parameter estimation technique for non-linear TCL model :
Using the Kalman filter and unscented Kalman filter, we develop four filter methods
(single, joint, dual, and triple) for recursively estimating a discrete-time TCL model
that is non-linear in the parameters. The analysis of the experimental results reveals
that each method successfully converges to comparable parameter estimates and is
capable of adapting to changes in the TCL characteristics.

• Piecewise linear thermal model of a residential building : We develop a model capable
of capturing the predominant dynamics and disturbance patterns of a forced-air resi-
dential heating system. Experimental results demonstrate the potential of the model
and parameter estimation method to produce accurate forecasts of the air temperature
within a conditioned space.

• Alternative control trajectory (ACT) representation: The ACT representation enables
the control of a non-convex discrete system to be represented as a convex program.
The solution to this program can be interpreted stochastically for implementation. The
significant contribution of this approach is that it allows for the approximate optimal
control of a population of non-convex agents using distributed convex optimization
techniques.
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• Distributed convex optimization of a TCL population: Using the ACT representation,
we developed a convex program that enables the distributed optimization of a TCL
population. Experimental results demonstrate the potential for TCLs to help maintain
a continuous and instantaneous balance between generation and load by participating
in real-time ancillary service markets.

In Chapter 2, we present an ensemble learning method for the short-term forecasting of
total electricity demand in buildings. Before attempting to change the electricity demand
of a building, it is important to be able to accurately predict the demand over a short time
horizon (on the order of hours or days). Over the past 3 decades, extensive research has
focused on the task of predicting electricity demand in buildings using an array of machine
learning techniques [3, 92, 41, 40]. Generally, these techniques must be tuned or customized
to individual buildings, requiring a large time investment by an engineer before a monitoring
system can begin producing electricity demand forecasts. In this dissertation, we present an
ensemble learning method for electricity forecasting. Put simply, we combine the predictions
from multiple minimally-customized forecasting methods to produce a single prediction. To
improve the accuracy of this prediction, we learn, from past data, how the multiple forecasts
should be combined. Rather than assuming that demand behaviors are time invariant,
the proposed method responds to changes in electricity demand patterns by continuously
updating the forecaster’s parameters.

In Chapter 3, we present a recursive parameter estimation technique for identifying a
thermostatically controlled load (TCL) model that is non-linear in the parameters. For a
population of TCLs to provide ancillary services, it is necessary for each TCL to model its
own behavior and to predict its energy demand. TCLs with poorly fit models will undermine
the ability of the population to accurately perform ancillary services. Given that most
TCLs experience regular changes to their physical characteristics (e.g. the contents of a
refrigerator, the flow through a water heater, or the occupancy of a conditioned room), a
linear time-invariant model is likely to prove inadequate. Also, for TCLs like radiant heaters
and air conditioners, it is not possible for the manufacturer to predetermine the physical
characteristics of the spaces that will be conditioned. Therefore, to improve the performance
of distributed TCL control methods, it is necessary to employ recursive or online parameter
estimation algorithms to fit and continuously update each TCL’s model.

In Chapter 4, we develop a piecewise linear thermal model of a residential building and
train the model using data collected from a custom-built thermostat. To effectively control
the operation of an HVAC system, it is essential that a model predictive controller incor-
porate an accurate mathematical representation of a building’s thermal dynamics. An ideal
control-oriented model would capture the predominant dynamics and disturbance patterns
within a building, enable accurate forecasting, adapt to future changes in building use, pro-
vide a model structure suitable for optimization, and be amenable to real-time data-driven
model identification methods. The piecewise linear model and recursive parameter esti-
mation method presented in this dissertation meets these characteristics by approximating
unmodeled dynamics within a building based on observable patterns in the sensor data.
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In Chapter 5, we present the alternative control trajectory (ACT) representation, a novel
method for the approximate optimization of non-convex discrete systems. Energy systems
like EVs and TCLs often have binary or discrete states due to hardware limitations and
efficiency characteristics. Consequently, non-convex techniques are generally required for
optimal control. This poses a challenge for load aggregation applications since distributed
optimization methods generally require linearity or convexity in the agents. The ACT rep-
resentation presented in this dissertation enables the control of a non-convex energy system
to be represented as a convex program. The solution to this program can be interpreted
stochastically for implementation. The significant contribution of this approach is that it
allows for the approximate optimal control of a population of non-convex agents using dis-
tributed convex optimization techniques.

Finally, in Chapter 6, we present a distributed convex optimization algorithm for the
control of a TCL population. Specifically, we examine the potential of TCLs, such as re-
frigerators and electric water heaters, to provide generation following services in real-time
energy markets (1 to 5 minutes). Past literature on modeling and control of TCL populations
has generally focused on aggregation methods with centralized control [61, 61, 70, 17]. In
contrast, the approach presented in this dissertation employs a distributed control scheme
with a centralized aggregator. Therefore, each TCL is controlled independently and the role
of the aggregator is to enable coordination within the population. To perform distributed
optimization across the population of TCLs, we apply a variation of the alternating direction
method of multipliers (ADMM) algorithm. We numerically demonstrate the algorithm’s po-
tential for controlling a TCL population’s total power demand within an error tolerance of
10 kW.

Each of the chapters in Parts I and II is self-contained and includes sections detailing
the motivations, relevant literature, experimental results, and conclusions. Lastly, research
that preceded or expands upon the work in Parts 1 and 2 is included in the Appendices.
Appendix A presents a gated ensemble learning method for the short-term forecasting of
total electricity demand in buildings. This method recursively trains multiple models for
predicting the electricity demand of a building and employs a gating method to determine
which model should be used to generate a forecast at a given time step. Appendix B
presents work on the parameter estimation and model predictive control of an apartment
with electric baseboard heaters and includes an analysis of how the forecast horizon impacts
the optimality of the controller. Appendix C presents a simulation study demonstrating the
capability of the parameter estimation method developed in Chapter 3 to quickly converge
to new parameter estimates in response to changes in the system dynamics. Additionally,
Appendix C presents simulation results for a population of refrigerators which optimize their
power demand based on a demand response electricity price event. These studies show the
advantage of using model predictive control with a recursive parameter estimation algorithm
rather than employing a fixed set of model parameters.
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Part I

Modeling
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Chapter 2

Building Electricity Load Forecasting

This chapter presents a stacking ensemble method which addresses the need for a general-
izable approach to building-level electricity demand forecasting. Rather than using a single
model to predict electricity demand, the method uses a weighted linear combination of fore-
casts from multiple sub-models. By learning the model weights in real-time using electricity
demand data streams and a moving horizon training technique, the method is more robust
than a single model approach. Experimental results demonstrate the application of the
method to electricity demand data sets for 8 different buildings.

2.1 Motivation & Background

Commercial and residential buildings account for 74.1% of U.S. electricity consumption, more
than either the transportation sector or the industrial sector (0.2% and 25.7%, respectively)
[96]. Maintaining a continuous and instantaneous balance between generation and load is a
fundamental requirement of the electric power system [34]. To reliably match supply with
demand, the forecasting of grid-level electricity loads has long been a central part of the
planning and management of electrical utilities [3]. The accuracy of these forecasts has
a strong impact on the reliability and cost of power system operations. Trends, such as
vehicle electrification and distributed generation, are expected to pose new challenges for
grid operators. In particular, traditionally centralized power flow and generator dispatch
tasks are becoming increasingly decentralized, creating a critical need for local electricity
forecasting.

To improve the accuracy of electricity demand forecasts and aid in power system man-
agement, recent attention has been placed on short-term building-level electricity demand
forecasting using a wide range of models [92, 41]. Accurate and adaptive forecasting of
demand-side loads will play a critical role in maintaining grid stability and enabling re-
newables integration. Additionally, many novel optimal control schemes, under research
umbrellas such as demand response and microgrid management, require short-term building
electricity demand forecasts to aid in decision making [40].
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2.2 Literature Review

Supply-side and demand-side electricity forecasting has been a topic of research for many
decades. The literature is filled with a variety of well-cited modeling approaches, each differ-
ing in algorithmic complexity, estimation procedure, and computational cost. Of particular
note are the variants of Artificial Neural Networks (ANN) [3, 92, 41, 7, 33, 43, 68], Support
Vector Regression (SVR) [62, 76, 44, 35] and Autoregressive Integrated Moving Average
(ARIMA) models [3, 76, 44, 108, 21, 88, 71]. Lesser but nonetheless noteworthy attention
has been given to approaches such as Multiple Linear Regression [3, 62, 81], Fuzzy Logic [3,
52], Decision Trees [92], and k-Nearest Neighbors (k-NN).

These studies provide a broad catalog of use-cases and demonstrate the performance of
certain forecasting algorithms when applied to specific building types. In particular, [3, 92,
68, 88] provide a survey of electricity forecasting methods and a high-level comparison of
techniques. In [33], the authors provide a detailed description of ANNs and their application
to load forecasting, including data pre-processing and ANN architectures. The work in [41]
details the development of a seasonal ANN approach and the advantage over a Seasonal
ARIMA (SARIMA) model when applied to 6 building datasets. The focus of [71] is on the
introduction of motion sensor data to improve the accuracy of an ARIMA model. In [43,
62, 108, 71, 52], the authors perform an in-depth analysis of the power demand patterns of
a particular building in order to customize a forecasting model.

In papers with experimental results, the authors have generally applied their electricity
demand forecasting technique to only a small number of datasets. Consequently, the liter-
ature is rich with forecasting algorithms tailored for individual buildings. This leads us to
the following question: Is it possible to design a minimally-customized forecasting algorithm
that is widely applicable across a diversity of building types, enabling scalability? We pur-
sue this question by proposing a stacking ensemble learning method for electricity demand
forecasting.

Specifically, due to unique building characteristics, occupancy patterns, and individual
energy use behaviors, the literature demonstrates that no single “silver bullet” model struc-
ture can accurately forecast electricity demand across all buildings. For example, some
forecasting models may produce accurate predictions under identifiable conditions, such as
a seasonal trend, a morning routine, or an extended absence. Other models may be ideal
for buildings with energy use behaviors that are periodic over long periods of time. For
buildings with frequent changes in occupancy patterns, recursively trained models may yield
the highest accuracy.

2.3 Contributions

A key contribution of this chapter is to develop an ensemble learning method that reduces
the need for intensive model selection on a case-by-case basis. Rather, an engineer can select
a set of different forecasting models that have proven effective in past case studies (e.g. the
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literature cited above). Once the models have been trained on building-specific electricity
demand records, our ensemble method can learn, in real-time, which sub-models to favor
and which to avoid for a particular building.

With our stacking ensemble method, we generate electricity demand forecasts using the
weighted sum of predictions from multiple different forecasting sub-models. The sub-model
weights are recursively learned using an electricity demand data stream and a moving hori-
zon training technique. In this way, the ensemble method is able to learn in real-time and to
produce short-term electricity demand forecasts that are automatically tailored to a partic-
ular building and instance in time. In addition to forecast accuracy, this chapter will place
an emphasis on method adaptability and ease of use. While we have implemented certain
forecasting sub-models in this chapter, the method is intended to allow the sub-models to
be interchangeable.

Chapter Outline

This chapter is organized into three sections: Methods, Results, and Conclusions. In Section
2.4 Methods, we briefly present background theory for the two exemplary regression sub-
models employed in this chapter, Ordinary (Linear) Least Squares with `2 Regularization
(Ridge) and k-Nearest Neighbors (k-NN). These regression models will compose the sub-
models in our ensemble method. Additionally, Section 2.4 presents the stacking ensemble
learning method for electricity demand forecasting with a moving horizon training technique.
In Section 2.5 Results, we apply and analyze the ensemble method to 8 commercial/university
building electricity demand datasets. Key conclusions and future research directions are
summarized in Section 2.6 Conclusions.

2.4 Methods

Regression Models

In this chapter, we will consider one parametric regression model, Ordinary (Linear) Least
Squares with `2 Regularization (Ridge), and one nonparametric model, k-Nearest Neighbors
with uniform weights and binary tree data structure (k-NN), for use as sub-models in our
stacking ensemble method. The structure of both regression models are briefly described
in the following subsections. While we have elected to employ relatively simple regression
models, our ensemble method is such that these models could easily be replaced with more
complex regression models, such as Artificial Neural Networks (ANNs) or Seasonal Autore-
gressive Integrated Moving Average (SARIMA) models.
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Ordinary Least Squares with `2 Regularization

Ordinary Least Squares with `2 Regularization (Ridge) fits a linear model with coefficients
w ∈ Rn to minimize the sum of squared errors between the observed and predicted responses,
while imposing a penalty on the size of coefficients measured by their `2-norm. The linear
model of a system with univariate output is given by

ŷ = w0x0 + w1x1 + . . .+ wnxn

=
∑
k
wkxk = wTx

(2.1)

with variables x ∈ Rn, the model input, ŷ ∈ R, the predicted response, n, the number of
inputs or features in x, and k = 1, . . . , n.

The linear model is trained on a set of inputs and observed responses by solving the
quadratic program:

min
w

∑
i

(wTxi − yi)2 + λ‖w‖2
2 (2.2)

with variables xi ∈ Rn, the model input for the i-th data point, yi ∈ R, the i-th observed
response, w ∈ Rn, the weighting coefficients, and i = 1, . . . , N , where N is the number of
data samples and n is the number of features in xi. Lastly, λ is a weighting term for the
regularization penalty.

For a system with a multivariate output ŷ ∈ Rm, we will treat the outputs as uncorrelated
and define a set of coefficients wj ∈ Rn for each predicted response ŷj ∈ R for j = 1, . . . ,m.
Thus, the multivariate linear model is

ŷj = wTj x, ∀j = 1, . . . ,m (2.3)

The weights of the multivariate model are determined by solving the quadratic program:

min
w

∑
i

∑
j

(wTj xi − yi,j)2 +
∑
j
λ‖wj‖2

2 (2.4)

with variables xi ∈ Rn, the model input, yi,j ∈ R, the j-th response observed response,
wj ∈ Rn, the weighting coefficients of the j-th response, i = 1, . . . , N , and j = 1, . . . ,m,
where N is the number of data samples, n is the number of features in xi, and m is the
number of observations in yi.

k-Nearest Neighbors Regression

In k-Nearest Neighbors Regression (k-NN), an input x ∈ Rn is mapped to a continuous
output value according to the weighted mean of the k nearest data points or neighbors,
as defined by the Euclidean distance. In this chapter, we will use uniform weights. In
other words, each point in a neighborhood a contributes uniformly and thus the predicted
univariate response ŷ ∈ R is the mean of the k-nearest neighbors.
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ŷ =
1

k

k∑

i=1

ya,i (2.5)

with variable ya, the set of k observed responses y ∈ R in neighborhood a. For a system
with multivariate output ŷ ∈ Rm, the model is defined as the mean of each observation j
over the k-nearest neighbors.

ŷj =
1

k

k∑

i=1

ya,i,j ∀j = 1, . . . ,m (2.6)

Given a new input x, it is possible to determine the neighborhood by computing the
Euclidean distance (i.e. `2-norm of the difference) between the new input x and every data
point in the training data set xi for i = 1, . . . , N and then ordering the distances to identify
the nearest neighbors. However, this brute-force search is computationally inefficient for
large datasets.

To improve the efficiency of the neighborhood identification, the training data points are
partitioned into a tree data structure. A commonly used approach for organizing points in
a multi-dimensional space is the ball tree data structure, a binary tree in which every node
defines a D-dimensional hypersphere or ball. At each node, data points are assigned to the
left or right balls according to their distance from the ball’s center. At each terminal node
or leaf, the data points are enumerated inside the ball. We refer the reader to [73] for a
description of ball tree construction algorithms.

Stacking Ensemble Learning

In this section, we develop a regression method that produces a prediction according to the
weighted sum of predictions from multiple sub-models. Ensemble learning methods which
linearly combine the predictions of multiple models are generally referred to as stacking or
stacked generalization methods and can often outperform any one of the trained sub-models
(see e.g. [104, 10]). To produce a multivariate prediction ŷΣ ∈ Rm, the ensemble model is
defined as the weighted sum of each prediction ŷs ∈ Rm from each sub-model s, as given by

ŷΣ =
M∑

s=1

θsŷs (2.7)

with variable θs ∈ R, the weighting coefficient of sub-model s where M is the number of
sub-models and subscript s = 1, . . . ,M indexes the coefficients (i.e. [θ1, . . . , θM ] = θ ∈ RM).
Note that we are not calculating the weighted mean of the sub-models. Therefore, we are
not requiring that the values of the weighting coefficients sum to 1 or that the individual
weights are positive.

We will employ an Ordinary Least Squares with `2 Regularization (Ridge) approach for
learning the weighting coefficients θ. By solving a quadratic optimization problem, we can
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identify the weighting coefficients that minimize the error between the observations and the
weighted sum of the sub-model predictions. The optimization problem and stacking ensemble
model at time step t are given by

θ? = argmin
θ

N∑

i=1

m∑

j=1

(
yi,j −

M∑

s=1

θsŷs,i,j

)2

+ λ
M∑

s=1

θ2
s (2.8)

ŷΣ,t =
M∑

s=1

θ?s ŷs,t (2.9)

with variables θ? ∈ RM, the optimal weighting coefficients, yi ∈ Rm, the i-th observed
multivariate response, ŷs,i ∈ Rm, the i-th prediction from sub-model s, ŷΣ,t ∈ Rm, the
ensemble model prediction at t, and i = 1, . . . , N , where N is the number of data samples
used for training and m is the length of yi. Subscript j = 1, . . . ,m indexes the j−th response.
Lastly, λ is a weighting term for the regularization penalty.

Stacking Ensemble with Moving Horizon Training

To enable the ensemble model to learn and adapt to changes in the observed system, we will
utilize time-varying weights, θt,s ∈ R for s = 1, . . . ,M (i.e. θt ∈ RM). These time-varying
weights will be calculated by minimizing the error between the observations and the weighted
sum of the sub-model predictions over a retrospective moving horizon of data samples. In
other words, at each time step t, we will retrain the ensemble model using only the most
recent T observations. Therefore, the observations used for calculating the weights θt will
move with the current time step. The moving horizon optimization problem and stacking
ensemble model at time step t are

θ?t = argmin
θt

T∑

i=1

m∑

j=1

(
yt−i,j −

M∑

s=1

θt,sŷs,t−i,j

)2

+ λ
M∑

s=1

θ2
t,s (2.10)

ŷΣ,t =
M∑

s=1

θ?t,sŷs,t (2.11)

with variables θ?t ∈ RM, the optimal weighting coefficients at time step t, yt ∈ Rm, the
observation at t, ŷs,t ∈ Rm, the prediction of sub-model s at t, and ŷΣ,t ∈ Rm, the ensemble
model prediction at t where T is the number of observations in the moving horizon.

Data

For experimentation, this chapter considers 2 years of metered hourly electricity demand
(kW) data for 8 buildings on the University of California, Berkeley campus. This time-series
data has been provided by the facilities team at the University of California, Berkeley and
will be used as the observation data for the sub-models and ensemble model. Submetered



CHAPTER 2. BUILDING ELECTRICITY LOAD FORECASTING 12

electricity demand data and building operations data, such a occupancy measurements and
mechanical system schedules, were not available. The 8 buildings were selected for their
diversity. These buildings include classrooms, offices, libraries, and research facilities. We
have also acquired hourly air temperature (◦C) and relative humidity (%RH) data from a
local weather station [86].

Ensemble Learning for Electricity Demand Forecasting

In this chapter, we will apply the stacking ensemble model above to the building electricity
forecasting problem. Given the many unpredictable behaviors of occupants and the unique
physical and mechanical characteristics of every building, a single model approach to elec-
tricity demand forecasting may perform very well in one case and very poorly in another.
Furthermore, the incorporation of exogenous signals like regional weather conditions may
improve a model’s accuracy but such benefits cannot be guaranteed. Only through observa-
tion and experimentation can the best regression models and input types be identified for a
particular building.

By employing our stacking ensemble learning method with moving horizon training tech-
nique, we seek to improve the robustness of our electricity demand forecaster. Before we
test the ensemble model, we must first train and test the sub-models. In this chapter, we
will use 8 sub-models, 4 using Ridge and 4 using k-NN. These models will be used to gen-
erate short-term multivariate electricity demand forecasts, specifically 6 consecutive hourly
electricity demand predictions (i.e. ŷ ∈ R6).

The regression models will employ 4 different input types or feature sets: electricity
demand (D), time (T), electricity demand and time (DT), and electricity demand, time,
and exogenous weather data (DTE). Thus, there is 1 Ridge model and 1 k-NN model for
each of the 4 input types. The electricity demand input type (D) consists of the 24 hourly
records that precede the desired forecast (x ∈ R24). The time input type (T) is the current
weekday and hour represented as a sparse binary vector (x ∈ {0, 1}31). The demand and
time input type (DT) combines the demand and time inputs (x ∈ R55). The demand, time,
and exogenous weather data input type (DTE) is the demand and time input plus current air
temperature (◦C) and relative humidity (%RH) data retrieved from a local weather station
(x ∈ R57)[86].

In this study, we train a set of 8 sub-models for each building. Training data from one
building is not used to fit the models of another building. The sub-models are trained in
an off-line batch manner (i.e. trained once on a large dataset) using 18 months of hourly
input data from January 1st, 2012, to July 1st, 2013 (i.e. 13,128 training data points). The
remaining 6 months of hourly data, July 1st, 2013, to January 1st, 2014 are reserved for
testing of the sub-models and the ensemble method (i.e. 4,416 testing data points).

Testing of the stacking ensemble method is done by repeating the following procedure
for each time step t = 1, . . . , 4416 where t represents the integer-valued hour between July
1st, 2013, and January 1st, 2014.
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1. Using each of the 8 sub-models, generate a 6 hour electricity demand forecast, ŷs,t ∈ R6

for s = 1, . . . , 8, as given by either (2.3) or (2.6).

2. Learn the model weights θ?t,s ∈ R for s = 1, . . . , 8 by minimizing (2.10) over a moving
horizon of the previous T = 168 observations (i.e. 7 days)

3. Generate the ensemble model’s forecast, ŷΣ,t ∈ R6, as given by (2.11).

Once a forecast has been generated for every data point in the testing set, we calculate
the errors between the observation yt and the forecast ŷΣ,t for t = 1, . . . , 4416. To evaluate
the advantage of our ensemble method over a single model approach, we also calculate the
errors between the observation yt and the sub-model forecasts ŷΣ,t for s = 1, . . . , 8 and
t = 1, . . . , 4416. To enable the comparison of forecasting error between different buildings,
the performance of the sub-models and the ensemble model will be reported as the mean
absolute percent error (MAPE),

MAPE =
100%

mN

N∑

i=1

m∑

j=1

∣∣∣∣∣
yi,j − ŷi,j
yi,j

∣∣∣∣∣ (2.12)

with variables yi ∈ Rm, the i-th observation, and ŷi ∈ Rm, the i-th prediction, where m
represents the number of outputs in the prediction (m = 6) and N , the number of predictions.

2.5 Results

The sub-model and ensemble model performances for each of the 8 building datasets are
summarized in Figure 2.1. In the figure, the marker color indicates the regression technique
used by each model (Ridge, k-NN, or Ensemble) and the marker shape indicates the data
type (D, T, DT, DTE, or Ensemble). The sub-model results (Ridge and k-NN) denote the
forecast MAPE produced from that particular sub-model, over the testing dataset. The
ensemble model results indicate the forecast MAPE produced by minimizing the moving
horizon optimization problem and a weighted linear combination of the sub-model forecasts.
Examples of the multivariate electricity demand forecasts ŷΣ,t ∈ R6 produced by the en-
semble model are presented in Figure 2.3. Note that the figure plots ŷΣ,t starting at but
excluding the most recent observation.

By comparing the results in Figure 2.1 for each building, we can distinguish sub-models
that generally perform poorly (e.g. Ridge and k-NN with T input) from sub-models that
generally perform well (e.g. Ridge and k-NN with DT input). We also observe dispersion
among the results, particularly in Buildings E, F, and H. This dispersion represents a chal-
lenge for building level electricity forecasting. To produce the best results using a single
model approach, an engineer must perform model selection for every deployment. This is
difficult to scale. Just because a certain regression model and input type has performed well
for one building does not guarantee it will do the same for another building.
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Figure 2.1: Ensemble Model and Sub-Model Performance Results. The mean
absolute percent error (MAPE) of the ensemble model and sub-models of each building for
every 6 hour forecast between July 1st, 2013, and January 1st, 2014.
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Figure 2.2: Time-Varying Sub-Model Weights. Examples of time varying weights θt,s
for building E from July 1st to November 1st, 2013.
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Figure 2.3: Building E Ensemble Forecasts. Examples of 6 hour electricity demand
forecasts for building E using the stacking ensemble learning method.

As indicated by the results, the ensemble model performs comparable to or better than the
best sub-model for each building. Therefore, by minimizing the moving horizon optimization
problem, the ensemble model is able to (i) learn the sub-model weights in an online manner,
and (ii) produce a linear combination of sub-model forecasts that is comparable to or better
than the best sub-model forecast. This characteristic is valuable to grid operators and
building-level applications. Specifically, engineers need only identify a set of sub-models
which generally perform well for demand-side electricity demand forecasting. Then, after
training each sub-model on data from a particular building, the stacking ensemble learning
method with moving horizon training technique can adaptively identify the weighting of each
sub-model for that building.

Figure 2.2 presents the sub-model weights θt,s of the Building E ensemble model from July
1st to November 1st, 2013. The weights θt,1, θt,2, θt,3, and θt,4 correspond to the Ridge models
with D, T, DT, and DTE input types, respectively. Similarly, the weights θt,5, θt,6, θt,7, and
θt,8 correspond to the k-NN models with D, T, DT, and DTE input types, respectively. As
shown, the model weights do not converge but rather continuously evolve in time. Because
the weights are determined by minimizing the moving horizon optimization problem, there
are trends in the weighting values, but as the training data changes, so do the weights. Of
particular note is the sharp change in the parameter values around September 1st, 2013.
This can be attributed to the start of the fall academic semester at UC Berkeley and the
corresponding change in electricity demand patterns.
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2.6 Conclusions

This chapter presented a stacking ensemble learning method with a moving horizon train-
ing approach. We applied the method to the short-term building-level electricity demand
forecasting problem. The experimental results demonstrate enhanced forecasting accuracy
across a diversity of buildings due to two features out our approach: (i) employing a lin-
ear combination of sub-models, and (ii) adaptively learning the stacked model weights in
real-time. The practical advantages are notable. Namely, the proposed method enables reli-
able forecasts over evolving use patterns across a wide diversity of buildings, in contrast to
selecting and tailoring a single model for each building.

Additionally, the adaptability provided by the moving horizon training approach enables
enhanced control applications. Rather than assuming that demand behaviors are time in-
variant, the proposed method responds to changes in electricity demand patterns. We have
demonstrated this method on 8 buildings’ datasets using 8 sub-models each. The results
demonstrate that the stacking ensemble method produces equal or better accuracy than
single models for multivariate electricity demand forecasts for building-level applications.
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Chapter 3

Recursive Parameter Estimation of
Thermostatically Controlled Loads

This chapter presents various unscented Kalman filter (UKF) algorithm variations for recur-
sively identifying a thermostatically controlled load (TCL) model that is non-linear in the
parameters. Experimental results demonstrate the parameter estimation of two residential
refrigerators.

3.1 Motivation & Background

Large populations of thermostatically controlled loads (TCLs) hold great potential for per-
forming ancillary services in power systems. The advantages of responsive TCLs over large
storage technologies include: (i) they are already well-established technologies; (ii) they are
spatially distributed around the power system; (iii) they employ simple and fast local actu-
ation; (iv) they are unimpaired by the outage of individuals in the population; and (v) they
- on the aggregate - can produce a quasi-continuous response despite the discrete nature of
the individual controls [13, 18, 65].

Because TCLs are controlled according to a temperature setpoint and deadband range,
customers are generally indifferent to precisely when electricity is consumed. The inherent
flexibility of TCLs, such as refrigerators and electric water heaters, makes them promising
candidates for provisioning power system services. In fact, direct load control (DLC) and
demand response (DR) programs are increasingly controlling TCLs, among other electric
loads, to improve power grid stability [25, 63].

For a population of TCLs to provide ancillary services, it is necessary for each TCL to
model its own behavior and to predict its energy demand. TCLs with poorly fit models will
undermine the ability of the population to accurately perform ancillary services. Given that
most TCLs experience regular changes to their physical characteristics (e.g. the contents of
a refrigerator, the flow through a water heater, or the occupancy of a conditioned room), a
linear time-invariant model is likely to prove inadequate. Also, for TCLs like radiant heaters
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and air conditioners, it is not possible for the manufacturer to predetermine the physical
characteristics of the spaces that will be conditioned. Therefore, to improve the performance
of distributed TCL control methods, it is necessary to employ recursive or online parameter
estimation algorithms to fit and continuously update each TCL’s model.

Contributions

This chapter contributes to the development of recursive parameter estimation algorithms for
TCLs by investigating various unscented Kalman filters for the estimation of a TCL model
that is non-linear in the parameters. We present four closely related filter methods (single,
joint, dual, and triple) employing both the standard Kalman filter (KF), and unscented
Kalman filter (UKF) algorithms. Specifically, we consider: (i) a single filter approach in
which one UKF estimates the TCL parameters; (ii) a joint filter approach in which one UKF
simultaneously estimates both the parameters and the state; (iii) a dual filter approach in
which one UKF estimates the parameters and one KF estimates the state; and (iv) a triple
filter approach in which one UKF estimates the parameters, one KF estimates the state,
and another KF estimates the model inputs. Finally, we present experimental parameter
estimation results using real temperature data from two residential refrigerators.

Chapter Outline

This chapter is organized as follows. Section II discusses the TCL model and Section III
overviews the parameter estimation problem. Sections IV and V provide background for the
standard Kalman filter (KF) and the unscented Kalman filter (UKF), respectively. Section
VI formulates four filter methods for recursive parameter estimation of a TCL. Section VII
provides numerical examples of our proposed algorithms. Finally, Section VII summarizes
key results.

3.2 Thermostatically Controlled Load Model

The predominant dynamics of a thermostatically controlled load (TCL) can be represented
by the first order continuous time state equation

Ṫ t =
T t∞ − T t
RC

+
Pmt

C
(3.1)

where T t ∈ R, T t∞ ∈ R, and mt ∈ {0, 1} are the temperature of the conditioned mass
(state, ◦C), the ambient air temperature (disturbance input, ◦C), and the discrete state of
the mechanical system (control input, On/Off), respectively. The parameters R (◦C/kW ),
C (kJ/◦C), and P (kW ) represent the thermal resistance, thermal capacitance, and rate of
energy transfer, respectively.
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The model can be expressed in the state-space form

Ṫ t = AcT
t +Bcu

t (3.2)

where

Ac =
[−1

RC

]

Bc =
[

1

RC

P

C

]

ut =

[
T t∞

mt

]
(3.3)

Assuming a zero-order hold on the input u, the model can be discretized using the
transforms

Ad = eAc∆t

Bd = A−1
c (Ad − I)Bc

(3.4)

where ∆t defines the length in hours between each time step. We define this as ∆t = 1/60
(hours). Therefore, the state-space model becomes

T k+1 = AdT
k +Bdu

k (3.5)

where
Ad =

[
e−

∆t
RC

]

Bd =
[
(1− e− ∆t

RC ) (1− e− ∆t
RC )RP

]

uk =

[
T k∞

mk

] (3.6)

and k = 1, 2, . . . , n denotes the integer-valued time step.
If we treat the control input mk as a state with a piecewise update equation which enforces

a temperature deadband range, the TCL can be expressed as the hybrid state discrete time
model [69, 38, 17, 13, 14]

T k+1 = θ1T
k + (1− θ1)(T k∞ + θ2m

k) + θ3 (3.7a)

mk+1 =





1 if T k > Tset + δ
2

0 if T k < Tset − δ
2

mk otherwise

(3.7b)

where state variables T k ∈ R and mk ∈ {0, 1} denote the temperature of the conditioned
mass and the discrete state (on or off) of the mechanical system, respectively. Additionally,
T k∞ ∈ R is the ambient temperature (◦C), Tset ∈ R the temperature setpoint (◦C), and
δ ∈ R the temperature deadband width (◦C).

The parameter θ1 represents the thermal characteristics of the conditioned mass as defined
by θ1 = exp(−∆t/RC), θ2 the energy transfer to or from the mass due to the systems
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operation as defined by θ2 = RP , and θ3 an additive noise process accounting for energy
gain or loss not directly modeled. Note that the sign conventions in (3.7) assume that the
TCL is providing a cooling load and that P (and thus θ2) is negative.

3.3 Nonlinear Parameter Estimation Background

A fundamental machine learning problem involves the identification of a nonlinear mapping

yk = G(xk, θ) (3.8)

where variable xk ∈ RX is the input, yk ∈ RY is the output, and the nonlinear map G is
parameterized by θ ∈ RΘ. Additionally, k denotes the integer-valued time step and X, Y ,
and Θ are the number of inputs, outputs, and parameters, respectively.

Batch Parameter Estimation

Learning can be performed in a batch manner by producing estimates of the parameters θ̂
given a training set of observed inputs and desired outputs, {x, y}. The goal of a parameter
estimation algorithm is to minimize some function of the error between the desired and
estimated outputs as given by ek = yk −G(xk, θ̂).

Recursive Parameter Estimation

The parameter estimation problem can be expressed in a recursive form using a discrete-time
state-space model representation

θk = θk−1 + nk (3.9a)

yk = G(xk, θk) + ek (3.9b)

where θk represents the parameter estimates at time step k and nk ∈ RΘ corresponds to the
parameter update noise (i.e. change in parameter values). The goal of a recursive parameter
estimation algorithm is to produce θ̂k so as to minimize some function of the error ek.

3.4 Kalman Filter Background

The Kalman filter (KF) is a recursive estimator for linear models such as the discrete-time
state-space model

xk = Axk−1 +Buk + vk (3.10a)

yk = Cxk +Duk + wk (3.10b)
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x̂k|k−1

ŷk

ykrk

Figure 3.1: Kalman Filter Diagram

where variable xk ∈ RX is the state of the system, uk ∈ RU is the known exogenous input,
and yk ∈ RY is the observed measurement signal. The state transition model is given by
A ∈ RX×X and the control-input model by B ∈ RX×U . The process noise vk ∈ RX has
covariance Qv ∈ RX×X , vk ∼ N(0, Qv). The observation model is given by C ∈ RY×X and
the feedthrough model by D ∈ RY×U . The measurement noise wk ∈ RY has covariance
Qw ∈ RY×Y , wk ∼ N(0, Qw). The variances of vk and wk (i.e. diagonal elements of Qv and
Qw, respectively) must be known in order to implement a Kalman filter.

The Kalman filter (KF) algorithm consists of a prediction step and an update/correction
step. The KF will model xk as a Gaussian random variable (GRV) with estimated mean
x̂k ∈ RX and covariance Qk

x ∈ RX×X . To provide clarity, it is helpful to expand the
k notation to distinguish between the state estimates produced before and after the KF
correction step. Therefore, at each time step k, the predicted (a priori) state estimate,
denoted as x̂k|k−1, is the mean estimate of xk given measurements y0, . . . , yk−1. The corrected
(a posterior) state estimate, x̂k|k, is the mean estimate of xk given measurements y0, . . . , yk.
To reiterate, throughout this chapter, the uncorrected predictions (a priori) are denoted
by k|k − 1 or k + 1|k whereas the corrected predictions (a posterior) are denoted by k|k,
k − 1|k − 1, or k + 1|k + 1.

The KF prediction step is given by

x̂k|k−1 = Ax̂k−1|k−1 +Buk (3.11a)

Qk|k−1
x = AQk−1|k−1

x AT +Qv (3.11b)

and the update/correction step by

ŷk = Cx̂k|k−1 +Duk (3.12a)

Qy = CQk|k−1
x CT +Qw (3.12b)
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K = Qk|k−1
x CTQ−1

y (3.13a)

rk = yk − ŷk (3.13b)

x̂k|k = x̂k|k−1 +Krk (3.13c)

Qk|k
x = Qk|k−1

x −KQyKT (3.13d)

Figure 3.1 illustrates the KF algorithm. The block TD represents a time delay (com-
monly denoted in controls literature by z−1 or 1/z, the Z-transform of the delay operator).
To simplify notation in this chapter, we will express the Kalman filter algorithm with the
following 3 operator expressions

[
x̂k|k−1

Qk|k−1
x

]
= KFx

([
A
B

]
,

[
x̂k−1|k−1

Qk−1|k−1
x

]
, uk, Qv

)
(3.14a)

[
ŷk

Qk
y

]
= KFy

([
C
D

]
,

[
x̂k|k−1

Qk|k−1
x

]
, uk, Qw

)
(3.14b)



x̂k|k

Qk|k
x

rk


 = KFc

([
x̂k|k−1

Qk|k−1
x

]
,

[
ŷk

Qk
y

]
, C, yk

)
(3.14c)

where (3.14a) corresponds to (3.11a-3.11b), (3.14b) to (3.12a-3.12b), and (3.14c) to (3.13a-
3.13d).

3.5 Unscented Kalman Filter Background

The UKF is an extension to the standard Kalman filter that utilizes a deterministic sampling
approach known as the unscented transform (UT) to characterize states which undergo a
nonlinear transformation. The UKF builds on the intuition that it is easier to approximate
a probability distribution than to approximate an arbitrary nonlinear transformation [42].

Like the Kalman filter, the UKF includes a prediction step and an update/correction
step. However, with the UKF, a state distribution is approximated by a Gaussian random
variable (GRV) and specified using a minimal set of sample, or sigma, points around the
mean. These sigma points are selected such that they capture the true mean and covariance
of the GRV. When propagated through a nonlinear transform, the sigma points accurately
capture the a posterior mean and covariance of the estimated state.

In other words, rather than simply passing the previous state estimate x̂k−1 through a
nonlinear transform to produce a predicted state estimate x̂k, the UKF transforms the set
of sigma points. The predicted state estimate x̂k is then recovered as a weighted mean of
the transformed points. With the UT, approximations of Gaussian states are accurate to
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the third order for any nonlinearities [100]. For non-Gaussian states, approximations are
accurate to at least the second-order for any nonlinearities.

In this chapter, we employ the UKF algorithm as presented by Wan and van der Merwe
[100, 98, 99] and summarized in the following section. Specifically, see Tables 7.3.1 and 7.3.2
in [98] for the algorithm employed in this work. We direct the reader to [42] for the original
presentation of the UT and UKF. A discussion of dual estimation can be found in [100, 99].

In the following subsections, we summarize the UKF algorithm as presented by Wan and
van der Merwe [98].

Sigma Points and Unscented Transform

To detail the UKF algorithm, we begin by describing the generation of sigma points and
the execution of the unscented transform (UT). Consider a random variable s ∈ RL with
mean s̄ ∈ RL and covariance Qs ∈ RL×L that is propagated through a nonlinear function
f such that z = f(s) where z ∈ RZ . To calculate the statistics of z, we form a matrix
S ∈ RL×(2L+1) consisting of 2L+ 1 sigma points Si given by

S0 = s̄

Si = s̄+
(√

(L+ λ)Qs

)

i
, i = 1, . . . , L

Si+L = s̄−
(√

(L+ λ)Qs

)

i
, i = 1, . . . , L

(3.15)

where
(√

(L+ λ)Qs

)
i

is the ith column of the matrix square root of (L + λ)Qs and λ =

α2(L+ κ)−L is a scaling parameter. Constant α determines the spread of the sigma points
(usually 10−4 ≤ α ≤ 1) and constant κ is a secondary scaling parameter (usually κ = 0 or
3− L).

The sigma points are propagated through the nonlinear function

Zi = f(Si) i = 0, . . . , 2L (3.16)

and the mean and covariance of z are approximated as a weighted mean and covariance of
the a posterior sigma points

z̄ ≈
2L∑

i=0

Wm,iZi (3.17)

Qz ≈
2L∑

i=0

Wc,i(Zi − z̄)(Zi − z̄)T (3.18)

with weights Wm, corresponding to the a posterior mean of the sigma points, given by

Wm,0 = λ/(L+ λ)

Wm,i = λ/(2(L+ λ)), i = 1, . . . , 2L
(3.19)
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and weights Wc, corresponding to the a posterior covariance of the sigma points, given by

Wc,0 = λ/(L+ λ) + (1− α + β)

Wc,i =Wm,i, i = 1, . . . , 2L
(3.20)

where constant β incorporates prior knowledge of the distribution of s (for Gaussian distri-
butions, β = 2 is optimal).

To simplify notation, we will denote the generation of sigma points and the execution of
the unscented transform ((3.15)-(3.18)) with the following operator expressions

S = UTs(s̄, Qs) (3.21a)

Zi = f(Si) i = 0, . . . , 2L (3.21b)

z̄ = UTm(Z) (3.21c)

Qz = UTc(Z) (3.21d)

where (3.21a) corresponds to (3.15), (3.21c) to (3.17), and (3.21d) to (3.18).

Unscented Kalman Filter Algorithm

The unscented Kalman filter (UKF) is a straightforward application of the UT to recursive
estimation. To present the UKF algorithm, we will consider the state estimation of a discrete-
time nonlinear dynamic system with non-additive noise given by the state-space model

xk = F (xk−1, uk, vk) (3.22a)

yk = H(xk, uk, wk) (3.22b)

where variable xk ∈ RX is the state of the system, uk ∈ RU is the known exogenous input,
and yk ∈ RY is the observed measurement signal. Function F is the transition model and
the process noise vk ∈ RX has covariance Qv ∈ RX×X , vk ∼ N(0, Qv). Function H is
the observation model and the measurement noise wk ∈ RY has covariance Qw ∈ RY×Y ,
wk ∼ N(0, Qw).

The UKF will model xk as a GRV with estimated mean x̂k and covariance Qk
x. At each

time step k, the UKF will generate sigma points for the previous state estimate, x̂k−1|k−1.
For systems with non-additive noise, the state estimate and covariance is augmented with
the process and measurement noise, as given by

s̄k−1 =



x̂k−1|k−1

v̄k

w̄k


 (3.23a)

Qk−1
s =



Qk−1|k−1
x 0 0

0 Qv 0
0 0 Qw


 (3.23b)
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Figure 3.2: Additive Unscented Kalman Filter Diagram

where v̄k and w̄k are the mean of the process and measurement noises, respectively. In
other words, if Gaussian, v̄k ∈ {0}X and w̄k ∈ {0}Y . The dimensionality of s̄ is therefore
L = 2X + Y .

Next, the UKF will generate the sigma points. Because we are using the augmented
state, we will introduce Sx, Sv, and Sw, the sigma points associated with the state estimate,
process noise, and measurement noise, respectively.

Sk−1 = UTs(s̄
k−1, Qk−1

s ) (3.24a)

Sk−1
x,j = Sk−1

j j = 0, . . . , X − 1 (3.24b)

Sk−1
v,j = Sk−1

j j = X, . . . , 2X − 1 (3.24c)

Sk−1
w,j = Sk−1

j j = 2X, . . . , 2X + Y − 1 (3.24d)

where j refers to the rows of the L by 2L+ 1 matrix S.
In the prediction step, the UKF will propagate the sigma points through the process

model and generate the a priori sigma points X k|k−1
i , state estimate x̂k|k−1, and covariance

Qk|k−1
x as follows,

X k|k−1
i = F (Sk−1

x,i , u
k,Sk−1

v,i ) i = 0, . . . , 2L (3.25a)

x̂k|k−1 = UTm(X k|k−1) (3.25b)

Qk|k−1
x = UTc(X k|k−1) (3.25c)

In the correction step, the UKF will propagate the a priori sigma points through the mea-
surement model to generate the measurement sigma points Yki , estimate ŷk, and covariance
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Qy as follows,

Yki = H(X k|k−1
i , uk,Sk−1

w,i ) i = 0, . . . , 2L (3.26a)

ŷk = UTm(Yk) (3.26b)

Qy = UTc(Yk) (3.26c)

These are used to calculate the cross-covariance Qxy, the Kalman gain K, and the ob-
servation error rk. Finally, the state estimate and covariance are corrected, producing the a
posterior estimate x̂k|k and covariance Qk|k

x .

Qxy =
2L∑

i=0

Wc,i(X k|k−1
i − x̂k|k−1)(Yki − ŷk)T (3.27a)

K = QxyQ
−1
y (3.27b)

rk = yk − ŷk (3.27c)

x̂k|k = x̂k|k−1 +Krk (3.27d)

Qk|k
x = Qk|k−1

x −KQyKT (3.27e)

where rk ∈ R is the error between the measurement yk and the estimate ŷk at time step k.
To simplify notation in this chapter, we will express the non-additive unscented Kalman

filter algorithm with augmented state using the following 4 operator expressions


Sk−1
x

Sk−1
v

Sk−1
w


 = UKFs

([
x̂k−1|k−1

Qk−1|k−1
x

]
,

[
v̄k

Qv

]
,

[
w̄k

Qw

])
(3.28a)



x̂k|k−1

Qk|k−1
x

X k|k−1


 = UKFx

(
F,Sk−1

x , uk,Sk−1
v

)
(3.28b)



ŷk

Qk
y

Yk


 = UKFy(H,X k|k−1, uk,Sk−1

w ) (3.28c)



x̂k|k

Qk|k
x

rk


 = UKFc






x̂k|k−1

Qk|k−1
x

X k|k−1


 ,



ŷk

Qk
y

Yk


 , yk


 (3.28d)

where (3.28a) corresponds to (3.23-3.24), (3.28b) to (3.25), (3.28c) to (3.26), and (3.28d) to
(3.27).

Additive Unscented Kalman Filter

Consider the discrete-time nonlinear dynamic system with additive noise,

xk = F (xk−1, uk) + vk (3.29a)

yk = H(xk, uk) + wk (3.29b)
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In this (very common) case, the UKF algorithm can be simplified. Specifically, s̄k−1 =
x̂k−1|k−1, Qk−1

s = Qk−1|k−1
x , and there are no sigma points for the process and measurement

noise. This reduces the computational complexity of each iteration of the UKF from O((2X+
Y )3) to O(X3) where X is the dimensionality of the state space and Y the dimensionality of
the observation space. The complete additive UKF algorithm for model (3.29) is therefore,

Sk−1
x = UTs(x̂

k−1|k−1, Qk−1|k−1
x ) (3.30a)

X k|k−1
i = F (Sk−1

x,i , u
k) i = 0, . . . , 2X (3.30b)

x̂k|k−1 = UTm(X k|k−1) (3.30c)

Qk|k−1
x = UTc(X k|k−1) +Qv (3.30d)

Yki = H(X k|k−1
i , uk) i = 0, . . . , 2X (3.30e)

ŷk = UTm(Yk) (3.30f)

Qy = UTc(Yk) +Qw (3.30g)

Qxy =
2L∑

i=0

Wc,i(X k|k−1
i − x̂k|k−1)(Yki − ŷk)T (3.30h)

K = QxyQ
−1
y (3.30i)

rk = yk − ŷk (3.30j)

x̂k|k = x̂k|k−1 +Krk (3.30k)

Qk|k
x = Qk|k−1

x −KQyKT (3.30l)

Figure 3.2 illustrates the additive UKF algorithm. The block TD represents a time
delay (commonly denoted in controls literature by z−1 or 1/z, the Z-transform of the delay
operator). To simplify notation in this chapter, we will express the additive unscented
Kalman filter algorithm using the following 4 operator expressions

[
Sk−1
x

]
= UKF+

s

([
x̂k−1|k−1

Qk−1|k−1
x

])
(3.31a)



x̂k|k−1

Qk|k−1
x

X k|k−1


 = UKF+

x

(
F,Sk−1

x , uk, Qv

)
(3.31b)



ŷk

Qk
y

Yk


 = UKF+

y (H,X k|k−1, uk, Qw) (3.31c)



x̂k|k

Qk|k
x

rk


 = UKF+

c






x̂k|k−1

Qk|k−1
x

X k|k−1


 ,



ŷk

Qk
y

Yk


 , yk


 (3.31d)

where (3.31a) corresponds to (3.30a), (3.31b) to (3.30b-3.30d), (3.31c) to (3.30e-3.30g), and
(3.31d) to (3.30h-3.30l).
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Figure 3.3: Single Filter Method Diagram

3.6 Recursive TCL Parameter Estimation

In this section, we will present 4 closely related approaches for parameter estimation of a
thermostatically controlled load (TCL) using the Kalman filter (KF) algorithm in (3.14) and
unscented Kalman filter (UKF) algorithm in (3.31). In this chapter, we will consider: (i) a
single filter approach in which one UKF is used to estimate the parameters θk; (ii) a joint
filter approach in which one UKF simultaneously estimates both θk and T k; (iii) a dual filter
approach in which one UKF estimates the parameters θk and one KF estimates the state
T k; and (iv) a triple filter approach in which we use one UKF to estimate θk, one KF to
estimate T k, and another KF to estimate the inputs, T k∞ and mk.

In each case, we define the function G according to the TCL model (3.7)

T k+1 = θk1T
k +

[
1− θk1 1− θk1θk2 θk3

]


T k∞
mk

1




= G(T k, T k∞,m
k, θk)

(3.32)

Single Filter Parameter Estimation

Using the function G given in (3.32), the TCL recursive parameter estimation problem can
be expressed with the state-space model

θk = θk−1 + nk (3.33a)

yk = G(T k, T k∞,m
k, θk) + vk + wk (3.33b)

where (3.33b) combines (3.32) with observation model yk = T k+1 + wk.
Figure 3.3 illustrates the single filter method. The block TD represents a time delay

(commonly denoted 1/z, the Z-transform of the delay operator). By employing the additive
UKF algorithm in (3.31) with the T k+1 observation as yk, we can produce θ̂k, an estimate
of the model parameters at time step k. Note that in the single filter case, θ corresponds
to x, the variable being estimated, and G to H, the observation model. Additionally, the
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Figure 3.4: Joint Filter Method Diagram

transition model F is given by F (xk−1, uk) = xk−1 and T k, T k∞, and mk are effectively uk,
control and feed-through inputs at time step k.

Joint Filter State and Parameter Estimation

For system identification, it is often necessary to simultaneous perform state and parameter
estimation from noisy observations [100]. There are two basic approaches, joint and dual
estimation. In the joint estimation method, state and parameter estimation can be performed
simultaneously with a single filter by estimating the state-space model

[
θk

T k+1

]
=

[
θk−1

G(T k, T k∞,m
k, θk−1)

]
+

[
nk

vk

]
(3.34a)

yk = T k+1 + wk (3.34b)

Figure 3.4 illustrates the joint filter method where the block TD represents a time delay.
Just as in the single filter method, we employ the additive UKF algorithm in (3.31) with the
T k+1 observation as yk to recursively estimate the model. However, in the joint filter method,
we produce estimates of both the state and the parameters (T̂ k+1 and θ̂k, respectively).

Dual Filter State and Parameter Estimation

In the dual estimation method, a separate state-space representation is used for the states
and parameters. For a TCL, the state model is given by

T k+1 = G(T k, T k∞,m
k, θk) + vk (3.35a)

yk = T k+1 + wk (3.35b)

and the parameter model by (3.33).
Figure 3.5 illustrates the dual filter method where the block TD represents a time delay.

Because the function G is linear in the states, we can estimate the state model (3.35) using
the KF algorithm in (3.14) with the T k+1 observation as yk to produce T̂ k+1. Again, the
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Figure 3.5: Dual Filter Method Diagram

parameter model (3.33) is estimated using the additive UKF algorithm in (3.31). We tie
the two filters together by using the estimated state of one filter as the control input and/or
observation in another filter. Specifically, for the state filter, we use the previous parameter
estimate θ̂k−1 in the transition model. For the parameter filter, we use the previous estimate
T̂ k as input in the observation model and the current estimate T̂ k+1 as the observation yk

(rather than the T k and T k+1 observations, respectively).

Triple Filter Input, State, and Parameter Estimation

Lastly, we consider an estimation approach in which separate filters are used to estimate the
inputs, states, and parameters. For simplicity and consistency, we will refer to this as the
triple filter approach. The input model is given by

[
T k∞
mk

]
=

[
T k−1
∞

mk−1

]
+

[
pk1
pk2

]
(3.36a)

yk =



G(T k, T k∞,m

k, θk−1)
T k∞
mk


+



vk + wk

qk1
qk2


 (3.36b)

where p ∈ R2 and q ∈ R2 are process and measurement noises, respectively, associated with
the inputs T∞ and m. Again, the state model is given by (3.35) and the parameter model
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Figure 3.6: Triple Filter Method Diagram

by (3.33).
Figure 3.6 illustrates the triple filter method where the block TD represents a time delay.

The input model (3.36) is estimated using the KF algorithm in (3.14) with the T k+1, T k∞,
and mk observations as yk to produce T̂ k∞ and m̂k. To tie the three models together, the
input estimates T̂ k∞ and m̂k are used in the transition model of the state filter and the
observation model of the parameter filter. The previous parameter estimate θ̂k−1 is used in
the observation model of the input filter and the transition model of the state filter. Lastly,
the state estimate T̂ k is used in the observation model of the input and parameter filters and
T̂ k+1 serves as the observation yk in the parameter filter.
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Figure 3.7: Single Filter. TCL1 Parameter Estimation
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Figure 3.8: Single Filter. TCL2 Parameter Estimation

3.7 TCL Estimation Experimental Results

In this section, we present parameter estimation results for TCL1, a 500W residential re-
frigerator, and TCL2, a 100W mini-fridge. Each TCL is instrumented with two DS18B20
digital temperature sensors to measure the ambient temperature T∞ and internal refrigera-
tor temperature T . The sensors have a −55◦C to +125◦C temperature range and a ±0.5◦C
accuracy from −10◦C to +85◦C. A current sensor is used to measure the state (on or off) of
the compressor, m. Measurements were taken at 1 minute intervals for a period of 7 days.
In this study, the temperature of the freezer is neither measured nor modeled.

TCL1 is observed under typical operating conditions for a residential refrigerator. There-
fore, the door is opened randomly and the contents of the refrigerator change regularly. By
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Figure 3.9: Joint Filter. TCL1 Parameter Estimation
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Figure 3.10: Joint Filter. TCL2 Parameter Estimation
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Figure 3.11: Dual Filter. TCL1 Parameter Estimation
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Figure 3.12: Dual Filter. TCL2 Parameter Estimation
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Figure 3.13: Dual Filter. TCL1 Temperature State Estimate
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Figure 3.14: Dual Filter. TCL2 Temperature State Estimate

contrast, TCL2 is empty except for 18 liters of water, which compose the thermal mass being
conditioned by the unit. The door of TCL2 remains closed for the duration of the study.

For both TCLs, we have implemented four parameter estimation methods using the stan-
dard and unscented Kalman filters: single filter, joint filter, dual filter, and triple filter. The
final parameter estimates θ̂f are presented in Table 3.1. Normally, for system identification,
we would seek to measure the performance of each algorithm by first learning the parameters
using a training dataset and then testing the parameters using a separate validation dataset.
However, an advantage of recursive parameter estimation is that we can continuously im-
prove the parameter estimates and potentially adapt to changes in the mechanical system.
Therefore, for the single, dual, joint, and triple filter methods, we represent the performance
as the root mean squared error (RMSE) over the last 300 time steps (i.e 5 hours). We
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Figure 3.15: Triple Filter. TCL1 Parameter Estimation

will denote this moving window RMSE as RMSE300. To measure the parameter estimation
error, we employ the residual error rk of the parameter filter for each of the four methods.

Figures 3.7 and 3.8 present the parameter estimation results using the single filter method.
The top subplots show the parameter estimates θ̂k produced by the parameter filter at each
time step k. For each parameter, the center line is the mean or expected value of the estimate
and the top and bottom lines illustrate the variance relative to the mean. Eventually all
parameter estimates converge and the variances decrease. The bottom subplots depict the
residual error rk. As shown, the parameter estimation for TCL1 converges in about 1500
time steps while TCL2 converges in about 3000 time steps.

Figures 3.9 and 3.10 present the parameter estimation results using the joint filter method
and Figures 3.11 and 3.12 for the dual filter method. Again, the top subplots show the pa-
rameter estimates θ̂k. The bottom subplots depict the residual error rk. The state estimates
T̂ k are presented in the center subplots. Both TCLs exhibit similar convergence character-
istics compared to the single filter method. Upon convergence, the difference between the
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Figure 3.16: Triple Filter. TCL2 Parameter Estimation

measured temperature T and estimated temperature T̂ becomes negligible. Samples of the
temperature estimates produced by the dual filter are shown in Figures 3.13 and 3.14.

As shown in Table 3.1, the differences in the final TCL1 and TCL2 parameter estimates
for the single, joint, and dual filters are small enough to be considered negligible. Thus,
with respect to parameter estimation, the joint and dual filters show little to no advantage
over the single filter method. In other words, filtering the temperature measurement T does
not appear to significantly improve the performance of our parameter estimation algorithm.
Considering that we are estimating the parameters of two residential-sized refrigerators, this
is not a surprising outcome. For a larger or noisier TCL, the joint and dual filters may
yield a greater advantage, but for the TCLs used in this study, the estimation of T is simply
unnecessary.

Figures 3.15 and 3.16 present the parameter estimation results using the triple filter
method. In addition to the parameter estimate θ̂k, state estimate T̂ k, and parameter filter
residual error rk, the figure displays the compressor state estimates m̂k. The input filters
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Figure 3.17: Triple Filter. TCL1 Compressor State Estimate
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Figure 3.18: Triple Filter. TCL2 Compressor State Estimate

TCL1 TCL2

θ̂f1 θ̂f2 θ̂f3 θ̂f1 θ̂f2 θ̂f3

Single 0.998 -50.329 0.004 0.987 -36.193 -0.141

Joint 0.997 -49.762 0.005 0.985 -37.277 -0.159

Dual 0.998 -50.872 0.004 0.988 -36.822 -0.133

Triple 0.997 -52.268 0.005 0.986 -37.141 -0.153

Table 3.1: Final Parameter Estimates for TCL1 and TCL2
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Figure 3.19: Filter Error. TCL1 Parameter Estimation Moving Window RMSE
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Figure 3.20: Filter Error. TCL2 Parameter Estimation Moving Window RMSE

also produce ambient temperature estimates T̂ k∞. However, due to the negligible difference
between the ambient temperature observations and estimates, we have excluded the results
from this chapter.

Sample of the compressor state estimates are plotted in Figures 3.17 and 3.18. As shown,
the estimated compressor states m̂k resemble a first-order system response rather than the
discrete on/off state mk given by the TCL model (3.7). One could argue that m̂k better
represents the thermodynamics of a TCL like the refrigerators used in this study. Specifically,
while the compressor may instantaneously turn on or off (providing a step input), it takes
some amount of time for the refrigeration cycle to start or stop removing heat (resulting in
a first-order response). We could elect to model the refrigeration cycle as a first-order linear
time-invariant system and to estimate the system parameters, however using the triple filter
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Figure 3.21: Single Filter. TCL1 Adaptive Parameter Estimation

method to estimate mk is a simple way to achieve a comparable result.
The moving window root mean square error (RMSE) results for each filter method are

presented in Figures 3.19 and 3.20. As stated previously, the RMSE300 at each time step is
a measure of the RMSE over the last 300 time steps (i.e 5 hours). In this way, the RMSE300
is a function of the parameter filter’s residual error rk but provides a clearer means of
comparing the performance of each filter method. As shown, the triple filter is the slowest
to converge but performs slightly better than the other methods. The single and joint filter
performances are comparable in TCL1 whereas the joint method has the worst performance
for TCL2. Overall, each filter method succeeds in performing parameter estimation and
converges to comparable values. After convergence, the differences in the RMSE300 values
are small enough to be considered negligible, suggesting that the refrigerators studied in this
chapter are relatively low noise systems. The same results are not to be expected of larger or
noisier TCLs. Nonetheless, this chapter presents a compiled collection of filtering methods
for online learning of TCLs.
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Figure 3.22: Single Filter. TCL2 Adaptive Parameter Estimation

Utilizing a recursive system identification technique provides the added benefit of allowing
the parameter estimates to continuously adapt to changes in the system. This point is
illustrated in Figures 3.21 and 3.22. Because TCL1 is subject to normal residential use, the
capacitance of the refrigerator regularly changes by relatively small, random, and unobserved
magnitudes. Figure 3.21 shows how the parameter estimates produced by the single filter
method, particularly θ̂3, respond to observations from the temperature sensors. In other
words, the UKF updates the parameter estimates in order to minimize the residual error,
thus allowing the model to dynamically adapt.

To more directly test the adaptive characteristics of our recursive system identification
technique, we removed the 18 liters of water from TCL2 at roughly time step k = 8000,
thereby producing a step reduction in the thermal capacitance of the system. Figure 3.22
illustrates how the single UKF method responded to this step change by increasing both
θ̂1 and θ̂3. According to the TCL model (3.7), we expect that decreasing the capacitance
in the TCL increases θ̂1, which represents the thermal characteristics of the conditioned
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Figure 3.23: Single Filter. TCL2 Forecast Example

mass (θ1 = exp(−h/RC)). As stated previously, θ̂3 represents a noise process accounting for
energy gain or loss that is not directly modeled.

Figure 3.23 presents a 3 hour forecast T̂ of the temperature T within TCL2 using the
model parameters as estimated at the start of the time horizon. As shown, the model is
capable of accurately estimating the predominate dynamics within the TCL and therefore
suitable for forecasting the temperature of the conditioned mass. However, the model is
not capable of representing the higher order dynamics observed within each cycle. These
dynamics could, in theory, be captured by a higher order model, but this would increase the
model complexity and the need for temperature sensor measurements. In the next chapter,
we present a model capable of approximating higher order dynamics using a piecewise linear
approach.

In Appendix C, we present 2 simulation studies which employ the single UKF method
presented in this chapter. The first study demonstrates the capability of the single UKF
method to quickly converge to new parameter estimates in response to changes in the system
dynamics. The second study presents simulation results for a population of refrigerators
which optimize their power demand based on a demand response electricity price event.
These studies show the advantage of using model predictive control with the single UKF
method rather than employing a fixed set of model parameters.

3.8 Conclusions

This chapter examined online parameter estimation of thermostatically controlled loads
(TCLs). We briefly discussed the Kalman filter (KF) and unscented Kalman filter (UKF)
algorithms. Next, we presented four filter methods (single, joint, dual, and triple) for recur-
sively estimating the parameters of a discrete-time thermostatically controlled load (TCL)
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model. Finally, we presented experimental results using real temperature data from a 500W
and a 100W residential refrigerator. For each of the four filter methods, the algorithm
successfully converged to comparable parameter estimates and adapted to changing TCL
characteristics.
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Chapter 4

Building Thermal Modeling

This chapter presents a piecewise linear thermal model of a building. To learn the model,
a Kalman filter based approach for estimating the parameters is described. Experimen-
tal results employ data collected from a residential building with a forced-air heating and
ventilation system to train and validate the piecewise model.

4.1 Motivation & Background

Heating, ventilation, and air-conditioning (HVAC) account for 43% of commercial and 54%
of residential energy consumption [94]. Space heating alone accounts for 45% of all residen-
tial energy use. HVAC systems are an integral part of buildings responsible for regulating
temperature, humidity, carbon dioxide, and airflow, conditions which directly impact occu-
pant health and comfort. Estimates suggest that component upgrades and advanced HVAC
control systems could reduce building energy usage by up to 30% [11]. Such intelligent sys-
tems can improve the efficiency of building operations, better regulate indoor conditions to
improve air quality and occupant comfort, and enable buildings to participate in demand
response services to improve power grid stability and reduce energy related carbon emissions
[13].

To effectively control the operation of an HVAC system, it is essential that a model
predictive controller incorporate an accurate mathematical representation of a building’s
thermal dynamics. The processes that determine the evolution of temperatures within a
building are complex and uncertain. A reliable model improves the ability of a controller to
forecast conditions and meet efficiency and comfort objectives. Simulation software, such as
EnergyPlus and TRNSYS, is capable of high fidelity modelling of building HVAC systems.
These mathematical models play a crucial role in the architectural and mechanical design of
new buildings, however, due to high dimensionality and computational complexity, are not
suitable for incorporation into HVAC control systems [6].

The American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE)
handbook [30] describes how to determine the thermal resistance values of a building surface
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given it materials and construction type. However, for existing buildings, details about the
materials in and construction of walls and windows may be difficult to obtain or non-existent
[53]. Additionally, modifications to the building or changes brought about by time and use
(e.g. cracks in windows or walls) further diminish the potential for characterizing a building
based on design or construction information.

Therefore, an ideal control-oriented model would capture the predominant dynamics and
disturbance patterns within a building, enable accurate forecasting, adapt to future changes
in building use, provide a model structure suitable for optimization, and be amenable to
real-time data-driven model identification methods. For these reasons, low order RC models
are widely employed for control-oriented thermal building models [53, 1, 80]. Such models
trade complexity and accuracy for simplicity and efficiency.

In this chapter, we present a piecewise linear RC model for the thermostatic control
of buildings and a recursive Kalman filter method for parameter estimation. The piecewise
model structure enables the approximate identification of unmodeled dynamics, in particular
higher-order dynamics and time delays related to changes in the mechanical state of the
system. By employing a recursive parameter estimation technique, we are able to perform
online data-driven learning of the model.

We do not model heating from solar gain, building occupants, or equipment. This does
not restrict the applicability of this work because the model structure can be extended for
such cases. By estimating these effects with a single time-varying gain, we produce a simpler
model better suited for predictive control.

Chapter Outline

This chapter is organized as follows. Section 4.2 presents our piecewise thermal model and
Section 4.3 formulates a Kalman filter-based method for recursive parameter estimation
of the piecewise model. Section 4.4 provides numerical examples of our proposed model
and algorithm for the parameter estimation of an apartment with a forced-air heating and
ventilation system. Finally, Section 4.5 summarizes key results.

4.2 Building Thermal Model

Linear Thermal Model

The thermostatically controlled load model (3.7a) can be expressed in a form that is linear
in both the states and the parameters.

T k+1 = θaT
k + (1− θa)T k∞ + θbm

k + θc (4.1)

where T k ∈ R, T k∞ ∈ R, and mk ∈ {0, 1} are the indoor air temperature (state, ◦C),
outdoor air temperature (disturbance input, ◦C), and heater state (control input, On/Off),
respectively.



CHAPTER 4. BUILDING THERMAL MODELING 46

The parameter θa corresponds to the thermal characteristics of the conditioned space as
defined by θa = exp(−∆t/RC), θb to the energy transfer due to the systems mechanical
state as defined by θb = (1 − exp(−∆t/RC))RP , and θc to an additive process accounting
for energy gain or loss not directly modeled.

As noted in [17, 69], the discrete time model implicitly assumes that all changes in
mechanical state occur on the time steps of the simulation. In this chapter, we assume that
this behavior reflects the programming of the systems being modeled. In other words, we
assume that the thermostat has a sampling frequency of 1/(3600∆t) Hz or once per minute.

Piecewise Linear Thermal Model

The linear discrete time model (4.1) is capable of representing the predominant thermal
dynamics within a conditioned space. Unfortunately, because it does not capture any higher-
order dynamics or time delays related to changes in the mechanical state of the system, the
model is fairly inaccurate in practice. Research into higher-order models, in particular multi-
zone network models and the modeling of walls as 2R-1C or 3R-2C elements, have shown
potential for producing higher fidelity building models [53, 1, 80]. However, this comes at the
cost of increasing the model complexity and the need for temperature sensing (in particular,
within interior and exterior walls).

In this chapter, we present a piecewise linear model capable of approximating dynamics
related to changes in the mechanical state of the system. Our piecewise modelling approach
is related to linear parameter-varying (LPV) systems which employ a linear model whose
parameters change according to a time-varying state. This parameter dependency enables
LPV systems to approximate nonlinear dynamics.

In our piecewise thermal model, the number of time steps since the system turned on or
off serves as the time-varying state with which the parameters are determined. Specifically,
we define Na models for when the mechanical system is off (mk = 0) and Nb model for
when the mechanical system is on (mk = 1). Each of the i = 1, . . . , Na and j = 1, . . . , Nb

submodels describe a particular range of time steps after the mechanical system has switched
from an on to an off state or vice versa. When the system is off, we define the length of each
range as δa, the number of ranges as Na, and the number of time steps since the system was
last on before switching off as λa (i.e. if mk−1 = 1 and mk = 0 then λa = 1). Likewise, when
the system is on, we define the length of each range as δb, the number of ranges as Nb, and
the number of time steps since the system was last off as λb (i.e. if mk−1 = 0 and mk = 1
then λb = 1). Thus, the piecewise thermal model is given by
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T k+1 =





θa,1T
k + (1− θa,1)T k∞ + θc,1

if mk = 0

and λa ≤ δa

θa,2T
k + (1− θa,2)T k∞ + θc,2

if mk = 0

and δa < λa ≤ 2δa
...

θa,NaT
k + (1− θa,Na)T k∞ + θc,Na

if mk = 0

and λa > (Na − 1)δa

θa,NaT
k + (1− θa,Na)T k∞

+ θc,Na + θb,1

if mk = 1

and λb ≤ δb

θa,NaT
k + (1− θa,Na)T k∞

+ θc,Na + θb,2

if mk = 1

and δb < λb ≤ 2δb
...

θa,NaT
k + (1− θa,Na)T k∞

+ θc,Na + θb,Nb

if mk = 1

and λb > (Nb − 1)δb

(4.2)

where θa,i and θc,i are the parameters for the i-th model i = 1, . . . , Na and θb,j is the
parameter for the j-th model j = 1, . . . , Nb. When the system is on, we employ the θa,Na

and θc,Na parameters regardless of λa. In the following sections, we describe a recursive
method for estimating the parameters in (4.2) using a Kalman filter.

4.3 Kalman Filter-based Parameter Estimation of the

Piecewise Thermal Model

In this section, we present a parameter estimation method for the piecewise linear thermal
model (4.2) using the Kalman filter (KF) algorithm. To begin, we consider the recursive
parameter estimation problem for the linear model (4.1), which can be expressed with the
state-space model
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θk = θk−1 + nk (4.3a)

yk =
[
T k − T k∞ mk 1

]
θk + T k∞ + qk (4.3b)

where (4.3b) combines (4.1) with the observation model yk = T k+1 + wk. The noise term
qk ∈ R has covariance Qq ∈ R, qk ∼ N(0, Qq), and represents the sum of the process noise
vk and the measurement noise wk. The parameter update noise nk ∈ R3 has covariance
Qn ∈ R3×3, nk ∼ N(0, Qn).

If we model (4.3) using the Kalman filter with

A =




1 0 0

0 1 0

0 0 1




B =




0

0

0




C =
[
T k − T k∞ mk 1

]
D =

[
1

]

uk =
[
T k∞

]
yk =

[
T k+1

]

(4.4)

then the estimated state θ̂k|k ∈ R3 will be a time-varying estimate of the thermal model
parameters θa, θb, and θc. Note that the values of the C matrix will also be time-varying.

To learn the piecewise thermal model, we define a Kalman filter for each of the Na +Nb

models in (4.2). When the mechanical system is off (mk = 0), the state-space model is

θki = θk−1
i + nki (4.5a)

yk =
[
T k − T k∞ 1

]
θki + T k∞ + qki (4.5b)

and thus the filter models take the form

A =




1 0

0 1


 B =




0

0




C =
[
T k − T k∞ 1

]
D =

[
1

]

uk =
[
T k∞

]
yk =

[
T k+1

]

(4.6)

for each of the i = 1, . . . , Na models. Therefore, the estimated state θ̂
k|k
i ∈ R2 is a time-

varying estimate of the thermal model parameters θa,i and θc,i. Additionally, nki ∈ R2 and
qki ∈ R are noise terms for each model.
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When the mechanical system is on (mk = 1), the state-space model is

θkj = θk−1
j + nkj (4.7a)

yk = θkj + (T k − T k∞)θa,Na + T k∞ + θc,Na + qkj (4.7b)

and the filter models are given by

A =
[
1

]
B =

[
0

]

C =
[
1

]
D =

[
1

]

uk =
[
θa,Na(T k − T k∞) + T k∞ + θc,Na

]

yk =
[
T k+1

]

(4.8)

for j = 1, . . . , Nb where θa,Na and θc,Na are the current parameter estimates of model i = Na.

Therefore, the estimated state θ̂
k|k
j ∈ R is an estimate of θb. Additionally, nkj ∈ R and

qkj ∈ R are noise terms for each model.
When training the models, the temperature measurement T k+1 at each time step is used

as an observation to train only one of the Na +Nb submodels as given by (4.2). In this way,
each submodel is learning to represent a particular characteristic of the thermal dynamics
of the system. For the remainder of the submodels, the parameter estimates are unchanged
(i.e. θ̂ki = θ̂k−1

i for each filter i where i is not the observed model).

With respect to the covariances Q
k|k
θ , there are two ways of updating the matrices. The

first is to set each covariance matrix to the previous value. This expresses that, even though
we did not observe the model in the current time step, we have not lost confidence in the
parameter estimates. Alternatively, we can add the process noise covariance (as done in
the Kalman filter prediction step (3.11b)), expressing a increasing loss of confidence in the
parameter values. In this chapter, we assume the former and only alter the covariance matrix
when the model is observed.

4.4 Residential Heating System Parameter

Estimation Experiments

In this section, we present parameter estimation results for an 850 sq ft apartment with a
forced-air heating and ventilation system. The apartment is located in Berkeley, California
and equipped with a custom thermostat designed and built for this research. Therefore,
we are able to control the operation of the heating system and to measure the indoor air
temperature. Local weather data, specifically ambient air temperature, is retrieved from the
Internet service, Weather Underground [101].
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Figure 4.1: Piecewise Thermal Models. Examples with Na = Nb = 1 (top), Na = 3 and
Nb = 2 (middle), and Na = 8 and Nb = 3 (bottom) used to produce a 2 hour forecast.

Data was collect at a time-scale of one minute for 6 weeks during December and January
of 2015-2016. With this data, we are able to perform recursive parameter estimation of the
piecewise thermal model (4.2). The results presented in this section focus of quantifying
and qualifying the advantages of the piecewise model and the Kalman filter based learning
method.

Figure 4.1 presents a comparison of thermal models using varying numbers of Na and
Nb submodels. In each subplot, a 2 hour forecast is produced using the model parameters
as estimated at the start of the time horizon. The vertical lines designate the start and
end of each model’s corresponding range. The top subplot shows the most basic case where
Na = Nb = 1, for a total of 2 submodels. As shown, the model is simply incapable of
representing the evolution of the indoor air temperature. Most notably, the forecast poorly
accounts for the thermal dynamics immediately after the heating system turns off. These
dynamics are related to the interaction between the air and the other thermal masses (walls,
furniture, etc.) within the conditioned space. These dynamics could, in theory, be captured
by a higher order model, but this would increase the model complexity and the need for
temperature sensor measurements.

By increasing the number of submodels, as shown in the second and third subplots of
Figure 4.1, the piecewise thermal model is able to better approximate the dynamics of the
apartment and heating system without significantly increasing the model complexity. Figure
4.2 presents a forecast produced by a piecewise model with Na = 8, δa = 4, Nb = 3, and
δb = 2. The top subplot shows the 2 hour forecast and the measured air temperature within
the apartment. The remaining subplots show the θa, θb, and θc parameter values employed
by the piecewise model at each time step of the forecast.
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Figure 4.2: Model Parameters. Piecewise thermal model parameters with Na = 8 and
Nb = 3 used to produce a 2 hour forecast.
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Figure 4.3: Forecast. Examples of piecewise thermal models used to produce a 24 hour
forecast with various covariance values for the nj and qj noise terms. In each case, Na = 15,
δa = 5, Nb = 2, δb = 4, ni,1 ∼ N(0, 10−4), ni,2 ∼ N(0, 10−4), qi ∼ N(0, 10−1).

Figure 4.3 illustrates the ability of the model to produce accurate multi-hour forecasts
and the influence of the noise covariances on the parameter estimates. In each subplot,
different covariance values are used to represent the nj and qj noise terms and the forecasts
are produced using the model parameters as estimated at the start of the time horizon. In
the top subplot, the model is very accurate for the first several hours before the forecasted
temperature begins to drift downward. The root mean squared error (RMSE) over the first
3 hours is 0.039 ◦C and over the first 12 hours is 0.573 ◦C. In the bottom subplot, the error
is less varied with an RMSE of 0.162 ◦C over the first 3 hours and 0.240 ◦C over the first 12
hours.

4.5 Conclusions

This chapter addressed the need for control-oriented thermal models of buildings. We pre-
sented a piecewise linear thermal model of a building that is suitable for model predictive
control applications. To estimate the model parameters, we developed a Kalman filter based
system identification method. Finally, we presented experimental results using real temper-
ature data collected from an apartment with a forced-air heating and ventilation system.
These results demonstrate the potential of the model and parameter estimation method to
produce accurate forecasts of the air temperature within the apartment.
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Part II

Control
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Chapter 5

Alternative Control Trajectory
Representation

This chapter presents the alternative control trajectory representation – a novel approach for
representing the control of a non-convex discrete system as a convex program. The resulting
convex program provides a solution that can be interpreted stochastically for implementa-
tion. This approach enables the approximate optimal control of non-convex agents using
distributed convex optimization techniques.

5.1 Motivation & Background

A fundamental requirement of the electric power system is to maintain a continuous and
instantaneous balance between generation and load. The variability of renewable energy re-
sources, particularly wind and solar, poses a challenge for power system operators. Namely,
as renewable penetration increases, it will be necessary for operators to procure more ancil-
lary services, such as regulation and load following, to maintain balance between generation
and load [60, 107]. In the long-term, grid-scale storage technologies (e.g. flywheels, batter-
ies, etc.) are sure to play a major role in providing these ancillary services [45, 34]. In the
near-term, there is a high potential for aggregated loads, in particular electric vehicles (EVs)
and thermostatically controlled loads (TCLs), to providing such ancillary services [87, 18,
50, 51, 49, 13].

The advantages of responsive aggregated loads over large storage technologies include: 1)
they are distributed throughout the power system thus providing spatially and temporally
distributed actuation; 2) they employ simple and fast local actuation well-suited for real-
time control; 3) they are robust to outages of individuals in the population; and 4) they, on
the aggregate, can produce a quasi-continuous response despite the discrete nature of the
individual controls [18, 64, 17].

Energy systems like EVs and TCLs often have binary or discrete states due to hardware
limitations and efficiency characteristics. Consequently, non-convex techniques are generally
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required for optimal control. This poses a challenge for load aggregation applications since
distributed optimization methods generally require linearity or convexity in the agents. In
this chapter, we develop the alternative control trajectory representation – a novel approach
for representing the control of a non-convex discrete system as a convex program. This
representation enables the approximate optimization of energy systems using distributed
convex algorithms, such as the alternating direction method of multipliers (ADMM), and
provides a solution that can be interpreted stochastically for implementation.

Contributions

The alternative control trajectory representation enables the control of agents with non-
convex constraints using convex optimization techniques. The solution to the convex pro-
gram can be interpreted stochastically for implementation. Furthermore, the alternative
control trajectory representation enables the approximate optimal control of a population of
non-convex agents using distributed convex optimization techniques. Experimental results
demonstrating the application of the alternative control trajectory approach to the dis-
tributed optimization of thermostatically controlled loads for electricity generation following
ancillary services are presented in the next chapter.

Chapter Outline

This chapter is organized as follows. Section 5.2 briefly describes the optimization of non-
convex systems and section 5.3 presents the alternative control trajectory representation.
Section 5.4 overviews the incorporation of the ACT representation into a convex program and
the stochastic interpretation of the solution. Section 5.5 describes the incorporation of the
ACT representation into a distributed optimization algorithm, the statistical characteristics
of the solution, and an iterative method for reducing variance by inducing sparsity. Finally,
Section 5.6 provides an illustrative example of the proposed modeling and optimization
approach.

5.2 Optimization of Non-Convex Systems

In this section, we consider the optimization of an arbitrary discrete-time system represented
by the state-space model

xk = G(xk−1, uk)

yk = H(xk, uk)
(5.1)

where G and H are known functions, xk is the state of the system, uk is the exogenous input,
yk is the output, and k denotes the integer-valued time step. For simplicity, this chapter
will only consider the univariate case (i.e xk, uk, and yk are univariate, G : R2 → R, and
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H : R2 → R). Functions G and H may be any closed deterministic function (i.e. non-convex,
piece-wise, semi-continuous, etc.) and xk, uk, and yk may be continuous or discrete.

We would like to solve an optimization problem of the form

minimize
u

F0(y)

subject to Fi(x, u) ≤ bi, i = 1, . . . ,M

xk = G(xk−1, uk), k = 1, . . . , N

yk = H(xk, uk), k = 1, . . . , N

x0 = x0

(5.2)

where F0 : RN → (−∞,∞] is a closed convex objective function, N is the number of time
steps, and x0 is the initial state. Functions Fi : R2 → R, i = 1, . . . ,M represent the
constraints of the system. Like G and H, Fi may be any closed deterministic function.

There are a number of non-convex optimization techniques, such as dynamic program-
ming and genetic algorithms, suitable for solving (5.2) to identify a control trajectory u∗

that optimizes the system. Convex optimization techniques, however, are unsuitable given
the non-convex constraints and the discrete states, inputs, and outputs.

5.3 Alternative Control Trajectory Representation

In this section, we introduce the alternative control trajectory (ACT) representation, a novel
approach for representing the control of non-convex systems in a manner suitable for convex
programming. Put simply, we simulate the system under multiple alternative control inputs
in order to generate a discrete set of output trajectories. These alternative control trajectories
can be incorporated into a convex program as a linear constraint, thereby enforcing feasibility.
By solving the convex program, we produce a solution that can be interpreted stochastically
for implementation.

It should be noted that the alternative control trajectories do not represent the full deci-
sion space of the original optimization program (5.2) and that the stochastic solution has no
optimality guarantee. Rather, the contribution of the ACT representation is to enable the
optimization of a large population of non-convex agents using distributed convex optimiza-
tion. Accordingly, by employing the ACT representation, we are accepting suboptimality in
the individual objectives in order to achieve optimality in the global objective.

To produce the alternative control trajectory representation of a system, we first define
Na input trajectories for Nt time steps

uj = (u1
j , u

2
j , . . . , u

Nt
j )

∀ j = 1, . . . , Na

(5.3)

with variable uj ∈ RNt and ukj ∈ Su for k = 1, ..., Nt, where Su is the discrete or continuous
constraint set of feasible inputs. Each of the input trajectories uj must be distinct and should
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be selected to produce a distinguishable change in the system’s output (i.e. performance
extremes, efficiency optimum, etc.). Regardless of whether the input is discrete or continuous,
the set of alternative input trajectories express only a small but key portion of the true
decision space.

Next, for each input trajectory uj, we simulate the system model (5.1) according to the
update function G with x0 = xi while imposing any additional constraints (represented by
Hi in (5.2)). Given the simulation results, we generate Na alternative state and output
trajectories as defined by the xj and yj, respectively.

xj = (x1
j , x

2
j , . . . , x

Nt
j )

yj = (y1
j , y

2
j , . . . , y

Nt
j )

∀ j = 1, . . . , Na

(5.4)

The input, state, and output trajectories can be expressed compactly as

U = (u1, u2, . . . , uNa)

X = (x1, x2, . . . , xNa)

Y = (y1, y2, . . . , yNa)

(5.5)

with variables U, X, and Y representing the set of all uj, xj, and yj sets for j = 1, . . . , Na.
Naturally, we can also view U, X, and Y as matrices ∈ RNa×Nt such that the rows represent
the alternative trajectories and the columns represent the time step k.

In the case that functions G and/or H are not injective/one-to-one and the distinctness
of uj does not guarantee the distinctness of xj or yj, it is necessary to reduce the number of
trajectories in U, X, and Y. We define the number of distinct alternative control trajectories
as Nd such that Nd ∈ {1, . . . , Na}.

5.4 Convex Optimization

In this section, we detail how the ACT representation described above can be introduced
into a convex program. To begin, we introduce a variable w ∈ {0, 1}Nd such that

wj =





1 if trajectory j is selected

0 otherwise

∀ j = 1, . . . , Nd

(5.6)

Thus, if j = 1 is the selected trajectory (i.e. w1 = 1)

UTw = u1

XTw = x1

YTw = y1
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The integer/binary program below demonstrates how Y and w can be introduced to solve
for the optimal trajectory

minimize
w

F (YTw)

subject to
∑
wj = 1

w ∈ {0, 1}Nd

(5.7)

where F : RNt → (−∞,∞] is a closed convex objective function. The above program is
an example of the generalized assignment problem (GAP). If feasible, (5.7) guarantees that
only one component of minimizer w∗ is non-zero. Therefore, y∗ = YTw∗ is the optimal
output trajectory within the discrete set defined by Y. However, the binary constraint
makes the program non-convex and NP-complete. By relaxing the binary constraint such
that ŵ ∈ RNd , we can express the convex program as

minimize
ŵ

F (YT ŵ)

subject to
∑
ŵj = 1

ŵ ≥ 0

ŵ ∈ RNd

(5.8)

The program is now convex and the decision variable continuous. By minimizing the
objective function with respect to ŵ, we allow the convex program to form weighted averages
of the alternative output trajectories. Therefore, ŷ∗ = YT ŵ∗ is the optimal weighted average
of the output trajectories within the discrete set defined by Y. However, for many systems,
the solution defined by ŵ∗ is not realizable (e.g. û∗ = UT ŵ∗ is not within the feasible
space, ŷ∗,k 6= H(x̂∗,k, û∗,k), etc.). To produce a realizable solution, we can interpret ŵ∗

stochastically, as described in the next section.

Stochastic Solution

Due to the linear constraints, the optimal solution ŵ∗j is ∈ [0, 1] for j = 1, . . . , Nd and in
practice, ŵ∗j can be interpreted as the probability of selecting control trajectory j. Thus,
we can implement a single trajectory ỹ ∈ Y based on the discrete probability distribution
ŵ∗. Expressed alternatively, we can generate a discrete random variable W ∈ {1, . . . , Nd}
such that ŵ∗j = Pr(W = j) for j = 1, . . . , Nd. The value of W represents the index of
the stochastically selected control trajectory. Thus, we can define a variable w̃ ∈ {0, 1}Nd ,
representing the stochastic solution of (5.8), as

w̃j =





1 if W = j

0 otherwise

∀ j = 1, . . . , Nd

(5.9)
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The selected output trajectory is therefore given by ỹ = YT w̃. By treating ŵ∗ as a
discrete probability distribution, ŷ∗ becomes the probability-weighted average of possible
output trajectories (as defined by Y). Therefore, ŷ∗ is the expected value of ỹ.

E[ỹ] = ŷ∗ (5.10)

To summarize, the optimal solution to (5.7) is physically realizable (i.e. only one com-
ponent of w∗ is non-zero) but not solvable using convex optimization. By contrast, (5.8) is
convex but the optimal solution is not realizable (i.e. all components of ŵ∗ may be non-zero).
Using (5.9), we can transform ŵ∗ into w̃, which is realizable (i.e. only one component of w̃
is non-zero). It should be noted that w∗ and ŵ∗ are guaranteed to be optimal solutions to
(5.7) and (5.8), respectively. However, w̃ may be an optimal or sub-optimal solution to both
(5.7) and (5.8).

Throughout this chapter, we refer to the optimal output trajectory (y = YTw) produced
by (5.7) as the discrete solution y∗ (w∗ ∈ {0, 1}Nd), by (5.8) as the continuous solution ŷ∗

(ŵ∗ ∈ RNd), and by (5.8) and (5.9) as the stochastic solution ỹ (w̃ ∈ {0, 1}Nd). It should be
noted that y∗ and ŷ∗ are deterministic whereas ỹ is, of course, stochastic.

5.5 Distributed Optimization

In this chapter, we have detailed the ACT representation for expressing the control of a
non-convex discrete system as a convex program and have discussed how the solution can
be interpreted stochastically for implementation. In this section, we briefly discuss the
application of this approach to distributed convex optimization.

Consider the generic sharing problem of the form

minimize
y

∑
fi(yi) + g(

∑
yi) (5.11)

with variables yi ∈ S
Ny

i , the decision variable of agent i for i = 1, . . . , Np, where Si represents
the convex constraint set of agent i, Np the number of agents in the population, Ny is the
length of yi, fi is the convex objective function for agent i, and g is the shared convex objective
function of the population. The function g takes as input the sum of the individual agent’s
decision variables, yi. The sharing problem allows each agent in the population to minimize
its individual/private cost fi(yi) as well as the shared objective g(

∑
yi). The problem is

known to be solvable using iterative methods of distributed convex optimization, such as the
alternating direction of multipliers algorithm (ADMM) [9].

The ACT representation can be incorporated into the objective functions of (5.11) as
given by



CHAPTER 5. ALTERNATIVE CONTROL TRAJECTORY REPRESENTATION 60

minimize
ŵ

∑
fi(Y

T
i ŵi) + g(

∑
YT
i ŵi)

subject to
∑
ŵi,j = 1

ŵi ≥ 0

ŵi ∈ RNd,i

∀ i = 1, . . . , Np

(5.12)

with variables ŵi ∈ RNd,i , the decision variable of agent i, Yi ∈ RNd,i×Ny , the set of alter-
native output trajectories for agent i, and Nd,i, the number of distinct trajectories in Yi for
i = 1, . . . , Np. Because the objective function and constraints of each agent are separable,
the problem can be solved in a distributed manner. The optimal output ŷ∗i = YT

i ŵ
∗
i for

i = 1, . . . , Np is the continuous solution of each agent in the population. Thus, ỹi = YT
i w̃i

is the final stochastic solution and can be implemented by each agent.

Aggregated Stochastic Solution

When trying to optimize the behavior of a population, we are interested in understanding
the relationship between the aggregate of the continuous and stochastic solutions, as given
by

Ŝ =
∑
ŷ∗i

S̃ =
∑
ỹi

e = S̃ − Ŝ
(5.13)

with variables Ŝ ∈ RNy , the sum of the continuous solutions, S̃ ∈ RNy , the sum of the
stochastic solutions, and e ∈ RNy , the error between Ŝ and S̃ (ideally, e ∈ {0}Ny).

Because ŷ∗i is the expected value of ỹi, Ŝ is the expect value of S̃

E[S̃] =
∑

E[ỹi]

=
∑
ŷ∗i

= Ŝ

(5.14)

The error e is therefore related to the variance of S̃, given by
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Var(S̃) = E[(S̃ − E[S̃])2]

= E[(ỹ1 − ŷ∗1 + . . .+ ỹNp − ŷ∗Np
)2]

= E[(ỹ1 + . . .+ ỹNp)2]

− (ŷ∗1 + . . .+ ŷ∗Np
)2

=
Np∑

i=1

(E[ỹ2
i ]− (ŷ∗i )

2)

+
∑

i 6=j
(E[ỹi]E[ỹj]− (ŷ∗i ŷ

∗
j ))

=
Np∑

i=1

Var(ỹi) +
∑

i 6=j
Cov(ỹi, ỹj)

(5.15)

Because the random variables are uncorrelated (Cov(ỹi, ỹj) = 0,∀(i 6= j)), the variance
of S̃ reduces to

Var(S̃) =
Np∑

i=1

Var(ỹi)

=
Np∑

i=1

(E[ỹ2
i ]− (ŷ∗i )

2)

(5.16)

Since ŵ∗ is a discrete probability distribution

Var(S̃) =
Np∑

i=1

Nd,i∑

j=1

ŵ∗i,j(yi,j − ŷ∗i )2

=
Np∑

i=1



Nd,i∑

j=1

(ŵ∗i,jy
2
i,j)− (ŷ∗i )

2




=
Np∑

i=1

Nd,i∑

j=1

(ŵ∗i,jy
2
i,j)−

Np∑

i=1

(ŷ∗i )
2

(5.17)

where variable yi,j is the j-th alternative output trajectory for agent i.
In the remainder of this section, we discuss two particular characteristics that impact the

error e = S̃ − Ŝ and the variance of S̃: the homogeneity/heterogeneity of the agents in the
population and the sparsity of the discrete probability distribution ŵ∗i (i.e. the number of
non-zero terms) for i = 1, . . . , Np.

For a population of highly homogeneous agents with identical output trajectories and
objective functions, solving (5.12) will cause each agent to converge to the same solution
ŵ∗i . Effectively, the output of each agent is defined by the same random variable ỹi with the
same probability distribution ŵ∗i and expected value ŷ∗i . This is a special case where
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E(S̃) = Npŷ
∗
i

Var(S̃) = Np

Nd,i∑

j=1

ŵ∗i,j(yi,j − ŷ∗i )2
(5.18)

and the probability mass of S̃ becomes more and more concentrated about E(S̃) = Ŝ as
the number of agents Np increases. If Np is very large, the distribution has a narrow peak

at Ŝ regardless of the sparsity of ŵ∗i . Therefore, by the law of large numbers, S̃ → Ŝ and
e→ {0}Ny as Nd →∞. As the heterogeneity of the population increases, this characteristic
weakens as the probability mass of S̃ flattens. For a heterogeneous population, the output
of each agent is no longer defined by the same random variable and (5.12) is less likely to
converge to similar probability distributions.

The sparsity of ŵ∗i also impacts the variance of ỹi. In the most sparse case, only one
term in ŵ∗i is non-zero for every agent in the population. Therefore, ỹi is a constant random
variable (Var(ỹi) = {0}Ny) equal to its expected value (ỹi = ŷ∗i ). Accordingly, Var(S̃) =
{0}Ny and S̃ → Ŝ.

In the least sparse case, every agent is equally likely to implement any one of its control
trajectories (i.e. ŵ∗i,j = 1/Nd,i ∀ j = 1, . . . , Nd,i). Thus

E(S̃) = Ŝ

Var(S̃) =
Np∑

i=1

Nd,i∑

j=1

(yi,j − ŷ∗i )2

Nd,i

(5.19)

and the aggregate behavior of the population becomes highly stochastic, especially as het-
erogeneity in Yi increases.

Inducing Sparsity

The stochasticity of S̃ diminishes our ability to optimally control the behavior of the dis-
tributed population. Particularly, in order to optimize a highly heterogeneous population, it
would be desirable to force the variance of S̃ towards zero. In this case, we would no longer
rely on the law of large numbers to drive S̃ towards the expected value Ŝ.

To decrease the variance, we focus on inducing sparsity in the continuous solution ŵ∗ of
a single system. In this section, we begin by discussing the challenges of inducing sparsity
and conclude with an iterative optimization technique. This iterative technique adds a linear
cost function to (5.8) which drives the terms in ŵ towards 0 and 1.

It is important to recognize that attempting to induce sparsity in the solution to (5.8)
is prone to introducing non-convexity to the program. As mentioned previously, integer
programming with a branch and bound algorithm is non-convex. The `1-norm, when added
as a linear regularization penalty to an objective function, is known to incentivize sparsity
in the solution [9, 19]. However, due to the linear constraints in (5.8), `1 regularization
is ineffective (i.e. ‖ŵ‖1 = 1). Direct attempts to drive the terms in ŵ towards 0 and 1
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(i.e. min F (YT ŵ) +
∑
ŵj(1− ŵj)) or to minimize the variance of ỹ (i.e. min F (YT ŵ) +∑

ŵj(yj −YT ŵ)2) are concave.
In the remainder of this section, we present an iterative technique for inducing sparsity

in ŵ∗. Put simply, at each iteration n, we solve (5.8) with a linear weight βn ∈ RNd applied
to ŵn

minimize
ŵn

F (YT ŵn) + αn(ŵn)Tβn

subject to
∑
ŵnj = 1

ŵn ≥ 0

ŵn ∈ RNd

(5.20)

where αn is a scaling parameter for the sparsity-inducing cost.
The linear weight is initialized at 0 (β0 ∈ {0}Nd) and after each iteration n, updated

according to the previous solution (ŵn)∗

βn+1
j = ||yj −YT (ŵnj )∗||22
∀ j = 1, . . . , Nd

(5.21)

Essentially, we are estimating the variance of ỹ (which is concave with respect to ŵ)
as a linear cost. For each successive iteration, the terms in ŵn are encouraged, though not
required, to approach 0 or 1. To enable tie-breaking, we can add a small random perturbation
to the weight update

βn+1
j = ||yj −YT (ŵnj )∗||22 + v

∀ j = 1, . . . , Nd

(5.22)

where v ∈ R is a Gaussian random variable with a small covariance (e.g. v ∼ N(0, 0.01)).
This will allow ties between different output trajectories to be broken randomly.

Lastly, we define a simple procedure for updating the scaling parameter αn:

α0 = 0

αn+1 =





αn + 0.005 if Max(Var(ỹ)n) > σ2
max

0.9αn if Max(Var(ỹ)n) < σ2
max/2

αn otherwise

(5.23)

where Var(ỹ)n ∈ RNy is the variance of ỹ at iteration n based on (ŵn)∗ and σ2
max defines the

maximum desired variance.
This iterative technique for minimizing variance and inducing sparsity in ŵ∗ can be

applied to the optimization of individual agents. While the objective of (5.20) is not constant,
the change in βn from one iteration to the next is relatively small. On the whole, the updating
weight βn introduces concavity into the problem. Specifically, the magnitude of each weight
increases as the terms in (ŵn)∗ approach 0 or 1. With each successive iteration, (ŵn)∗ is
forced further away from (ŵ0)∗, the optimal solution to (5.8).
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5.6 Illustrative Example

To illustrate the application of the ACT representation for the convex optimization of a
non-convex discrete energy system, this section considers the control of a thermostatically
controlled load (TCL). Specifically, we optimize the electricity demand of a simulated resi-
dential refrigerator using the techniques described in this chapter.

By modifying (5.24) to allow for setpoint changes, the TCL is modeled using the hybrid
state discrete time model [69, 38, 17, 13, 14]

T k = θ1T
k−1 + (1− θ1)(T k∞ + θ2m

k) + θ3

mk =





1 if T k < Tset − δ
2

+ uk

0 if T k > Tset + δ
2

+ uk

mk otherwise

(5.24)

where state variables T k ∈ R and mk ∈ {0, 1} denote the temperature of the conditioned
mass and the discrete state (on or off) of the mechanical system, respectively. Additionally,
k = 1, 2, . . . , Nt denotes the integer-valued time step, T k∞ ∈ R, the ambient temperature
(◦C), Tset ∈ R, the temperature setpoint (◦C), and δ ∈ R, the temperature deadband width
(◦C). The control input uk ∈ Su is a setpoint change at each time step where Su defines the
discrete set of feasible values.

The electricity demand of the TCL at each time step is defined by

yk =
|P |
COP

mk (5.25)

where yk ∈ R is the electric power demand (kW) and COP , the coefficient of performance.
We now have the state and output equations necessary to model the system ((5.24) serves
as G and (5.25) as H).

Figures 5.1, 5.2, and 5.3 present examples of Na = 3 alternative trajectories for the TCL.
In the examples, each alternative input uj for j = 1, 2, 3 is ∈ {0,−1, 1}20 (i.e Nt = 20).
While the input trajectories are not plotted, they can be inferred from the changes in the
setpoint and temperature bounds. For trajectory j = 1, uk1 = 0 for k = 1, . . . , 20. For
trajectory j = 2, uk2 = 0 for k = 1, . . . , 10 and uk2 = −1 for k = 11, . . . , 20. For trajectory
j = 3, uk3 = 0 for k = 1, . . . , 10 and uk3 = 1 for k = 11, . . . , 20.

The TCL has been simulated using (5.24) and (5.25) with a default setpoint Tset of 2.5◦C,
a deadband width δ of 2◦C, an initial temperature T 0 of 3.3◦C, and an initial mechanical
state m0 of 0. Figures 5.1, 5.2, and 5.3 present the Tj and yj trajectories corresponding
to each input uj for j = 1, 2, 3. The mechanical state trajectories mj can be inferred from
the Tj and yj trajectories. As illustrated by the figures, each distinct input uj produces a
distinct Tj, mj, and yj. Therefore, in this example, Nd = Na = 3.

Next, we define some optimal power demand trajectory p ∈ R20 which we would like the
TCL to match as closely as possible. As illustrated in Figure 5.4, we define pk = 0.3 for
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Figure 5.1: T1 and y1 trajectories given u1

Figure 5.2: T2 and y2 trajectories given u2

Figure 5.3: T3 and y3 trajectories given u3
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Figure 5.4: Target power demand p

Figure 5.5: Continuous solution ŷ∗

k = 2, . . . , 4 and for k = 11, . . . , 18 and pk = 0 otherwise. The convex optimization program
is defined with a least squares objective function

minimize
ŵ

‖YT ŵ − p‖2
2

subject to
∑
ŵj = 1

ŵ ≥ 0

ŵ ∈ RNd

(5.26)

By solving (5.26) with Y and p as described above, we find that ŵ∗ = (0.263, 0.421, 0.316).
The continuous solution ŷ∗, the optimal linear combination of the alternative output trajec-
tories, is illustrated in Figure 5.5.

It should be noted that the squared error between p and y1, y2, and y3 is 0.134, 0.134,
and 0.15, respectively. Thus, the utilities of y1 and y2 are equal. However, if we apply (5.9),
there are 3 possible outcomes for the discrete solution w̃,

Pr(w̃ = (1, 0, 0)) = 26.3%

Pr(w̃ = (0, 1, 0)) = 42.1%

Pr(w̃ = (0, 0, 1)) = 31.6%

(5.27)
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By applying the sparsity inducing penalty described in (5.20) and (5.22), we find that
the (ŵ∗)n = (0, 1, 0) after 3 or 4 iterations. Despite the random perturbation added to the
weights, we observe that, for this particular example, the program always converges to the
same solution (i.e (ŵ∗)n → (0, 1, 0) as n → ∞). Thus, for this TCL, we would implement
the control trajectory defined by u2, T2, m2, and y2.

5.7 Conclusions

In this chapter, we developed the alternative control trajectory (ACT) representation –
a novel approach for representing the control of a non-convex discrete system as a con-
vex program. The resulting convex program provides a solution that can be interpreted
stochastically for implementation. This approach enables the approximate optimal control
of non-convex agents using distributed convex optimization techniques. By inducing sparsity
in the individual agents, we can increase the predictability (i.e. reduce the variance) of the
aggregated output.
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Chapter 6

Distributed Optimization of
Thermostatically Controlled Loads

In this chapter, we apply the alternative control trajectory (ACT) representation presented
in the previous chapter to the problem of aggregating a population of thermostatically con-
trolled loads (TCLs). Specifically, we examine the potential of TCLs, such as refrigerators
and electric water heaters, to provide generation following services in real-time energy mar-
kets (1 to 5 minutes). To perform distributed optimization across a large populations of
TCLs, we apply a variation of the alternating direction method of multipliers (ADMM)
algorithm. We numerically demonstrate the algorithm’s potential for controlling a TCL
population’s total power demand within an error tolerance of 10 kW.

6.1 Motivation & Background

The variability of renewable energy resources, particularly wind and solar, poses a challenge
for power system operators. Namely, as renewable penetration increases it will be necessary
for operators to procure more ancillary services, such as regulation and load following, to
maintain balance between generation and load [60, 107]. In the long-term, grid-scale storage
technologies (e.g. flywheels, batteries, etc.) are sure to play a major role in providing these
ancillary services [45, 34]. In the near-term, responsive thermostatically controlled loads
(TCLs) have a high potential for providing such ancillary services [87, 18].

This chapter investigates the challenge of controlling a heterogeneous TCL population to
perform an ancillary service, specifically 5-minute ahead generation following. For experi-
mental purposes, we define generation following as the complement of load following whereby
loads are employed to smooth the power generation from renewable energy sources.

The advantages of responsive TCLs over large storage technologies include: 1) they are
well-established technologies; 2) they are distributed throughout the power system thus
providing spatially and temporally distributed actuation; 3) they employ simple and fast
local actuation well-suited for real-time control; 4) they are robust to outages of individuals
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in the population; and 5) they, on the aggregate, can produce a quasi-continuous response
despite the discrete nature of the individual controls [18, 64, 17]. We refer the reader to [18]
for a discussion of the advantages and disadvantages of TCLs compared to grid-scale storage
technologies and to [64] for a look into the potential costs and revenues of demand response
with TCLs.

Additionally, because TCLs are controlled according to a temperature setpoint, customers
are generally indifferent to precisely when energy is consumed as long as the temperatures
are maintained within a dead-band range. This natural flexibility makes TCLs a promising
candidate for participating in power system services.

Contributions

Novel contributions of this work include:

• The application of an alternating direction method of multipliers (ADMM) sharing al-
gorithm for the distributed convex optimization of TCLs. Each TCL agent optimizes a
private objective function, while the central aggregator iteratively updates an incentive
variable to drive the population towards a global objective, such as generation follow-
ing. By distributing the computation using ADMM, each TCL is able to optimize its
objective in parallel and the population can efficiently converge to a global solution.

• By applying the alternative control trajectory representation and alternating direc-
tion method of multipliers sharing algorithm, this chapter demonstrates the control
of a population of systems with integer states using a convex algorithm. This is a
fundamental gap that we bridge.

Literature Review

Early TCL Modeling and Cold Load Pickup

Research into the modeling and control of TCLs began with applications to peak shaving
and cold load pickup in power systems. Cold load pickup is a phenomenon which occurs in
a distribution network due to the restoration of power after an extended outage. Normally,
the power demand of thermostatically controlled loads is desynchronized. However, following
outages, TCLs will simultaneously demand full power, contributing to the cold load pickup
peak. To address this problem, researchers focused on methods for modeling and reducing
TCL demand during cold load pickup events as well as peak demand hours.

The earliest examples of such work include the Ihara and Scwheppe paper on space
conditioning during cold load pickup [38] and the Chong and Debs paper on individual and
aggregation load models [20], both of which used individual TCL models to describe load
dynamics. In [69], Mortensen and Haggerty develop a discrete-time TCL model, which was
later adapted by Ucak to model heterogeneous TCL populations [93]. In [75], Pahwa and
Brice describe the modeling and parameter estimation of residential air conditioning loads
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as well as a basic aggregation method. Malhame and Chong’s study [61] is among the first
reports to use stochastic analysis to develop an aggregate model of a TCL population. The
resulting coupled Fokker-Planck equations, derived in [61], define the aggregate behavior of
a homogeneous population.

While efforts were made in these early works to model the aggregate demand of a TCL
population and to propose control schemes for reducing demand during peak hours and
cold load pickup events, the most meaningful contributions focused on the modeling and
parameter estimation of individual TCLs.

Aggregate TCL Modeling and Centralized Control

Recent research efforts have focused on the modeling of TCL populations using aggregation
methods. A key objective of this research is to develop and evaluate methods for character-
izing the temperature density evolution of a TCL population. By incorporating centralized
control strategies, aggregated TCL populations are able to provide ancillary power system
services like load following and regulation rather than just load reduction. In [17], one of the
first papers to develop a modeling and control strategy that allows TCLs to perform ancillary
services, Callaway uses a linearized Fokker-Planck model to describe the aggregated behavior
of a TCL population. Direct load control is achieved by broadcasting a single time-varying
setpoint temperature offset signal to every agent. Numerical results demonstrate how small
perturbations to the setpoint can enable TCLs to perform wind generation following. Later
work builds upon concepts in [17] by considering sliding mode control [8], proportional-
integral control [79], linear quadratic regulators [48], and switching rate broadcast actuation
[91].

In [64] and [65], Mathieu, Koch, and Callaway propose a proportional controller which,
at each time step, broadcasts a switching probability, η, to all the TCLs in the population.
If η < 0, all TCLs that are on must switch off with a probability of η and if η > 0, TCLs that
are off switch on with a probability of η. In [46], Koch et al. employ a linear time-invariant
(LTI) representation of a TCL population. As in [8], a “state bin” modeling framework is
used and the aggregate probability mass is allowed to move through these bins. A Markov
Chain-based approach is used to predict the evolution of the heterogeneous TCL population.

Similar work can be found in [109], [111], and [110] where Zhang et al. use a state bin
concept to represent the evolution of the TCLs and introduce clustering to better account
for heterogeneity. In [109], a second-order aggregate model for a heterogeneous population
of TCLs is developed. To address the high state-space dimensionality of this model, a
complexity reduction method and reduced-order model is proposed in [111]. In [110], the
second-order aggregate model is used to simulate a population of heating, ventilation, and
air-conditioning (HVAC) systems and a novel method for incorporating minimum dwell time
is proposed. Specifically, Zhang et al. define a state which represents the number of off TCLs
that are “locked” and will not turn on in response to the central control signal. Thus, the
individual TCLs are able to locally enforce dwell times and the aggregator is able to adjust
the control signal to account for locked TCLs.
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A significant body of research has grown out of the above literature in response to open
challenges around aggregate model efficacy and efficiency, modeling and control framework
limitations, and unaddressed system constraints. In [70], Moura et al. develop a diffusion-
advection partial differential equation (PDE) model and a parameter identification scheme
for an aggregated population of heterogeneous TCLs, alleviating the need for prior knowledge
of TCL parameters. In [26], Ghaffari et al. develop a deterministic hybrid PDE-based
model capable of representing a heterogeneous TCL population and apply a uniform dead-
band shifting strategy for control. In [97], Vrettos and Anderson research the aggregation
of TCLs to simultaneously provide frequency and voltage regulation services, recognizing
that solving these problems separately can produce suboptimal solutions. Iacovella et al.
introduce the use of tracer TCLs in [37]. These virtual tracer devices represent the state
density distribution of a cluster of heterogeneous TCLs. The approach enables the use of
reduced-order aggregate models with control achieved via a single broadcasted signal.

In [67] and [66], Mathieu et al. build upon previous work in [64, 65] to employ a state
bin modeling framework with a “non-disruptive” approach in which the TCL’s temperature
is maintained within the existing dead-band. Hao et al. also consider a non-disruptive
approach in [31] using a battery model of the TCL population and a priority stack strategy
to determine which TCLs to control at a given time step.

Decentralized TCL Control for Frequency Services

Recognizing that system frequency is a universally available indicator of supply-demand
imbalance, a number of researchers have developed fully decentralized techniques for per-
forming frequency services with TCLs. In [84], Short et al. show the suitability of TCLs
to perform frequency services using system frequency as a control signal and the potential
for a population of TCLs to respond to a sudden loss of generation. This demand response
capability reduces the dependence of grid operators on rapidly deployable backup generation.

In [107], Xu et al. develop a TCL model in which devices adjust their setpoints lin-
early according to the system frequency, allowing the population to act as a fast frequency
controlled reserve. To address problems of long-term instability, Angeli and Kountouriotis
develop a decentralized stochastic controller in [4] that is capable of maintaining desynchro-
nization among the TCLs while regulating overall power consumption. In [89], Tindemans
et al. present a stochastic controller whereby each TCL in the population independently
targets a reference power profile. The result is a stable and fully decentralized system that
requires only the locally available control signals of frequency and time.

A Distributed Approach

There are a number of advantages to the modeling and control approaches described above.
Firstly, the aggregated models are based upon linear representations of TCL dynamics. This
makes the aggregated models well suited for a variety of established control and optimization
techniques. Moreover, these models are good at prediction and control over small time scales
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(i.e. seconds and milliseconds), making them ideal for producing fast short-term responses
(e.g. frequency regulation) [65, 67].

A limitation of these aggregate models is low model fidelity and the inability to incor-
porate device specific dynamics. Note the literature is rich with techniques for multi-state
thermal modeling of heating, ventilation, and air-conditioning (HVAC) systems in buildings
including solar gain estimation and multi-zone state estimation [103, 29, 72, 80, 15]. Because
aggregate models are not amenable to the incorporation of device specific, nonlinear, or non-
parametric models, they are incapable of leveraging the work of these and other researchers.
At larger time scales (i.e. minutes and hours), higher model fidelity becomes very important
for the accurate forecasting of TCL power demand. By employing basic linear models, par-
ticularly when modeling the complex dynamics of HVAC systems in buildings, aggregated
TCL modeling approaches are poorly suited for producing accurate long-term responses (e.g.
load-shifting) [29, 72, 80]. Hao et al. [31], for example, derive a “generalized battery model”
to predict aggregate TCL flexibility. Even with a simple single-state TCL model, summing
the set of flexible trajectories involves an arduous Minkowski sum that they approximate
through bounding sets. Recent work by Tindemans et. al. pursues a stochastic single TCL
model that can be distributed [89]. However, this model is mathematically formulated as a
partial differential equation that fundamentally relies on a single state to represent temper-
ature. In this manuscript, we pursue a method extendible to the multi-state models that
characterize data collected from real-world TCLs [29, 72, 80].

An additional limitation of linear models is that they permit the TCLs to short-cycle.
Short-cycling is a behavior in which a TCL turns on and/or off for a short amount of
time. This behavior is produced by linear controllers and optimization techniques when it
is optimal for the temperature to oscillate around a point, such as the edge of the dead-
band or the temperature setpoint. Over time, this short-cycling will reduce the efficiency
and operational life of the hardware within a TCL. Efforts to prevent short-cycling, such as
preferential binning, priority/preferential switching, and lockout estimation, are made in [67,
66, 110, 31]. However, the preferential techniques employed in [67, 66] cannot guaranteed
the prevention of short cycling and the lockout estimation in [110, 31] requires centralized
knowledge of the minimum dwell times of every agent in the population.

A key advantage of decentralized TCL control methods is the reduced or eliminated
need for communication infrastructure. However, by relying on system frequency as the
control signal, applications are limited to frequency regulation and real-time load shaping.
To produce long-term responses (e.g. load-shifting), it is necessary for a grid entity to define
the service objective, to forecast network states, and to coordinate or otherwise control the
TCL population to meet the objective. Thus, the control paradigm shifts from decentralized
to centralized or distributed control.

To control a TCL population to produce long-term responses in a manner that is agnostic
of the individual TCL models (e.g. device specific, nonlinear, nonparametric) and that
enables the incorporation of locally defined constraints (e.g. short-cycling), this manuscript
presents a novel TCL modeling technique and distributed control approach. This work
diverges from the above literature in the following respects:
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• This chapter presents a distributed control scheme with a centralized aggregator via
ADMM. Related distributed control schemes use consensus coordination [105], dis-
tributed model predictive control [54, 90], and iterative load profile aggregation [82].

• In this chapter, all TCL parameters, objectives, and constraints remain private. Each
TCL is simulated locally and independently of the population. The only information
that a TCL communicates with the central aggregator is its predicted power trajectory.
Therefore, if necessary, TCL parameter identification can be performed locally [14].

• We do not employ an aggregate model of the TCL population. Thus, rather than
modeling the entire population, the central aggregator is only responsible for updating
an incentive variable that drives the population towards a desired behavior.

• There is no requirement that each TCL in the population employs the same model
structure or local control scheme. The only requirement is that the TCL is able to
produce predictions of its power demand under multiple alternative control scenarios.
While we employ a hybrid state TCL model in this manuscript, this is not restrictive
and the distributed optimization technique is compatible with a variety of different
TCL modeling approaches.

• We do not use continuous setpoint control. In this chapter, all temperature setpoint
offsets are integer valued and therefore easily implementable.

• Individual TCLs are not required to participate at every time step. Because the TCL
population is not centrally modeled, the distributed scheme is robust to an arbitrarily
large loss or acquisition of agents.

• Our proposed modeling and control approach is capable of honoring non-convex con-
straints, such as minimum dwell time - a critically important practical constraint that
eliminates compressor short-cycling.

• Our proposed modeling and control approach is directly extendible to multi-state and
nonlinear TCL models that characterize many TCLs in practice, as shown by the
system identification studies in [29, 72, 80].

For the distributed optimization of a TCL population, we present a variant of the al-
ternating direction method of multipliers (ADMM) algorithm known as sharing ADMM [9].
Due to its parallelizability and convergence characteristics, the sharing ADMM algorithm is
generally applicable to the minimization of distributed agents. Furthermore, past research
on the application of ADMM to the balancing of generators, fixed loads, deferrable loads,
and storage devices has demonstrated the suitability of ADMM to efficiently solve large
convex optimization problems in parallel [47]. In this chapter, we develop a formulation of
the ADMM algorithm to enable a TCL population to perform 5-minute power generation
following. Under our proposed control scheme, each TCL optimizes its behavior according to
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both a private objective function (which primarily enforces feasibility) and a shared objective
function (which follows a generation signal). Optimization is achieved by iteratively updat-
ing a shared incentive variable, which is calculated and broadcast by a central aggregator,
until the population converges to a feasible solution.

Chapter Outline

This chapter is organized as follows. Section 6.2 discusses the TCL model and section 6.3
overviews the sharing ADMM algorithm. Section 6.4 formulates sharing ADMM for dis-
tributed TCL control. Section 6.5 provides numerical examples of our proposed algorithms,
and highlights its applicability to highly heterogeneous populations. Finally, Section 6.6
summarizes key results. Nomenclatures and notation used in this chapter are defined in the
Appendix C.

6.2 TCL Model and Optimization

Hybrid State Model

Each TCL is modeled using the hybrid state discrete time model (5.24). We assume that θ3

is normally distributed with variance ∆tσ2 (bulk units of ◦C2). In this chapter, we assume
a noise standard deviation σ of 0.01◦C/

√
sec or 0.6◦C/

√
hr [18].

The sign conventions in (5.24) assume that the TCL is providing a cooling load and that
P (and thus θ2) is negative. Therefore, we expand the m-update statement to account for
both heating and cooling loads. Additionally, in this chapter, the optimal control of each
TCL is based on setpoint manipulation. In other words, at each time step n, a TCL will
either enforce Tset or move the setpoint by un. While we define un such that the setpoint
may be adjusted at each time step, in practice, we employ a single adjustment over multiple
consecutive time steps. The TCL model can now be expressed as

T n+1 = θ1T
n + (1− θ1)(T n∞ + θ2m

n) + θ3

mn+1 =





1 if θ2 > 0 and

T n+1 < Tset − δ
2

+ un

0 if θ2 > 0 and

T n+1 > Tset + δ
2

+ un

1 if θ2 < 0 and

T n+1 > Tset + δ
2

+ un

0 if θ2 < 0 and

T n+1 < Tset − δ
2

+ un

mn otherwise

(6.1)
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where un ∈ R is the setpoint change at time step n. While un may, by definition, take on
any value in R. In this chapter, we will only consider integer changes to the temperature
setpoint (i.e. un ∈ Z).

As noted in [17, 69], the discrete time model implicitly assumes that all changes in
mechanical state occur on the time steps of the simulation. In this chapter, we will assume
that this behavior reflects the programming of the systems being modeled. In other words,
we will assume that the TCLs have a thermostat sampling frequency of 1/h Hz or once per
minute.

Finally, in this chapter, we will emphasize heterogeneous TCLs populations and thus vary
R, C, P , and COP for each agent in the population, as discussed in Section IV. Because
R, C, and P define the thermal mass and rate of heat transfer, the parameters govern the
system dynamics. The COP parameter does not impact the system dynamics but rather
scales the magnitude of the electricity power demand.

6.3 Alternating Direction Method of Multipliers

In this section, we briefly cover the alternating direction method of multipliers (ADMM)
algorithm for convex optimization. We refer the reader to [9, 27] for a more complete
description of the algorithm. Next, we discuss a special case of block separable problems
referred to as sharing ADMM [9]. We derive a formulation of the sharing ADMM algorithm
suitable for the distributed optimization of TCLs and present primal and dual residual
equations and stopping criteria not found in [9].

ADMM

The alternating direction method of multipliers is a common splitting method for solving
problems of the form

minimize f(x) + g(z)

subject to Ax+Bz = c
(6.2)

with variables x ∈ RNx and z ∈ RNz , where f : RNx → (−∞,∞] and g : RNz → (−∞,∞]
are closed convex functions, A ∈ RNc×Nx and B ∈ RNc×Nz are linear operators, and c ∈ RNc

is a vector. ADMM is a variant of the augmented Lagrangian approach which uses partial
updates of the dual variables at each iteration. The algorithm optimizes the coupled problem
(6.2) by solving the uncoupled unscaled steps
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xk+1 = argmin
x

f(x) + 〈λk, Ax〉 (6.3a)

+
ρ

2
‖Ax+Bzk − c‖2

2

zk+1 = argmin
z

g(z) + 〈λk, Bz〉 (6.3b)

+
ρ

2
‖Axk+1 +Bz − c‖2

2

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c) (6.3c)

where variable λ ∈ RNc is the dual variable, constant ρ > 0 is the augmented Lagrangian
parameter, also referred to as the penalty parameter, and k is the integer valued iteration of
the ADMM algorithm.

The necessary and sufficient optimality conditions for the ADMM problem (6.3) are given
by the primal feasibility,

Ax∗ +Bz∗ − c = 0 (6.4)

and dual feasibility,
0 = ∇f(x∗) + ATλ∗ (6.5)

0 = ∇g(z∗) +BTλ∗ (6.6)

assuming f and g are differentiable.
The convergence of (6.3) can be summarized by

• Objective Convergence: f(xk) + g(zk) → J∗ as k → ∞ where J∗ denotes the optimal
value of (6.2)

• Primal Residual Convergence: Residual rk → 0 as k →∞ where rk = Axk +Bzk − c

• Dual Variable Convergence: Variable λk → λ∗ as k →∞
We refer the reader to [9, 27] for a discussion of the augmented Lagrangian, scaled form,

primal and dual residuals, and convergence rates.

Sharing ADMM

In this chapter, we consider an ADMM-based method for solving the generic sharing problem
using distributed optimization, as presented in [9]. In this section, we demonstrate how the
sharing problem can be represented as a special case of (6.2) where f and A have a separable
structure that we can exploit. The method is well suited for solving problems of the form

minimize
∑
fi(xi) + g(

∑
xi) (6.7)

with variables xi ∈ FNx
i , the decision variable of agent i for i = 1, . . . , N , where Fi represents

the convex constraint set of agent i, N the number of agents in the network, Nx is the length
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of xi, fi is the cost function for agent i, and g is the shared objective function of the network.
The function g takes as input the sum of the individual agent’s decision variables, xi. The
sharing problem allows each agent in the network to minimize its individual/private cost
fi(xi) as well as the shared objective g(

∑
xi).

By introducing variable zi ∈ RNx , a term that copies the xi decision variable of each
agent, the sharing problem can be written in an ADMM-compatible form

minimize
x

∑
fi(xi) + g(

∑
zi)

subject to xi − zi = 0, i = 1, . . . , N
(6.8)

with variables xi ∈ FNx
i , zi ∈ RNx ,

∑
zi ∈ GNx for i = 1, . . . , N where GNx represents

the convex constraint set of the shared objective. Therefore, the unscaled form of sharing
ADMM is

xk+1
i = argmin

xi
fi(xi) (6.9a)

+ 〈λki , xi〉+
ρ

2
‖xi − zki ‖2

2

zk+1 = argmin
z

g(
∑
zi) (6.9b)

+
∑

(〈λki ,−zi〉+
ρ

2
‖xk+1

i − zi‖2
2)

λk+1
i = λki + ρ(xk+1

i − zk+1
i ) (6.9c)

with variable z = (z1, . . . , zN) and augmented Lagrangian parameter ρ > 0. Unlike (6.3),
where there is a single globally defined dual variable λ, in (6.9), each agent has its own
λi. Thus, the xi-update and λi-update steps can be executed by each agent i = 1, . . . , N
independently and in parallel. The z-update step is executed by a collector or aggregator
with knowledge of each agent’s decision variable xi.

Sharing ADMM Residuals

Next, we define the sharing ADMM residuals. The necessary and sufficient optimality con-
ditions for the sharing ADMM algorithm and derivation of the residuals are presented in
Appendix C. The primal residual is defined as

rk+1
i = xk+1

i − zk+1
i (6.10)

and the dual residual as
sk+1
i = −ρ(zk+1

i − zki ) (6.11)
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Stopping Criteria

We define the stopping criteria as presented in [9] by

‖rk‖2 ≤ εprimal and ‖sk‖2 ≤ εdual (6.12)

where rk = (rk1 , . . . , r
k
N), sk = (sk1, . . . , s

k
N), and εprimal > 0 and εdual > 0 are feasibility

tolerances for the primal and dual conditions (6.4) and (6.5). In this chapter, we set εprimal =
εdual = 1.

Averaged Sharing ADMM

As written, the sharing ADMM algorithm (6.9) requires the local calculation of a zki , λki , and
rki term for each agent i = 1, . . . , N in the network. Next, we will simplify the algorithm by
introducing global variables x̄k, z̄k, and λ̄k representing the arithmetic mean of all xki , z

k
i ,

and λki , respectively. The unscaled form of the averaged sharing ADMM algorithm is given
below. The derivation of the averaged sharing ADMM algorithm is presented in Appendix
C.

xk+1
i = argmin

xi
fi(xi) + 〈λ̄k, xi〉 (6.13a)

+
ρ

2
‖xi − xki + x̄k − z̄k‖2

2

z̄k+1 = argmin
z̄

g(Nz̄) + 〈λ̄k,−Nz̄〉 (6.13b)

+
Nρ

2
‖x̄k+1 − z̄‖2

2

λ̄k+1 = λ̄k + ρ(x̄k+1 − z̄k+1) (6.13c)

With this averaged sharing ADMM form, the individual agents no longer update their
own λi variable. Instead, a single aggregator updates λ̄, along with x̄ and z̄, and reports
these global variables to every agent in the network.

Averaged Sharing ADMM Residuals

In order to apply the stopping criteria (6.12), we must redefine the primal and dual residuals
for the averaged form. The derivation of the averaged residuals is presented in Appendix C.
The averaged primal residual is defined as

rk+1
i = x̄k+1 − z̄k+1 (6.14)

and the averaged dual residual as

sk+1
i = ρ((x̄k+1 − x̄k)

− (xk+1
i − xki )

− (z̄k+1 − z̄k))
(6.15)
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The corresponding `2-norms of the stopping criteria are therefore

‖rk‖2 = N‖x̄k − z̄k‖2

‖sk‖2 =
∑‖ski ‖2

(6.16)

6.4 Distributed TCL Optimization for Generation

Following

In this section, we introduce the ACT representation into the ADMM algorithm. Note that
we refer to the optimal power demand profile (p = PTw) produced by (5.7) as the discrete
solution (w∗ ∈ {0, 1}Nd), by (5.8) as the continuous solution (ŵ∗ ∈ RNd), and by (5.8) and
(5.9) as the probabilistic solution (w̃ ∈ {0, 1}Nd). Next, we describe the application of the
sharing ADMM algorithm to the distributed optimization of TCLs with the objective of
providing 5-minute ahead generation following ancillary services. Specifically, we define the
optimization program for the individual TCLs and the aggregator. Then, we describe the
final sharing ADMM algorithm for the TCL population. Results from multiple studies are
described in the next section. Our formulation is based on the following assumptions:

1. Each TCL is capable of (i) manipulating its setpoint by a discrete/integer amount, (ii)
accurately monitoring and forecasting its power demand, (iii) solving convex programs,
and (iv) communicating with a central aggregator (representing a load-serving entity
such as an electric utility).

2. The consumer is indifferent to the relative energy costs of the alternative control tra-
jectories. In other words, either the consumer does not pay for energy used by the
TCL or the compensation for participating in the demand response program is such
that the change in energy cost is negligible. This does not imply that each alternative
trajectory is of equal utility.

3. At each ADMM iteration and time step, a TCL’s decision variable and selected power
demand trajectory is shared with only the aggregator. The TCL’s characteristics and
decision making, including the P matrix, remain private to that TCL.

TCL Optimization

In this chapter, we consider four types of thermostatically controlled loads: refrigerators,
electric water heaters, heat pumps, and electric baseboard heaters. Each TCL is simulated
using (6.1) with published model parameter ranges, given in Table 6.1 and adopted from
[64]. To generate a population, parameters are randomly drawn from a uniform distribu-
tion between the maximum and minimum values shown in the table. For heat pumps and
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Parameter Refrigerator Water Heater Heat Pump Baseboard

Thermal resistance, R (◦C/kW) [80, 100] [100, 140] [1.5, 2.5] [1.5, 2.5]

Thermal capacitance, C (kWh/◦C) [0.4, 0.8] [0.2, 0.6] [0.15, 0.25] [0.15, 0.25]

Energy transfer rate, P (kW) [-1, -0.2] [4, 5] [14, 25.2] [0.5, 1.5]

Coefficient of performance, COP 2 1 3.5 1

Temperature set point, Tset (◦C) [1.7, 3.3] [43, 54] [15, 24] [15, 24]

Dead-band width, δ (◦C) [1, 2] [2, 4] [0.25, 1] [0.25, 1]

Ambient temperature, T∞ (◦C) 20 20 variable variable

Number of zones 1 1 [5,10] [1,2]

Number of trajectories, Na 3 3 3 3

Feasible set point changes, Su (◦C) {0, -2, 1} {0, -5, 5} {0, -2, 1} {0, -2, 1}

Table 6.1: TCL parameter ranges adopted from [64]

Figure 6.1: Ambient Temperature Data for Berkeley, CA, on the Morning of 3/19/2015

baseboard heaters, the C parameter is multiplied by the number of zones, an integer ran-
domly drawn from the range given. Additionally, for the ambient temperature T n∞ of the
heat pumps and baseboard heaters, we utilize weather data for Berkeley, California from the
morning of 3/19/2015, shown in Figure 6.1 [101]. The electric power demand of the TCL at
each time step is given by (5.25).

TCL control takes the form of setpoint manipulation. Rather than considering the full
set of feasible control inputs, we only consider a small subset of the feasible set. Specifically,
we define Na = 3 control inputs for each TCL in a population. The first control input applies
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no change to the temperature setpoint and corresponds to the default or normal operation of
the TCL. The second input applies a setpoint change that will cause the system to turn on or
stay on and is therefore expected to increase the average power demand of the TCL relative
to normal operation. Conversely, the third input applies a setpoint change that will cause
the system to turn off or stay off and is expected to decrease the average power demand of
the TCL relative to normal operation.

To generate these control inputs, we define a discrete set of feasible/allowed setpoint
changes, represented by Su. Though we simulate the TCLs using a one minute time scale
(∆t = 1/60 hours), we apply all setpoint changes over 5 consecutive time steps (Nt = 5).
Thus, for a refrigerator with Su = {0,−2, 1},

u1 = (0, 0, 0, 0, 0)

u2 = (−2,−2,−2,−2,−2)

u3 = (1, 1, 1, 1, 1)

In other words, the refrigerator has a maximum of Na = 3 alternative control trajectories.
As stated previously, each distinct input uj is not guaranteed to produce a distinct output Tj,
mj, or pj. Thus, for any given TCL, the number of distinct alternative control trajectories,
Nd, is in the discrete set {1, . . . , Na}.

The zero input u1 represents the default TCL input and is always first in the set of
alternative control trajectories. If Nd = 1, we describe the TCL as fixed or inflexible. In
other words, the TCL is at a point in its cycle such that setpoint manipulation does not
impact the temperature trajectory. If Nd = 2 and the mean of p2 is greater than the mean
of p1, then the TCL is only capable of increasing demand; if Nd = 2 and the mean of p2 is
less than or equal to the mean of p1, then the TCL is only capable of decreasing demand.
If Nd = 3, then the TCL is flexible and capable of increasing or decreasing demand. This
classification is used to interpret results in Section V.

Thus, using the alternative control trajectory representation, we can simulate a TCL
using U and (6.1) to output T, M, and P matrices such that U, T, M, and P ∈ RNd×Nt .
Now, the individual TCL’s optimization problem can be defined as a constrained least-
squares fit.

minimize
ŵ

αx‖TT ŵ − Tset‖2
2

subject to
∑
ŵj = 1

ŵ ≥ 0

(6.17)

with variables T ∈ RNd×Nt , representing the set of distinct temperature trajectories, ŵ ∈
RNd , representing the optimal linear combination of trajectories and/or the discrete proba-
bility distribution of selecting control trajectory j for j = 1, . . . , Nd, Tset ∈ RNt the TCL’s
temperature setpoint, Nt the number of time steps simulated, Nd the number of control
trajectories, and αx a weighting term for the TCL’s objective. As previously described, the
continuous solution for the power demand profile is determined by x∗i = PT ŵ∗i . Given ŵ∗i
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Figure 6.2: California ISO Wind and Solar Generation 5-Min Forecasts for 3/19/2015 (Top),
Smooth Polynomial Fit of Total Generation (Center), and exemplary 5-minute Generation
Following Signal (Bottom)

and (5.9), we denote the probabilistic solution as p̃i = PT w̃i. Because w̃ ∈ {0, 1}Nd , p̃ is
in the feasible set of power trajectories defined by P. As previously stated, ŵ∗i and x∗i are
guaranteed to be optimal, but w̃i and p̃i may be sub-optimal.

It should be noted that the TCLs could be simulated and controlled with time steps of
less than one minute without impacting the computational requirements of the distributed
optimization algorithm. For example, we could simulate a TCL with a time scale of one
second. To produce the alternative temperature and power trajectories required for the
optimization, we would use the minute-wise averages of the simulated temperature and
power demand of the TCL. In this way, the time scale used for optimization is uniform over
the population while the time scale used for simulation and control is determined by the
individual TCLs.
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Aggregator Objective

In this chapter, the aggregator, representing a load-serving entity, will influence the behavior
of the TCLs so as to perform 5-minute power generation following. To demonstrate this
potential, we consider 5 minute ahead forecasts of wind and solar generation retrieved from
the California Independent System Operator (ISO) [16]. Figure 6.2 presents the wind and
solar power generation for the morning of 3/19/2015. The center plot shows a smooth
polynomial fit of the total renewable generation. The error between the actual generation
and the smooth fit will serve as our exemplary 5-minute generation following signal in this
chapter, shown in the bottom plot.

Ideally, 5-minute generation following is a zero net energy service. Accordingly, the mean
of the control signal is 1.229×10−7 MW. Considering that the signal is on the order of 10 MW
and that TCLs are on the order of 1 kW loads, in this chapter, we will utilize the TCLs to
respond to 1% of the signal shown in Figure 6.2. Additionally, we are simulating the TCL’s
using a one minute time scale but the signal is on a five minute time scale. Thus, we will treat
the signal as a piecewise constant function. It is possible to interpolate between the current
and previous control signal to produce a smooth or piecewise linear signal. Nonetheless, we
are electing to use a piecewise constant interpretation.

To perform generation following, the aggregator’s objective function can be defined as
an unconstrained least-squares fit.

minimize αz‖
∑
xi − d‖2

2 (6.18)

with variables d ∈ RNt , the aggregator’s desired power demand given the generation following
signal y ∈ RNt , and xi ∈ RNt , the power demand of TCL i for i = 1, . . . , N , where N
represents the number of TCLs in the network and Nt = 5 is the number of time steps in d
and xi. Lastly, αz is a weighting term for the aggregator’s objective.

We calculate the desired power demand d by adding the current generation following
signal y to the power demand of the population in the previous time step (i.e. dn =

∑
i p̃

n−1
i +

yn for n = 1, . . . , Nt). Since the value of the signal only changes once every 5 minutes, we
optimize the aggregated power demand over a horizon of Nt = 5 time steps and thus,

dn =





∑
i p̃

n−1
i + yn if n = 1

dn−1 otherwise

∀ n = 1, . . . , Nt

(6.19)
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TCL Sharing ADMM

Given the TCL and aggregator optimization programs (6.17) and (6.18), we can now define
the sharing ADMM algorithm for power generation following using a population of TCLs.

ŵk+1
i = argmin

ŵi

αx,i‖TT
i ŵi − Tset,i‖2

2 (6.20a)

+ 〈λ̄k,PT
i ŵi〉+

ρ

2
‖PT

i ŵi − xki + r̄k‖2
2

s. to
∑
ŵj = 1, ŵ ≥ 0

xk+1
i = PT

i ŵ
k+1
i (6.20b)

z̄k+1 = argmin
z̄

αz‖Nz̄ − d‖2
2 + 〈λ̄k,−Nz̄〉 (6.20c)

+
Nρ

2
‖x̄k+1 − z̄‖2

2

r̄k+1 = x̄k+1 − z̄k+1 (6.20d)

λ̄k+1 = λ̄k + ρ(r̄k+1) (6.20e)

In our implementation, the ADMM algorithm is run once every 5 minutes to determine
the optimal power demand of the TCL population over the next 5 minutes at a 1 minute time
scale. For simplicity, we report the power demand of the TCLs as a 5 minute average. For
fixed TCLs (i.e. Nd = 1), the power demand profile is reported to the aggregator before the
first ADMM iteration. The N and d parameters are adjusted accordingly and the ADMM
algorithm run on the remaining population.

Generation Following Algorithm, Distributed Network Structure,
and Communication

To achieve distributed control of a TCL population, we assume a certain amount of ex-
isting infrastructure for communication, computation, and control. Our assumptions are
comparable to those made in [97, 66, 90] and include:

• Bi-directional communication between the individual TCLs and the aggregator via
wired or wireless links.

• Sufficient local computation and hardware for solving convex programs and measuring
TCL states.

• A local TCL model whose parameters are either known a priori or identified using a
parameter estimation technique [80, 15, 14].

The execution of the generation following algorithm can be summarized by the follow 4
steps:
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1. Aggregator Preparation: Every 5 minutes, the aggregator receives the signal y and
produces the desired power profile d.

2. TCL Simulation: Each TCL i in the population simulates its dynamics to produces a
set of alternative temperature trajectories Ti and power trajectories Pi.

3. Optimization via ADMM: For each iteration k until the stopping criteria are met:

a) Broadcast Signal: The aggregator reports the mean primal residual r̄k (i.e. the
difference between x̄k and z̄k) and the mean dual incentive variable λ̄k to each
TCL i in the population.

b) Local Optimization: Each TCL i optimizes (6.20a) and reports xk+1
i (6.20b) to

the aggregator.

c) Aggregator Optimization: Given the mean TCL power profile x̄k+1, the aggregator
optimizes (6.20c) and updates the mean primal residual r̄k+1 (6.20d) and the mean
dual incentive variable λ̄k+1 (6.20e).

4. Interpretation: Each TCL i interprets the discrete probability distribution ŵ∗i to select
a power trajectory p̃i from the set Pi and reports the probabilistic solution p̃i to the
aggregator.

Figure 6.3: TCL Model and Optimization Structure. Each TCL i in the population will
simulate its dynamics to produce the alternative control trajectories, coordinate with an
aggregator using the ADMM algorithm to produce a continuous solution, and finally interpret
the discrete probability distribution to produce a probabilistic solution.

Figure 6.3 outlines the steps performed by each TCL i in the population. At each
time step, the TCL simulates its dynamics to produce the alternative control trajectories
as represented by Ti and Pi, coordinates with an aggregator via ADMM to produce a
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Figure 6.4: Aggregator Preparation Step. The aggregator receives the signal y and produces
the desired power profile d.

Figure 6.5: TCL Simulation Step. Each TCL i in the population simulates its dynamics to
produce the alternative control trajectories.

Figure 6.6: Optimization Step. For each iteration k of the ADMM algorithm, the aggregator
reports the mean primal residual r̄k and the mean dual incentive variable λ̄k to each TCL i
in the population. Each TCL i then reports its updated xk+1

i to the aggregator.

continuous solution x∗i , and finally interprets the discrete probability distribution ŵ∗i to
produce a probabilistic solution p̃i ∈ Pi.

The 4 steps of the generation following algorithm, as well as the structure of the dis-
tributed system, are illustrated in Figures 6.4, 6.5, 6.6, and 6.7. In particular, the figures
indicate for each step of the algorithm which variables are defined locally and which are
communicated between the aggregator and the TCLs in the population.

In our algorithm, each TCL i reports the power demand profile xk+1
i to the aggregator

but not to the other TCLs in the network. Each TCL’s T, P, and ŵk remain private. In
addition to the stopping criteria (6.12), we impose a limit on the absolute value of λ̄ (i.e.
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Figure 6.7: Interpretation Step. Each TCL i interprets the discrete probability distribution
ŵ∗i to select a power trajectory p̃i from the set Pi and reports the probabilistic solution p̃i
to the aggregator.

stop if |λ̄n| ≥ λ+ for n = 1, . . . , Nt). This limit is empirically selected and serves as a
means of detecting if the population of TCL’s is able to match the signal within a certain
tolerance. As defined by (6.18), any power demand is feasible, but in practice, we only want
to perform generation following if the aggregate continuous solution Nx̄∗ is within a certain
error tolerance, εerror, of the control signal d (i.e. max(|Nx̄∗ − d|) < εerror). Therefore, if
the ADMM algorithm does not converge to a solution within this tolerance, the population
has failed to perform generation following and each TCL implements some default behavior.
In this chapter, the default behavior is to return to the original temperature setpoint by
implementing the control trajectory u1 = (0, 0, 0, 0, 0).

At optimality, the power demand profile x∗i represents the TCL’s continuous solution and
is not directly implementable. While it is conceptually possible to cluster complementary
TCLs or to incorporate energy storage so as to directly achieve the continuous solution,
we assume no such coordination in this chapter. Instead, each TCL in the population
will implement a single control trajectory given the discrete probability distribution ŵ∗i .
The TCLs’ states are updated and the resulting power demand profile, referred to as the
probabilistic solution p̃i, is reported to the aggregator. The potential for error between the
continuous and probabilistic solution is addressed in the next section.

ADMM Parameter Selection

The parameters of the ADMM algorithm are presented in Table 6.5. These parameters have
been empirically selected to fit the characteristics of our application. Specifically, because the
behavior of each TCL in the population is constrained by its alternative control trajectories,
the goal of the generation following algorithm is primarily to shape the aggregate load in
response to a signal. This is expressed in the ADMM parameters by selecting an aggregator



CHAPTER 6. DISTRIBUTED OPTIMIZATION OF THERMOSTATICALLY
CONTROLLED LOADS 88

coefficient αz that is larger than the TCL coefficient αx for each TCL in the population.
Decreasing αz or increasing αx will cause less emphasis to be placed on the global objective.
Therefore, the TCLs will choose to optimize their local objectives rather than optimizing the
aggregate power demand (a further discussion of this behavior is presented in Section 5.7).

The primal and dual feasibility tolerances are positive values which define the stopping
criteria of the ADMM algorithm. In our application, the mean primal residual r̄k is the
difference between x̄k, the mean power demand based on the continuous solutions reported
by the TCL population, and z̄k, the mean power demand based on the solution to the aggre-
gator’s objective function. The primal feasibility tolerance εprimal is a measure of the primal
residual that we are willing to accept. Based on the relative weighting of the aggregator and
TCL objectives and the error tolerance εerror = 10kW, εprimal can effectively be any positive
value less than

√
10. We have selected εprimal = 1 based on empirical observations that

the value produces aggregate continuous solutions within the error tolerance εerror within a
modest number of ADMM iterations (i.e. <50).

The dual residual ski of each TCL i is a measure of the change in the continuous solution
xki and in the primal residual r̄k between ADMM iteration k and k + 1. Thus, ‖sk‖ is a
measure of the rate of change in the solutions of the aggregator and TCL population. A
large dual feasibility tolerance εdual will cause the ADMM algorithm to stop once the primal
feasibility criterion is met while a small tolerance will cause the algorithm to continue until
the solutions of the aggregator and TCLs no longer change from one iteration to the next.
We have empirically chosen a dual feasibility tolerance εdual of 1 such that the dual feasibility
criterion is met a few iterations (i.e. <10) after the primal feasibility criterion.

The Lagrangian penalty has been tuned to be sufficiently large such that the ADMM al-
gorithm converges relatively quickly but sufficiently small so as to avoid oscillatory behaviors
in the ADMM updates as the algorithm begins to converge. Lastly, we have observed that
when the desired power profile d is outside the feasible power demand range of the TCL ag-
gregation, the absolute values of λ̄ increase dramatically as the ADMM algorithm attempts
to drive the TCL population toward an infeasible solution so as to reduce the aggregator’s
objective function. To detect this behavior and stop the ADMM algorithm, we impose a
limit of λ+ = 50 on the absolute value of λ̄.

Reducing Variance

At optimality, the solution x∗i represents the continuous solution of the relaxed form of
the general assignment problem, as described in (5.8). While this relaxation is essential
for distributed convex optimization, the continuous solution is not directly implementable.
Instead, we employ the probabilistic solution p̃i and thereby introduce the potential for
error between the solution returned by the ADMM algorithm and the actual power demand
of the TCLs. For highly homogeneous populations of TCLs, we have observed that the
aggregated continuous and probabilistic solutions are comparable (i.e. have similar errors
with respect to the signal). The logical explanation is that due to the homogeneity, many
TCLs converge to similar solutions. Thus, their probabilistic solutions are complementary
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Generation following signal y

Desired power demand profile d

Temperature set point of TCL i Tset,i

Temperature trajectories of TCL i Ti

Power trajectories of TCL i Pi

Table 6.2: Optimization Inputs

Final power demand

profile of TCL i

(probabilistic solution)

p̃i

Table 6.3: Optimization Outputs

such that the aggregated power demand is close to the continuous solution returned by the
ADMM algorithm. For highly heterogeneous populations, however, this is not the case.

One method for reducing the variance, which we will refer to as iterative optimization, is
to repeatedly commit a fraction of the population to a solution and solve the optimization
problem with the uncommitted population. Stated simply, we run ADMM on the entire
population of TCLs. Upon convergence, we fix a certain number of the TCLs (10-20% of
the total population) using the probabilistic solution. These TCLs are them removed from
the population being optimized and the N and d parameters are adjusted accordingly. Next,
we repeat the ADMM algorithm to find the continuous solution of the remaining population
using the previous value of λ and adjusted values of x̄ and z̄ as a warm start. This process
is repeated until all TCLs are fixed. For successive ADMM runs, we decrease the number of
ADMM iterations as the problem becomes more constrained.

A second method, which we refer to as iterative variance minimization, is to gradually
penalize the variance of individuals in the population, as described in Chapter 5 Section 5.
Thus, the update step (6.20a) becomes

ŵk+1
i = argmin

ŵi

αx,i‖TT
i ŵi − Tset,i‖2

2

+ 〈λ̄k,PT
i ŵi〉+

ρ

2
‖PT

i ŵi − xki + r̄k‖2
2

+ αkσ,i
∑ ‖pi,j − xki ‖2

2

s. to
∑
ŵj = 1, ŵ ≥ 0

(6.21)

where pi,j is the j-th alternative power trajectory of TCL i and αkσ,i is the scaling parameter
for the sparsity-inducing cost of TCL i. After each ADMM iteration, the value of αkσ,i for
each TCL in the population is updated according to (5.23).
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Probability distribution of

TCL i at iteration k
ŵki

Power demand profile of

TCL i at iteration k

(continuous solution)

xki

Mean TCL power demand

profile at iteration k

(continuous solution)

x̄k

Mean aggregator power demand

profile at iteration k

(continuous solution)

z̄k

Mean primal residual r̄k

Mean dual variable λ̄k

Table 6.4: ADMM Variables

Lagrangian Penalty ρ 10

Aggregator Coefficient αz 20

TCL Coefficient

(Refrigerator)
αx 0

TCL Coefficient

(Water Heater)
αx 0

TCL Coefficient

(Heat Pump)
αx 1

TCL Coefficient

(Baseboard Heater)
αx 1

Primal Feasibility Tolerance εprimal 1

Dual Feasibility Tolerance εdual 1

Error Tolerance εreg 10 kW

λ̄ Limit λ+ 50

Table 6.5: ADMM Parameters
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6.5 Experimental Results

In this section, we present results for 6 experimental studies. In each experiment, we model
a population of TCLs to follow 1% of the signal described in Figure 6.2. This 5-minute
generation following is achieved by running the sharing ADMM algorithm every 5 minutes
between midnight and noon for the morning of 3/19/2015. In the first experiment, we con-
sider a large, highly homogeneous population of refrigerators. Second, a small, heterogeneous
population of refrigerators. Third, a highly heterogeneous population of refrigerators, water
heaters, heat pumps, and baseboard heaters. Fourth, a highly heterogeneous population of
refrigerators, water heaters, heat pumps, and baseboard heaters using the divide and conquer
approach described above.

For each study, we employ the ADMM parameters in Table 6.5. For refrigerators and
water heaters, αx = 0 indicating that the consumer is indifferent to the selection of a control
trajectory. Thus, the TCL’s objective function (6.17) is constant and weakly convex. At
each iteration, the TCL enforces feasibility and adjusts its power demand according to the
incentive signal λ. For heat pumps and baseboard heaters, αx = 1 indicating that the
consumer would prefer to keep the temperature near the setpoint. The weight αx is not large
enough to prevent the selection of any alternative control trajectory, but rather numerically
incentives the utilization of more cooperative/responsive refrigerators and water heaters
before heat pumps and baseboard heaters. Lastly, Su defines a set of 3 feasible change in
setpoint values. Thus, each TCL has a maximum of Na = 3 alternative control trajectories.

For each of the experimental studies, we present the aggregated power demand and
response of the population for the respective experiment. The aggregated continuous and
probabilistic power demand are presented as the mean of the total power demand over each
Nt = 5 minute interval.

xkΣ =
1

Nt

Nt∑

n=1

N∑

i=1

(xni )∗ (6.22)

pkΣ =
1

Nt

Nt∑

n=1

N∑

i=1

p̃ni (6.23)

where variables xkΣ, p
k
Σ ∈ R, N is the number of TCLs in the population, and k denotes

the integer valued time step of each ADMM run (i.e. each Nt = 5 minute interval between
midnight and noon).

The continuous and probabilistic responses of the population denote the change in power
demand, and are respectively given by

xk∆ = xkΣ − pk−1
Σ (6.24)

pk∆ = pkΣ − pk−1
Σ (6.25)

Because x∗i is not directly realizable, xk∆ is calculated relative to the previous probabilistic
demand pk−1

Σ .
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For each time step k, we also present the minimum and maximum power demand that
the population of TCLs could have achieved given the set of feasible power trajectories Pi

for each TCL. For each TCL i, we denote the trajectories with the minimum and maximum
mean power demand as pmin

i ∈ Pi and pmax
i ∈ Pi, respectively. Therefore, the minimum and

maximum mean power demand of the population is

pkminΣ =
1

Nt

Nt∑

n=1

N∑

i=1

(pni )min (6.26)

pkmaxΣ =
1

Nt

Nt∑

n=1

N∑

i=1

(pni )max (6.27)

Thus, the maximum up or down response of the population is given by

pkmin∆ = pkminΣ − pk−1
Σ (6.28)

pkmax∆ = pkmaxΣ − pk−1
Σ (6.29)

where variable pkmin∆ corresponds to demand decrease and pkmax∆ to demand increase (from
the perspective of the load). In the case that pkmin∆ > 0 or pkmax∆ < 0, the population is
incapable of decreasing or increasing its power demand, respectively.

Highly Homogeneous Population

To begin, we present the results using a highly homogeneous population of refrigerators.
Specifically, we have modeled and controlled a population of N = 20,000 refrigerators with
identical parameters (the mean of the parameter ranges in Table 6.1). We have limited the
number of ADMM iterations to 10.

Figure 6.8 presents the results from the homogeneous experiment. The top plot shows how
well the continuous responses xk∆ and the probabilistic responses pk∆ compare to the signal yk

for each 5 minute interval between midnight and noon. To reiterate, the continuous response
is the difference between the aggregated solution to the ADMM algorithm and the power
demand in the previous time step. The probabilistic response is the difference between the
aggregated probabilistically selected TCL trajectories and the power demand in the previous
time step. The RMSEs of the continuous and probabilistic responses are 0.11 kW and 14.25
kW, respectively. The ADMM algorithm only failed to converge to a continuous solution
within the error tolerance of 10 kW during two intervals at 10:00 and 10:05 AM, resulting
in a generation following success rate of 98.6% over the time period studied.

The second plot in Figure 6.8 shows the probabilistic pkΣ, the minimum pkminΣ, and the
maximum pkmaxΣ power demand of the population at each time interval. The third plot
shows the corresponding minimum pkmin∆ and maximum pkmax∆ potential (i.e. the difference
between the minimum or maximum power demand and the demand in the previous time
step). While it is possible for the aggregator to discern these minimum and maximum values
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Figure 6.8: Highly Homogeneous Population

by manipulating λ̄ to drive the TCLs to their extremes, we have assumed no such behavior in
our implementation. Thus, the aggregator can only determine if the signal and the feasible
up or down responses are within the specified error tolerance after the ADMM algorithm
converges. The only exception is if λ̄ violates the λ+ limit, indicating that the ADMM
algorithm is attempting to drive the population toward an infeasible solution so as to reduce
the aggregator’s objective function (though the TCLs will guarantee that the solution at
each iteration is feasible).

The fourth plot shows the percentage of the population that is either fixed, flexible, or
capable of only up or down responses. From midnight to 6:00, we observe that the TCLs
move between up only and down only conditions, with the percent of fixed and flexible TCLs
remaining small. After 6:00, the TCLs in the up only population begin to move to the down
only or fixed populations. In the fifth plot, which shows the number of ADMM iterations
executed before stopping, we see that the ADMM algorithm has more difficulty finding a
solution in these later time intervals and begins hitting the iterations limit of 10. This trend
represents a decline in the capability of the population to perform generation following.
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Figure 6.9: Homogeneous Population with 5 Minute Dwell Time

Homogeneous Population with Dwell Time

In this study, we demonstrate the suitability of the control framework to honor minimum
dwell time constraints. We consider a homogeneous population of N = 20,000 refrigerators
with identical parameters (the mean of the parameter ranges in Table 6.1). The TCLs are
controlled such that a minimum dwell time of 5 minutes is enforced (i.e. if a TCL turns on
or off, it must remain in the new state for at least 5 minutes). Again, we have limited the
number of ADMM iterations to 10.

The minimum dwell time constraint is applied at the Simulate TCLs step of the generation
following algorithm. Specifically, if a TCL simulation produces a mechanical state trajectory
mj such that the minimum dwell time of 5 minutes would be violated if the trajectory was
implemented, the trajectory is discarded by excluding the corresponding uj, Tj, mj, and pj
from U, T, M, and P.

The results, presented in Figure 6.9, show a generation following success rate of 100.0%
over the time period studied. The RMSEs of the continuous and probabilistic responses
are 8.13 kW and 11.80 kW, respectively. Note that this study employs the same number of
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Figure 6.10: Heterogeneous Population

TCLs with the same parameter values as those in the previous homogeneous study. However,
due to the enforcement of the dwell time constraint, we observe a greater percentage of the
population in the fixed and down only conditions. In the previous homogeneous study, the
means of the fixed, up only, and down only populations over the 12 hours were 9.35%, 74.09%,
and 16.23%, respectively. With the enforcement of the dwell time, the mean percentages
are 24.87%, 60.22%, and 14.74%, respectively. Due in part to the increase in the fixed
population, more ADMM iterations are required to find a solution.

Heterogeneous Population

To begin introducing heterogeneity, we have modeled the control of N = 10,000 refrigerators
with parameters randomly drawn from the uniform distributions in Table 6.1. We have also
raised the ADMM iterations limit to 40. The results from this study are presented in Figure
6.13 and show a success rate of 95.8% over the time period studied. The RMSEs of the
continuous and probabilistic responses are 8.81 kW and 17.84 kW, respectively.

In this study, we have significantly decreased the population size and thus the potential
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Figure 6.11: Highly Heterogeneous Population

for increasing demand. The second and third plots indicate that as we approach noon, we
experience a decline in the maximum feasible power demand pkmaxΣ and the demand increase
potential pkmax∆. The fourth plot shows the percentage of the population that is either
fixed, flexible, or capable only up or down responses and presents some insight into the
loss of demand increase potential. Between midnight and 7:00, we observe that the TCLs
generally oscillate between up only and down only, with the percent of fixed and flexible
TCLs remaining small. After 7:00, the TCLs in the down only population begin to become
fixed. Finally, the TCLs begin switching between up only and fixed, making it more difficult
to perform generation following and driving up the number of ADMM iterations.

Highly Heterogeneous Population

In this study, we consider a highly heterogeneous population of refrigerators, water heaters,
heat pumps, and baseboard heaters with parameters randomly drawn from the uniform
distributions in Table 6.1. We model 3,000 refrigerators, 2,000 water heaters, 1,800 heat
pumps, and 1,800 baseboard heaters for a total of N = 8,600 TCLs. We set the ADMM
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iterations limit to 1000 to increase the likelihood that the algorithm converges to a solution
rather than terminating due to the iterations limit.

The results, presented in Figure 6.11, show a generation following success rate of 86.8%
over the time period studied. The RMSEs of the continuous and probabilistic responses are
4.83 kW and 37.16 kW, respectively. This increase in the error of the probabilistic response
can be attributed to the increased heterogeneity of the TCL population.

The fourth plot in Figure 6.11 shows that at each time interval, the percentage of fixed
TCLs remained over 50%. Nonetheless, the potential for increasing the demand fluctuated
between 1 MW and 6 MW. Overall, the population suffered from an insufficient potential for
decreasing demand. This could be addressed by better conditioning the TCLs so that more
remain in a flexible or down only condition or by extending the forecasting horizon beyond
the next 5 minutes, allowing the aggregator and TCLs to better prepare for future signals.

Heterogeneous Population with Iterative Optimization

To address the error between the probabilistic response pk∆ and the signal yk, we have re-
simulated the highly heterogeneous population of N = 8,600 TCLs using the iterative opti-
mization method for reducing variance. In other words, we have run the ADMM algorithm
20 times at each 5-minute interval. After each run, we fixed 5% of the total population so
that after the final run, all 8,600 TCLs are fixed. Additionally, between each run, the N
and d parameters are adjusted according to the results of the newly fixed TCLs. Lastly,
as a warm start, the previous value of λ and adjusted values of x̄ and z̄ are employed to
initialize the next ADMM run. If the error tolerance is violated at the end of an ADMM
run, the algorithm is terminated. For the first ADMM run, the iteration limit is set to 200.
For successive ADMM runs, the limit is 100.

To improve the performance of the algorithm, we have sorted the TCLs such that those
with the highest power demand are fixed first and those with the lowest are fixed last. In
other words, the order of consideration is heat pump, electric water heater, electric baseboard
heater, and refrigerator.

The test results are presented in Figure 6.12. Note that while we are using a population
with the same number of TCLs as the previous study, the model parameters were randomly
drawn from the ranges in Table 6.1 for each study. Therefore, the populations exhibit
different dynamics. While the iterative optimization method has resulted in a significant
increase in the total number of ADMM iterations at each time interval, the RMSEs of
the continuous and probabilistic responses have been reduced to 3.51 kW and 4.12 kW,
respectively. This demonstrates that the TCLs can be controlled such that the probabilistic
response pk∆ is within the error tolerance of 10 kW. The success rate for the time period
simulated is 85.4%. Once again, the population struggles to match the required demand
decrease.
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Figure 6.12: Highly Heterogeneous Population with Iterative Optimization

Heterogeneous Population with Iterative Variance Minimization

Finally, we have re-simulated the highly heterogeneous population of N = 8,600 TCLs using
the iterative variance minimization approach. Specifically, we replace the update step (6.20a)
with (6.21), which includes a linear cost associated with the variance of the solution. After
each iteration, we update the scaling parameter αkσ,i for each TCL according to (5.23). In
this study, we set σ2

max, the maximum desired variance, to 25 kW2. Once again, we note
that the model parameters were randomly drawn from the ranges in Table 6.1 for each study
and therefore exhibit different dynamics than the previous studies.

The test results are presented in Figure 6.13. As was the case with the iterative opti-
mization method, we observe a significant increase in the number of ADMM iterations at
each time interval. However, with the iterative variance minimization method, we are able to
reduce the variance of the probabilistic solution such that the RMSEs of the continuous and
probabilistic responses are 4.16 kW and 5.08 kW, respectively. This demonstrates that the
TCLs can be controlled such that the probabilistic response pk∆ is within the error tolerance
of 10 kW. The success rate for the time period simulated is 79.86%. Further research is
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Figure 6.13: Highly Heterogeneous Population with Iterative Variance Minimization

required to assess the relative advantages and disadvantages of the iterative optimization
and iterative variance minimization methods.

Increasing Population Size

To test the impact of population size on the number of ADMM iterations, we have designed
an experiment in which TCL populations of varying size are employed to respond to the load
following signal. Each population is comprised of homogeneous refrigerators with identical
parameters (the mean of the parameter ranges in Table 6.1).

To account for the variation in population size, the percentage of the signal followed by
the aggregator is scaled such that the per TCL signal remains constant across the different
populations. The same is done with the error tolerance of the aggregator. Specifically, the
percentage of the signal is defined as 10−4% per TCL and the error tolerance is 10−4 kW or
0.1 W per TCL. Therefore, 100 TCLs are employed to follow 0.01% of the signal with an
error tolerance of 0.01 kW and 1,000,000 TCLs are employed to follow 100% of the signal
with an error tolerance of 100 kW.
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Figure 6.14: ADMM iterations at each time step with TCL populations of varying size

Figure 6.15: Mean number of ADMM iterations for each TCL population over first hour of
generation following

In this experiment, we generate populations of 100, 500, 1,000, 5,000, 10,000, 50,000,
100,000, 500,000, and 1,000,000 TCLs and employ each population to follow the first hour
(i.e. first 12 time steps) of the signal. Additionally, the ADMM algorithm is stopped once
the aggregate power demand of the population is within the error tolerance. This can be
viewed as a relaxation of the stopping criteria in (6.12).

The results of this experiment are presented in Figures 6.14 and 6.15. Figure 6.14 shows
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Figure 6.16: ADMM iterations at each time step with varying values of αx

the number ADMM iterations at each time step for the 100, 1,000, 10,000, 100,000, and
1,000,000 TCL populations. Note that for the 10,000, 100,000, and 1,000,000 TCL popula-
tions, the iteration numbers at each time step are equal.

Figure 6.15 shows the mean number of iterations in the the first hour of generation
following for each of the nine TCL populations. The results suggest that the number of
ADMM iterations is independent of the population size. Therefore, increasing the number
of the TCLs in the population does not directly increase the number of ADMM iterations
required to perform generation following.

Increasing αx

The weighting term αx represents the willingness of a TCL to permit temperature drift away
from the setpoint. To test the impact of αx on the number of ADMM iterations, we have
designed an experiment in which TCL populations with varying αx respond to 1% of the
load following signal. Each population is comprised of 10,000 homogeneous refrigerators
with identical parameters (the mean of the parameter ranges in Table 6.1) and is employed
to follow the first hour (i.e. first 12 time steps) of the signal. We limit the number of ADMM
iterations to 40.

The results of this experiment are presented in Figures 6.16, 6.17, and 6.18. Figure 6.16
shows the number ADMM iterations at each time step for the different values of αx and
Figure 6.17 shows the mean number of iterations in the first hour of generation following.
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Figure 6.17: Mean number of ADMM iterations for each value of αx over first hour of
generation following

Figure 6.18: RMSE of continuous response for each value of αx over first hour of generation
following

As shown, when αx is small, fewer ADMM iterations are required to find a solution. This
can be attributed to the weighting of the aggregator objective function relative to the ob-
jective function of the individual TCLs in the population. In other words, the TCLs seek
to minimize the global objective of generation following and allow their temperatures to
drift from the setpoint. As αx increases (and thus the relative weighting of the aggregator
objective decreases), the TCLs become less cooperative and more iterations are required to
find a solution.

Eventually, αx increases to a point where the optimal solution of the distributed ADMM
algorithm is to minimize the objectives of the individual TCLs rather than the aggregator ob-
jective. In other words, the refrigerators in the population choose to minimize the deviation
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of their internal temperatures from the setpoint rather than participating in the generation
following aggregation. As a result, the average number of ADMM iterations increases to the
limit of 40, as shown in Figures 6.16 and 6.17, and we observe an increase in the RMSE of
the continuous response, as shown in Figure 6.18.

6.6 Conclusions

In this chapter, we presented a formulation of the sharing ADMM algorithm suitable for the
distributed optimization of TCLs. The formulation is highly parallelizable and requires the
broadcasting of only λk and (x̄k− z̄k). Given the objective function of every agent is convex,
the algorithm is guaranteed to converge to an optimal solution.

Additionally, we have applied the sharing ADMM algorithm with TCL alternative control
trajectory representation to the problem of 5-minute ahead renewable energy generation
following. Findings of this paper include:

• Using actual wind and solar generation forecasts, ambient temperature records, and
published TCL parameters, we have demonstrated how populations of TCLs can be
optimized to perform power system services.

• By applying the alternative control trajectory representation to TCLs, we have shown
how a population of systems with integer states can be controlled using a convex
algorithm.

• By distributing the computation using the sharing ADMM algorithm, we have demon-
strated that the generation following algorithm can be scaled to large populations of
TCLs without increasing the number of ADMM iterations.

• For highly heterogeneous TCL populations, we have shown that a divide and conquer
approach can be employed to minimize the error between the probabilistic solution and
the signal.

There are a number of advantages to the distributed TCL control method presented in
this manuscript. Firstly, each TCL models its dynamics locally and there is no requirement
that TCLs all employ the same model structure or control scheme. Individual TCLs can
incorporate higher fidelity or device specific models and still participate in the distributed
optimization. Secondly, TCLs can prevent short-cycling. For example, a TCL could ex-
clude any alternative trajectories that violate a minimum dwell time. Thirdly, due to the
bi-directional communication, the aggregator can have perfect knowledge of the population’s
future power demand. There is no need to estimate the power demand if the TCLs are capa-
ble of committing to the solution of the optimization algorithm. Quantifying and qualifying
the advantages of these characteristics will be the focus of future research.

A challenge not addressed in this chapter is that, because we are not centrally modelling
the TCL population, the aggregator does not know the current state or generation following
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potential of the population. Methods for better understanding and maintaining the gener-
ation following potential, which is related to average temperature of each TCL, will be the
subject of future work.

Using our sharing ADMM algorithm, we have demonstrated the potential for TCLs
to help maintain a continuous and instantaneous balance between generation and load by
participating in real-time ancillary service markets. The deployment of such responsive load
will be essential for maintaining the stability of power systems with high renewable energy
penetration.
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Chapter 7

Conclusion

This dissertation contributes to the ongoing development of monitoring and control sys-
tems for building energy use. In Chapter 2, we presented an ensemble learning method for
the short-term forecasting of total electricity demand in buildings. The method combines
the predictions from multiple minimally-customized forecasting models to produce a single
prediction. To improve the accuracy of this prediction, we learn, from past data, how the
multiple forecasts should be combined. Rather than assuming that demand behaviors are
time invariant, the proposed method responds to changes in electricity demand patterns
by continuously updating the forecaster’s parameters. Experimental results demonstrate
enhanced forecasting accuracy across a diversity of buildings.

In Chapter 3, we presented a recursive parameter estimation technique for identifying
a thermostatically controlled load (TCL) model that is non-linear in the parameters. To
improve the performance of distributed TCL control methods, it is necessary to employ re-
cursive or online parameter estimation algorithms to fit and continuously update each TCL’s
model. Using the Kalman filter and unscented Kalman filter, we presented four filter methods
(single, joint, dual, and triple) for recursively estimating the parameters of a discrete-time
TCL model. Additionally, we presented experimental results using real temperature data
from a 500W and a 100W residential refrigerator. For each of the four filter methods, the
algorithm successfully converges to comparable parameter estimates and adapts to changing
TCL characteristics.

In Chapter 4, we developed a piecewise linear thermal model of a residential building that
is capable of capturing the predominant dynamics and disturbance patterns. To estimate
the model parameters, we presented a Kalman filter based system identification method.
Finally, we presented experimental results using real temperature data collected from an
apartment with a forced-air heating and ventilation system. These results demonstrate the
potential of the model and parameter estimation method to produce accurate forecasts of
the air temperature within the apartment.

In Chapter 5, we presented the alternative control trajectory (ACT) representation, a
novel method for the approximate optimization of non-convex discrete systems. Energy
systems like EVs and TCLs often have binary or discrete states due to hardware limitations
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and efficiency characteristics. Consequently, non-convex techniques are generally required for
optimal control. The ACT representation enables the control of a non-convex energy system
to be represented as a convex program. The solution to this program can be interpreted
stochastically for implementation. The significant contribution of this approach is that
it allows for the approximate optimal control of a population of non-convex agents using
distributed convex optimization techniques.

Finally, in Chapter 6, we examined the potential of TCLs, such as refrigerators and elec-
tric water heaters, to provide generation following services in real-time energy markets (1
to 5 minutes). Using the ACT representation, we developed a formulation of the sharing
ADMM algorithm suitable for the distributed optimization of TCLs. The formulation is
highly parallelizable and given the objective function of every agent is convex, the algorithm
is guaranteed to converge to an optimal solution. Experimental results demonstrated the
potential for TCLs to help maintain a continuous and instantaneous balance between gen-
eration and load by participating in real-time ancillary service markets. The deployment of
such responsive load will be essential for maintaining the stability of power systems with
high renewable energy penetration.
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Appendix A

Gated Ensemble Learning Method for
Demand-Side Electricity Load
Forecasting

This appendix describes research on the development of a gated ensemble learning method
for producing short-term building electricity demand forecasts [12].

A.1 Motivation & Background

To improve the accuracy of electricity demand forecasts and aid in the management of power
systems, recent attention has been placed on short-term building-level electricity demand
forecasting using a wide range of models [92, 41]. The ability to accurately and adaptively
forecast demand-side loads will play a critical role in maintaining grid stability and enabling
renewables integration. Additionally, many novel optimal control schemes, under research
umbrellas such as demand response and microgrid management, require short-term building
electricity demand forecasts to aid in decision making [40].

The supply-side and load-side time series forecasting of electricity demand has been a
topic of research for many decades. The literature is filled with a variety of well-cited
modelling approaches, each differing in algorithmic complexity, estimation procedure, and
computational cost. Of particular note are the variants of Artificial Neural Networks (ANN)
[3, 92, 41, 7, 33, 43, 68], Support Vector Regression (SVR) [62, 76, 44, 35] and Autoregressive
Integrated Moving Average (ARIMA) models [3, 76, 44, 108, 21, 88, 71]. Lesser but nonethe-
less noteworthy attention has been given to approaches such as Multiple Linear Regression
[3, 62, 81], Fuzzy Logic [3, 52], Decision Trees [92], and k-Nearest Neighbors (k-NN).

These studies provide a broad catalog of use-cases and demonstrate the performance of
certain forecasting algorithms when applied to specific building types. In particular, [3, 92,
68, 88] provide a survey of electricity forecasting methods and a high-level comparison of
techniques. [33] provides a detailed description of ANNs and their application to load fore-
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casting, including data pre-processing and ANN architectures. [41] details the development
of a seasonal ANN approach and the advantage over a Seasonal ARIMA (SARIMA) model
when applied to 6 building datasets. [71] focuses on the introduction of motion sensor data
to improve the accuracy of an ARIMA model. In [43, 62, 108, 71, 52], the authors perform an
in-depth analysis of the power demand patterns of a particular building in order to customize
a forecasting model.

In papers with experimental results, the authors have generally applied their electricity
demand forecasting technique to only a small number of datasets. Consequently, the liter-
ature is rich with forecasting algorithms customized for individual buildings. This leads us
to the following question: Is it possible to design a single minimally-customized forecasting
algorithm that is widely applicable across a diversity of building types, enabling scalabil-
ity? We pursue this question by proposing a novel ensemble learning method for electricity
demand forecasting.

Specifically, due to unique building characteristics, occupancy patterns, and individual
energy use behaviors, we argue that no single model structure is capable of accurately fore-
casting electricity demand across all commercial and residential buildings.

For example, some forecasting models may produce accurate predictions under certain
observable or unobservable conditions, such as a seasonal trend, a morning routine, or an
extended absence. Other models may be ideal for buildings with energy use behaviors that
are stable over long periods of time. For buildings with frequent changes in occupancy
patterns, models that are trained over a moving horizon may yield the highest accuracy. In
short, this work will develop an ensemble learning method that trains and validates multiple
forecasting models before applying a gating method to select a single model to perform
electricity demand forecasting.

In this way, the ensemble method is able to learn from real-time data and to produce
short-term electricity demand forecasts that are automatically tailored to a particular build-
ing and instance in time. In addition to forecast accuracy, this appendix will place an
emphasis on method adaptability and ease of use. While we have implemented certain
forecasting models, the method is intended to allow the models to be interchangeable.

To demonstrate the use of our ensemble method to produce short-term forecasts, this
appendix includes 3 experimental studies: Single Model Studies, Multiple Model Study, and
Residential Study. For each of these studies, we will make the following assumptions with
respect to the availability of building electricity demand data:

A1. We have access to hourly historical building electricity demand at the meter.

A2. We have access to hourly historical weather data near the building location.

A3. We do not have access to submetered electricity demand data or building operations
data, such as occupancy measurements or mechanical system schedules.

The limited access to input data with which to produce forecasts is representative of the
challenge faced by grid operators. Accordingly, this appendix will demonstrate the potential
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of our ensemble method to non-invasively forecast total electricity demand using data-driven
methods. Additionally, unlike in [43, 62, 108, 71, 52], where the authors perform an in-depth
analysis of the power demand patterns in order to customize a model to a particular building,
this appendix will focus on developing a forecasting approach that is generally applicable to
all buildings without customization.

This appendix is organized into five sections: Regression Models, Single Model Studies,
Ensemble Method, Multiple Model Study, and Residential Study. Section II. Regression
Models briefly presents background theory for 5 regression models that will be employed in
this appendix. In Section III. Single Model Studies, we apply the forecasting models to 8
commercial/university building electricity demand datasets using batch and moving horizon
training approaches. Section IV. Ensemble Method presents our method for training and val-
idating multiple models and for selecting the optimal model using a gating method. Section
V. Multiple Model Study applies our ensemble learning method to 8 commercial/university
building electricity demand datasets and quantifies and qualifies the advantage over a single
model approach. Finally, in Section VI. Residential Study, we apply our ensemble learning
method to 24 residential building electricity demand datasets and summarize the results.
Key conclusions and future research directions are summarized in Section VII.

A.2 Regression Models

In this appendix, we will consider one parametric regression model, Ordinary (Linear) Least
Squares with `2 Regularization (Ridge), and four nonparametric models, Support Vector
Regression with Radial Basis Function (SVR), Decision Tree Regression (DTree), k-Nearest
Neighbors with uniform weights and binary tree data structure (k-NN), and Multilayer Per-
ceptron (MLP), a popular type of feedforward Artificial Neural Network (ANN). In this
section, we will briefly describe the structure of each regression model.

Ordinary Least Squares with `2 Regularization

Ordinary Least Squares with `2 Regularization (Ridge) fits a linear model with coefficients
w ∈ Rn to minimize the residual sum of squared errors between the observed and predicted
responses while imposing a penalty on the size of coefficients according to their `2-norm.
The linear model of a system with univariate output is given by

ŷ = w0x0 + w1x1 + . . .+ wnxn

=
∑
k
wkxk = wTx

(A.1)

with variables x ∈ Rn, the model input, ŷ ∈ R, the predicted response, n, the number
of inputs or features in x, and k = 1, . . . , n.

The linear model is trained on a set of inputs and observed responses by optimizing the
function
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minimize
w

∑
i
‖wTxi − yi‖2

2 + λ‖w‖2
2 (A.2)

with variables xi ∈ Rn, the model input for the i-th data point, yi ∈ R, the i-th observed
response, w ∈ Rn, the weighting coefficients, and i = 1, . . . , N , where N is the number of
data samples and n is the number of features in xi. Lastly, λ is a weighting term for the
regularization penalty.

For a system with a multivariate output ŷ ∈ Rm, we will treat the outputs as uncorrelated
and define a set of coefficients wj ∈ Rn for each predicted response ŷj ∈ R for j = 1, . . . ,m.
Thus, the multivariate linear model is given by

ŷj = wTj x, ∀j = 1, . . . ,m (A.3)

The weights of the multivariate model are determined by optimizing the function:

minimize
w

∑
i

∑
j
‖wTj xi − yi,j‖2

2 +
∑
j
λ‖wj‖2

2 (A.4)

with variables xi ∈ Rn, the model input, yi ∈ Rm, the observed multivariate response,
wj ∈ Rn, the weighting coefficients of the j-th response, i = 1, . . . , N , and j = 1, . . . ,m,
where N is the number of data samples, n is the number of features in xi, and m is the
number of observations in yi.

Support Vector Regression

In non-linear Support Vector Regression (SVR), the model input x is transformed into a
higher dimensional feature space using a mapping function φ. Then, a linear model is
constructed in this feature space, as given by

ŷ = f(x) = wTφ(x) + b (A.5)

where variable b ∈ R is a bias term, w ∈ Rn the linear coefficients, and φ a non-linear
mapping function. Using an ε-intensive loss function, the support vector regression model
can be trained by optimizing

minimize
w,b,ζ,ζ∗

1

2
‖w‖2

2 + C
∑
i

(ζi + ζ∗i )

subject to yi − wTφ(xi)− b ≤ ε+ ζi

wTφ(xi) + b− yi ≤ ε+ ζ∗i
ζi, ζ

∗
i ≥ 0

(A.6)

where constant ε ∈ R denotes the radius of the ε-intensive region (i.e. region in which
the value of the loss function is 0) and constant C > 0 denotes the trade-off between the
empirical risk (i.e. deviations beyond ε) and the regularization term (i.e. the flatness of
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the model). The positive slack variables ζi ∈ R and ζ∗i ∈ R denote the magnitude of the
deviation from the ε-intensive region.

By applying Lagrangian multipliers and Karush-Kuhn-Tucker conditions, the primal
problem can be reformulated into a dual form that is easier to solve.

minimize
α,α∗

1

2

∑
i

∑
j

(αi − α∗i )TK(xi, xj)(αi − α∗j )

+ ε
∑
i

(αi + α∗i )−
∑
i
yi(αi − α∗i )

subject to
∑
i

(αi − α∗i ) = 0

0 ≤ αi, α
∗
i ≤ C

(A.7)

with variables αi, α
∗
i ∈ [0, C], the Lagrangian multipliers, andK, the kernel function given

by the inner product of the mapping functions, K(xi, xj) = φ(xi)φ(xj). In this appendix,
we will employ the (Gaussian) Radial Basis Function kernel, given by

K(xi, x) = exp
(
−‖xi − x‖

2
2

2σ2

)
(A.8)

where variable σ ∈ R is a free parameter.
Using the Lagrangian multipliers, the support vector regression model with univariate

output can be rewritten as

ŷ = f(x) =
∑
i

(αi − α∗i )K(xi, x) + b (A.9)

For a system with a multivariate output ŷ ∈ Rm, we will treat the outputs as uncorrelated
and define m support vector regression models (i.e. one for each output). Using m models to
independently predict each of the m outputs is simple to implement, but may be less accurate
than a single model capable of simultaneously predicting all m outputs. We refer the reader
to [85, 55] for a more detailed description of the support vector regression algorithm.

Decision Tree Regression

In Decision Tree Regression (DTree), the feature space is recursively sub-divided or parti-
tioned into smaller regions or leaves (i.e. terminal node). Once this splitting is complete,
a simple regression model is fit to the data samples that have been grouped into each leaf.
The objective is to form a tree data structure with which a new observation can be assigned
to a leaf using nested boolean logic (i.e. moving right or left down each branch according to
a threshold value). Once the correct leaf has been identified, the observation can be mapped
to a continuous target value using a simple model.

Expressed mathematically, we can represent the data at node a by B. For each potential
division θ = (k, ta) composed of feature k and threshold value ta ∈ R, we may partition the
data into two subsets or branches, BL(θ) and BR(θ), given by
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BL(θ) = (x, y) if xk ≤ ta

BR(θ) = (x, y) if xk > ta
(A.10)

The accuracy of a decision tree regression model can be represented by the impurity of
each branch. In this appendix, we will define the impurity function H as the mean squared
error between each response and the mean response in a branch. Thus, for node a, H is
given by

ȳa =
1

Na

Na∑

i=1

ya,i

H(Xa) =
1

Na

Na∑

i=1

(ya,i − ȳa)2

(A.11)

with variable Na ∈ [Nmin, N ], the number of data points in branch a, Nmin, the minimum
number of data points in a branch, Xa, the set of all data points x ∈ Rn in branch a, and
ya, the set of all observed responses y ∈ R in branch a.

The decision tree is trained or grown by recursively selecting the parameters that minimize
the impurity of the tree and of each branch. In other words, we begin with a node a containing
all data points. Then, we partition the data according to the optimization function

θ∗ = argmin
θ

NL

Na

H(BL(θ)) +
NR

Na

H(BR(θ)) (A.12)

with variable NL, NR ∈ [Nmin, Na], the number of data points in the left and right
branches, respectively. The optimization function is recursively applied to each new branch
until the maximum tree depth is reached, one of the resulting branches would contain less
than Nmin data points, or there is no split that will decrease the impurity of the branch by
more than some threshold δ ∈ R.

For each leaf a, we will define the regression model as the mean of the contained univariate
observations.

ŷ =
1

Na

Na∑

i=1

ya,i (A.13)

For a system with multivariate output ŷ ∈ Rm, each leaf in the tree will store observations
of length m rather than 1. Therefore, the impurity function H can be redefined as the mean
of the mean squared error between each j-th response and the mean j-th response in a branch
for j = 1, . . . ,m.

ȳa,j =
1

Na

Na∑

i=1

ya,i,j ∀j = 1, . . . ,m

H(Xa) =
1

mNa

m∑

j=1

Na∑

i=1

(ya,i,j − ȳa,j)2

(A.14)



APPENDIX A. GATED ENSEMBLE LEARNING METHOD FOR DEMAND-SIDE
ELECTRICITY LOAD FORECASTING 113

And the multivariate regression model can be defined as

ŷj =
1

Na

Na∑

i=1

ya,i,j ∀j = 1, . . . ,m (A.15)

We refer the reader to [23, 92] for a more detailed description of the decision tree regression
algorithm.

k-Nearest Neighbors Regression

In k-Nearest Neighbors Regression (k-NN), an input x ∈ Rn is mapped to a continuous
output value according to the weighted mean of the k nearest data points or neighbors,
as defined by the Euclidean distance. In this appendix, we will use uniform weights. In
other words, each point in a neighborhood a contributes uniformly and thus the predicted
univariate response ŷ ∈ R is the mean of the k-nearest neighbors.

ŷ =
1

k

k∑

i=1

ya,i (A.16)

with variable ya, the set of k observed responses y ∈ R in neighborhood a. For a system
with multivariate output ŷ ∈ Rm, the model is defined as the mean of each observation j
over the k-nearest neighbors.

ŷj =
1

k

k∑

i=1

ya,i,j ∀j = 1, . . . ,m (A.17)

Given a new input x, it is possible to determine the neighborhood by computing the
Euclidean distance (i.e. `2-norm of the difference) between the new input x and every data
point in the training data set xi for i = 1, . . . , N and then ordering the distances to identify
the nearest neighbors. However, this brute-force search is computationally inefficient for
large datasets.

To improve the efficiency of the neighborhood identification, the training data points are
partitioned into a tree data structure. A commonly used approach for organizing points in
a multi-dimensional space is the ball tree data structure, a binary tree in which every node
defines a D-dimensional hypersphere or ball. At each node, data points are assigned to the
left or right balls according to their distance from the ball’s center. At each terminal node
or leaf, the data points are enumerated inside the ball.

We refer the reader to [73] for a description of ball tree construction algorithms.

Multilayer Perceptron Artificial Neural Network

Artificial Neural Networks (ANN) are a class of statistical learning algorithms inspired by
the neurophysiology of the human brain. These numerical models are composed of intercon-
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Figure A.1: Artificial Neural Network

nected “neurons” which use stimulation thresholds to predict how a system will respond to
inputs.

The most popular feedforward (i.e no feedback) neural network is the multilayer percep-
tron (MLP). Figure A.1 illustrates an example of a 3 layer perceptron network consisting of
a 3 neuron input layer, 4 neuron hidden layer, and 2 neuron output layer. The structure of
a neuron in the hidden layer is presented in Figure A.2 where variables x1, x2, x3 ∈ R are
inputs to the neuron and w1, w2, w3 ∈ R are synaptic weights. Variable y ∈ {0, 1} is the
output and z1, z2 ∈ R are the synaptic weights of the next neurons in the network. The
weighted sum of the inputs is the excitation level of the neuron

v =
n∑

i=1

wixi − h (A.18)

where variable v ∈ R is the excitation, h ∈ R is a threshold, and n is the number of
inputs to the neuron. Next, we want to define the output or activation function f of the
neuron such that if v ≥ 0 then y = 1 otherwise y = 0. The simplest activation function is
the hard limiter,

y = f(v) =





1 if v ≥ 0

0 if v < 0
(A.19)

However, the hard limiter function cannot be practically implemented because it is not
differentiable. Thus, artificial neural network algorithms employ differentiable activation
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Figure A.2: Structure of a Neuron

functions that have horizontal asymptotes at both 0 and 1 (i.e. limv→∞ f(v) = 1 and
limv→−∞ f(v) = 0). An example is the sigmoid function,

y = f(v) =
1

1 + e−v
(A.20)

For the neurons in the output layer, it is common to use a linear activation function,

ŷ = f(v) = v (A.21)

The structure of the multilayer perceptron artificial neural network makes it capable of
both univariate and multivariate predictions. Networks are trained using a backpropogation
algorithm which adjusts the weights and thresholds of each neuron to minimize the error
between the observations and the network outputs. In this appendix, we will employ a 3
layer feedforward ANN with a 30 neuron sigmoid hidden layer and 6 neuron linear output
layer. The size of the linear input layer will vary. The ANN will be trained using gradient
descent backpropagation for 200 epochs.

We refer the reader to [22] for a further discussion of artificial neural networks and
backpropogation training algorithms.

Software Packages

This work employs the PyBrain Artificial Neural Network library [83] and the Sci-Kit Learn
Ordinary Least Squares, Support Vector Regression, Decision Tree, and k-Nearest Neighbors
libraries [77]. All plots are generated with Matplotlib [36].
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A.3 Single Model Studies

To motivate the advantage of our ensemble approach, we will begin by considering single
model approaches to electricity demand forecasting. In this section, we will apply the re-
gression models above to 8 building datasets containing 2 years of metered hourly electricity
demand (kW). This time-series data has been provided by the facilities team at the Uni-
versity of California, Berkeley and will be used as the observation data for each forecasting
model. Submetered electricity demand data and building operations data, such as occupancy
measurements and mechanical system schedules, are not available.

The 8 buildings are located on the University of California, Berkeley campus and have
been selected to represent a heterogeneous population. The buildings A, B, and D are
occupied by the physics, civil engineering, and environmental engineering departments, re-
spectively, and are primarily comprised of faculty offices and research laboratories. Building
C is a university library and building E houses faculty and departmental offices for mul-
tiple humanities departments. Buildings F and G are university administrative buildings
and building H is comprised mainly of lecture halls and classrooms. Table A.1 presents the
square footage as well as basic statistics regarding the electricity demand of each building.

Building

A B C D E F G H

Size

(103 sq.ft.)
97 140 67 142 306 111 153 140

Mean (kW) 333 33 96 109 113 114 23 73

SD (kW) 44 5 26 8 36 33 2 30

Min (kW) 190 20 48 61 60 69 5 29

Max (kW) 602 69 221 150 271 236 73 195

Table A.1: Building Electricity Demand Statistics

The models will be used to generate short-term multivariate electricity demand forecasts,
specifically 6 consecutive hourly electricity demand predictions (i.e. ŷ ∈ R6). The accuracy
of each forecast ŷ will be measured by the root mean squared error (RMSE). To allow for
comparison between buildings, the performance of forecasting models will be measured by
the mean absolute percent error (MAPE).
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Figure A.3: Building E Ridge Forecast Sample

Forecast i RMSE =

√√√√ 1

m

m∑

j=1

(yi,j − ŷi,j)2 (A.22)

Model MAPE =
100%

mN

N∑

i=1

m∑

j=1

∣∣∣∣∣
yi,j − ŷi,j
yi,j

∣∣∣∣∣ (A.23)

with variables yi ∈ Rm, the i-th observation, and ŷi ∈ Rm, the i-th prediction, where m
represents the number of outputs in the prediction (m = 6) and N , the number of predictions.

The regression models will employ 4 different input types: electricity demand (D), time
(T), electricity demand and time (DT), and electricity demand, time, and exogenous weather
data (DTE). The electricity demand input type (D) consists of the 24 hourly records that
precede the desired forecast (x ∈ R24). The time input type (T) is the current weekday and
hour represented as a sparse binary vector (x ∈ {0, 1}31). The demand and time input type
(DT) combines the demand and time inputs (x ∈ R55). The demand, time, and exogenous
weather data input type (DTE) is the demand and time input with current outdoor air
temperature ◦C) and relative humidity (%RH) data retrieved from a local weather station
(x ∈ R57)[86]. The output of each forecasting model is a prediction of the hourly electricity
demand over the following 6 hours (y ∈ R6).

Throughout this appendix, we will use the term “regression model” to refer to the model
structure and algorithm used to perform regression, “input type” to refer to the subset of
features used by each model, and “forecasting model” to refer to the pairing of regression
model and input type.
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Figure A.4: Batch Study Results

Batch Study

For each of the 8 buildings, we train the forecasting models with demand data from that
building. Electricity demand data from one building is not used to fit the models of another
building. We consider 5 regression models (Ridge, SVR, DTree, k-NN, and ANN) and 4
input types (D, T, DT, and DTE) for a total of 20 forecasting models per building. The
forecasting models for each building are trained in a batch manner (i.e. trained once on a
large dataset) using 18 months of hourly input data from January 1st, 2012, to July 1st,
2013 (i.e. 13,128 training data points). For each model, the training dataset depends on the
input type (D, T, DT, and DTE) but may include hourly electricity demand records for the
respective building (D), time records represented as a sparse binary vector (T), and hourly
outdoor air temperature and relative humidity records (E).

For validation, the trained models are used to generate a 6 hour electricity demand
forecast (ŷ ∈ R6) for each building for every hour from July 1st, 2013, to January 1st, 2014
(i.e. 4,416 testing data points). The results of the batch regression study are presented in
Figure A.4. In the figure, each data point represents the MAPE of one forecasting model
(i.e. 8 buildings with 20 models each for a total of 160 models).

Examples of the electricity demand forecasts produced by the Building E Ridge regression
model with demand (D) input are presented in Figure A.3. Note that each blue line represents
a multivariate forecast ŷ and that the figure plots ŷ starting at but excluding the most recent
power demand record.

By comparing the results in Figure A.4 for each building, we can immediately distinguish
forecasters that consistently perform poorly (e.g. T input) from forecasters that perform
well (e.g. ANN, Ridge, and k-NN with DT input). We also observe that certain forecasting
models perform inconsistently across the different buildings. For example, SVR with D
input performs well in Building A but relatively poorly in Buildings E and F. Furthermore,
there is dispersion among the results, particularly in Buildings E, F, and H. This dispersion
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represents a challenge for building level applications. To produce the best results using
a batch approach, an engineer must perform model selection for every deployment. Just
because a certain regression model and input type has performed well for one building does
not guarantee it will do the same for another building.

As shown, an ANN model outperforms the Ridge, SVR, DTree, and k-NN models in
7 out of 8 building. However, there is no input type that performs best in each building.
In Building B, we observe that the addition of the exogenous weather input decreases the
performance of the ANN. A possible explanation is that the ANN found a link between the
weather input and the electricity demand in the training data. However, this link may not
have continued to appear in the test data, resulting in a loss in performance.

Additionally, it could be argued that the ANN model does not outperform the much
simpler Ridge and k-NN models to an extent that warrants the additional complexity, par-
ticularly in Buildings D and G. If further tuned to a particular building and input type and
trained over a higher number of epochs, it is possible that the ANNs’ performances could
be further improved. However, this increase in forecaster accuracy would come at a high
computational cost. Instead, this work will focus on developing a computationally efficient
ensemble method for producing electricity demand forecasts by learning from data streams
and adapting to individual building energy use patterns.

Moving Horizon Study

In the batch regression study presented above, each forecasting model was trained once on 18
months of data and then used to generate predictions up to 6 months after the last training
data point. For buildings with very consistent electricity demand patterns, using such a
large training set will help to prevent overfitting and to produce the best possible results.
For buildings with inconsistent or changing electricity demand patterns, the absence of the
most recent data from the training set may limit the performance of the forecasting model.

In this section, we will consider training the models over a moving horizon. Specifically,
at each hour between July 1st, 2013, and January 1st, 2014, we will train the forecasting
models for each building on the 3 months of data that precede that time step (i.e. 2,016
training data points). Then, we will produce a 6 hour forecast (ŷ ∈ R6) and record the
errors. In this way, the start and end times of the training set will move relative to the
current time step and we can hope to better capture recent electricity demand patterns. It
should be noted that because we have significantly reduced the training set size, we have
introduced the potential for overfitting the models, a point that will be addressed by our
ensemble method. We will consider 4 regression models (Ridge, SVR, DTree, and k-NN) and
4 input types (D, T, DT, and DTE) for a total of 16 forecasting models per building. The
computational cost of training an ANN makes the model unsuitable for a moving horizon
approach.

The results of the moving horizon regression study are presented in Figure A.5. In the
figure, each data point represents the MAPE of one forecasting model (i.e. 8 buildings
with 16 models each for a total of 128 models). The horizontal dotted line marks, for each



APPENDIX A. GATED ENSEMBLE LEARNING METHOD FOR DEMAND-SIDE
ELECTRICITY LOAD FORECASTING 120

Bldg A Bldg B Bldg C Bldg D Bldg E Bldg F Bldg G Bldg H
0

5

10

15

20

25

M
A

P
E
 (

%
)

Ridge SVR DTree kNN D T DT DTE Min Batch MAPE

Figure A.5: Moving Horizon Study Results

building, the highest performing forecasting model (lowest MAPE) from the batch regression
study. In other words, for Buildings B, C, D, E, and H, the dotted line indicates the MAPE
of the ANN model with DT input. For Buildings A and F, the line marks the MAPE of the
ANN model with DTE input. For Building G, Ridge with DT produced the lowest MAPE
in the batch study.

While none of the models trained on a moving horizon show a significant improvement
in accuracy over the best batch model, the results for each individual building are generally
less dispersed in the moving horizon cases than in the batch cases.

Because we have generated 16 forecasts for every hour between July 1st, 2013, and
January 1st, 2014, we are able to compare the performance of the forecasting models at each
time step and across all 8 buildings. This analysis will aid in determining which models to
include in the ensemble method. Figure A.6 shows the fraction of time steps that a specific
regression model produced the most accurate (lowest RMSE) electricity demand prediction
(regardless of input type). Here, we see that k-Nearest Neighbors models produce the best
forecast with the highest frequency of any of the regression models considered. Because we
plan to incorporate several forecasters in the ensemble method, we are also interested in
identifying models that consistently rank among the top. Figure A.7 shows the fraction of
time steps that a specific regression model produced a forecast that was among the best four
predictions. Here, we see that Ridge models most consistently produced such a prediction.
Repeating this analysis for input types (not displayed), we find that every input scores
between 20% and 30% for both the top and top four predictions, suggesting no clear relative
advantage.

Recognizing that a specific forecasting model may have the highest accuracy in one time
step and the lowest accuracy in the next, we are also interested in which regression models
and inputs show the poorest performance (highest RMSE). For the model that generates
the worst forecast at each time step (not displayed), Decision Tree Regression ranks poorest
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(44%) followed by Ridge (31%). For the worst four predictions, Decision Tree Regression
ranks poorest again (42%) followed again by Ridge (26%). Figures A.8 and A.9 show the
fraction of time steps that a specific input type produced the least accurate electricity demand
prediction. Not surprisingly, the demand only input (D) ranks worst in both cases. For
the buildings studied, exogenous weather inputs do not appear to significantly improve the
forecast accuracy. Buildings located in less temperate climates could be expected to show
greater correlation between temperature and electricity demand.

Single Model Study Conclusions

Based on the results from the batch and moving horizon studies, we assert that no single
forecasting model (regression model and input type) will produce the best results across every
building. To produce good results using a single model approach, an engineer must perform
model and feature selection for each deployment, increasing the cost of energy management
applications that require building-level electricity demand forecasts.

However, the results also show that there is a subset of forecasting models that perform
well for each building. Furthermore, at each time step, one forecasting model produces a
prediction that is more accurate than any other prediction. If we train a set of regression
models and determine which model in the set is most likely to produce the best prediction
at a given time step, we can formulate an ensemble method that is able to perform model
and feature selection by learning from past electricity demand. This is the core motivation
of the gated ensemble learning method presented in the next section.

A.4 Ensemble Method

Background

Given the many unpredictable behaviors of occupants and the unique physical and me-
chanical characteristics of every building, a single model approach to electricity demand
forecasting may perform very well in one case and very poorly in another. Without being
able to observe the causes of electricity demand changes (through extensive sub-metering
and/or occupancy sensing), it is difficult to justify why a model does or does not perform
well. Furthermore, the incorporation of exogenous signals like regional weather conditions
may improve a model’s accuracy but such benefits cannot be guaranteed. Only through
observation and experimentation can the best regression model and input type be identified
for a particular building.

The assertion that the best forecasting model can be identified through data driven
experimentation underlies the ensemble method presented in this appendix. To build upon
existing literature and to improve the portability of electricity demand forecasters, we have
developed a method that tests multiple models before selecting one that is best suited for a
particular building and instance in time.
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Our multiple model regression method falls under a category of ensemble learning meth-
ods commonly referred to as a “bucket of models” [2, 24]. It is important to recognize that
unlike other ensemble methods (which average, stack, or otherwise combine the outputs from
multiple models), the bucket of models approach selects a single model from the ensemble
set. Consequently, a bucket of models approach can perform no better than the best model in
the set. Therefore, to produce accurate forecasts, it is important that the individual models
perform well, though perhaps only in certain conditions. Additionally, our ensemble method
must be able to identify and avoid models that are likely to perform poorly for a particular
building. This capability will alleviate the need for prior knowledge of a building’s energy
use and, in practice, allow for model and feature selection to be performed in real time.

Method

Our gated ensemble learning method can be divided into 4 steps: Training, Validation,
Gating, and Testing. In the training step, each model is trained on a subset of historic
data, with the most recent electricity demand data points reserved for validation, as shown
in Figure A.10. The size of the training subset may vary by application and by training
approach. For models trained in a batch manner, a large data set (e.g. >12 months) is
required. Additionally, the training step is either performed only once or periodically (e.g.
every 6 months) rather than at every time step.

For models trained in a moving horizon manner, a smaller dataset is required (e.g. 2
to 12 months) and the training step is performed periodically (e.g. daily) or at every time
step. Again, the length of the dataset can be customized to the application. For example,
because the use patterns of university buildings change according to an academic calendar,
a training set size of 2 or 3 months may be ideal. For an office building with very consistent
energy use patterns, a training set size of 6 months or more may produce the best results.
Stated more explicitly, small training sets are more capable of capturing recent energy use
patterns but carry the risk of allowing the regression model to overfit the data. By contrast, a
large dataset will capture consistent energy use patterns but may miss recent or short-term
changes, thereby appearing to underfit the data. In this appendix, we will favor smaller
training sets (3 months) for moving horizon models and larger trainings sets (18 months) for
batch models.

In the validation step, the most recent historic data is used to generate predictions with
each forecasting model, as shown in Figure A.10. These forecasts are compared with the
electricity demand data (that was not used for model training) to determine each model’s
performance. Again, the size of the data set used for validation may vary by application, but
in our implementation, the length of the validation set is equal to twice the desired forecast
length (i.e. for a 6 hour forecast, the previous 12 hourly electricity demand data points are
reserved for validation).

The measure of a model’s performance or the criteria for identifying the “best” model
will depend on the application. In some cases, we may want to define “best” as the forecast
that will produce the highest pay-off or incur the least risk. In other cases, we may want
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Figure A.10: Graphical Representation of Gated Ensemble Regression Method with 3 Models
and 3 Hour Forecast Horizon

the forecast with the smallest positive or negative error. In this appendix, we will focus
on producing the most accurate forecast as defined by the lowest root mean squared error
(RMSE).

In the gating step, a method is applied to select a single model from the bucket of models
according to its relative performance during the validation step. In other words, the gating
method is responsible for choosing which model in the bucket of models will be used in the
test step to generate the electricity demand prediction. The objective of the gating method
is to select the best model based on present and/or past information from the validation step.
In this appendix, we will implement and compare 2 alternative gating methods. The first
method is cross-validation selection (CV). Put simply, the CV gate will select the forecasting
model that performed best (produced the lowest RMSE) during the validation step. The
CV gate can be considered a greedy approach because it has no memory of how its past
decisions impacted the accuracy of the test prediction. Instead, the model selection is based
entirely of the current performances in the validation step.

The second gating method uses a single recursively trained linear regression model (SR)
to predict the performance of each forecaster in the bucket of models. Given n forecasters,
the SR model input x ∈ Rn+1 is the forecasting model’s performance during the validation
step (i.e. xn+1 = Past RMSE of forecaster j) and a sparse binary vector representing each
forecaster (i.e. for forecaster j, xj = 1 and xi = 0 for i = 1, . . . , j − 1, j + 1, . . . , n). The
SR model output ŷ ∈ R is the forecaster’s predicted performance during the test step (i.e.
ŷ = Predicted RMSE of forecaster j). In other words, the linear model includes a parameter
for each of the regression models and a parameter corresponding to the validation RMSE.
Thus, given a forecasting model and its performance during the validation step, we will train
the linear model to predict the performance during the test step. In this way, the SR gate
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Figure A.11: Gated Ensemble Study Results

learns how well a model’s validation performance does or does not indicate the performance
during the test step. This capability should help to avoid models that perform poorly and
favor models that perform well. The model with the best predicted performance (i.e. lowest
ŷ) is selected by the SR gate for use in the test step.

Finally, in the testing step, the model selected in the gating step is used to generate an
electricity demand forecast. Our multiple model method can be summarized by the following
steps:

1. Train each model on a subset of the historical data.

2. Validate each model using historic data that immediately precedes the current time
step.

3. Apply a gating method to select a model according to its performance during validation.

4. Use the selected model to generate a prediction.
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A.5 Multiple Model Study

To test our approach, we have implemented the gated ensemble learning method using two
regression models [Ordinary Least Squares with `2 Regularization (Ridge) and k-Nearest
Neighbors (k-NN)] and four input types [electricity demand (D), time (T), electricity demand
and time (DT), and electricity demand, time, and exogenous weather data (DTE)]. Despite
the poor performance of the demand only and time only inputs in the batch and moving
horizon studies, we have included them to observe if the gating methods choose to avoid
the inputs. Therefore, the bucket of models will include the best (k-NN with DT) and the
worst (Ridge with T) forecasting models from the single model studies. We have elected to
exclude the ANN models from the ensemble due to their computational complexity.

The regression models are trained in both batch (BA) and moving horizon (MH) manners,
for a total of 16 forecasting models per building. Next, we generated a 6 hour electricity
demand forecast (ŷ ∈ R6) for every hour between July 1st, 2013, and January 1st, 2014 using
the Training, Validation, Gating, and Testing steps described above. The batch models are
trained once on 18 months of data and the moving horizon models are trained at every time
step on 3 months of data.

The results, employing both of the gating methods described, are presented in Figure
A.11. For testing purposes, we have also implemented an Oracle gate, which simply selects
the best prediction for each time step regardless of the performances of the models in the
validation step. The results from the Oracle gate represent the theoretical optimal of the
ensemble approach.

In Figure A.11, the top subplot presents the overall performance of each gate as measured
by the MAPE of the selected predictions. The dotted lines represent the best performance
(lowest MAPE) of any single model from the batch study and the dashed lines, from the
moving horizon study. The results show that our ensemble method is able to perform com-
parably to the best forecaster from the batch and moving horizon studies without any prior
knowledge of the energy end-use or the relative performance of the contained forecasting
models. The Oracle gate is able to outperform the ANN models from the batch study, how-
ever, the cross-validation gate (CV) and single regression (SR) gate are not. Among the
gating methods studied, there is no clear winner. The SR gate shows a small advantage
in buildings B and G, but the worst performance in building C. In each of the buildings,
the CV gate performs comparably to the best model from the moving horizon study. The
performance of the Oracle gate, particularly in buildings C, E, and H, suggests there is still
potential for a gating method (not presented here) to further improve our ensemble approach.

The second subplot shows the percent utilization of each regression model by the Oracle,
CV, and SR gating methods, regardless of input type. In other words, the plot shows
the percentage of time steps that a particular regression model and training manner was
selected by the respective gating method. Because the Oracle gate represents the optimal
decision given the forecasting models in the set, we would like to see comparable utilization
percentages between the Oracle and the other gates. Based on the subplot, this is generally
the case with respect to regression model selection.
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Figure A.12: Building A Oracle Forecast Sample

The bottom subplot shows the percent utilization of each input type by the Oracle, CV,
and SR gating methods. Here, we observe larger differences between the behaviors of the
gates. For Buildings A, E, and F, the SR gate favors the electricity demand and time (DT)
inputs much more than the Oracle gate. For Buildings E and D, the SR gate underutilizes
the electricity demand only (D) input compared to the CV and Oracle gates. For Building C,
the CV and Oracle gates avoid the time only (T) input but the SR gate does not. It should
be noted that neither of these subplots quantifies the impact of the percent utilizations on
the MAPE of the gates. Nonetheless, the percent utilization metric provides useful insight
into the decision making of each gate.

In general, we see very similar utilization rates between the Oracle and CV gates. This
does not mean that both gates select the same forecaster at the each time step, but does
suggest that the CV gate is capable of identifying forecasters that work well for a certain
building. In Buildings E and F, we see that all 3 gates favor the k-NN models over the Ridge
models. Additionally, in each of the buildings, the inclusion of exogenous weather data
does not appear to significantly improve the accuracy of the predictions, as suggested by
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Figure A.13: Optimal Prediction Generation by a Forecaster over Consecutive Time Steps
When Applied to Commercial Dataset

the Oracle’s DTE utilization rate. This could mean that electricity demand is not strongly
correlated with weather or that correlation only appears under certain conditions (e.g. an
unusually cold or warm day).

Figure A.12 presents a sample of the predictions for Building A. The top subplot shows the
actual electricity demand data from 8/6/13 to 8/9/13 and a series of multivariate forecasts
selected by the Oracle gate (i.e. the most accurate forecast at each time step). The bottom
subplot details which forecasting model generated the selected prediction. The marker color
denotes the regression model and the marker shape, the input type. A filled marker indicates
that the model was trained in a batch manner and a half-filled marker, a moving horizon
manner.

Since the Oracle gate chooses the most accurate forecast at each time step, Figure A.12
supports the notion that a certain forecaster may generate the best prediction several time
steps in a row. Figure A.13 shows, for all 8 buildings, the number of times a forecaster
produced the best prediction over multiple consecutive time steps and the lengths of such
sequences. For the validation step to properly inform the gating method, we would like to
observe high frequencies of large repeated model sequences. Using fewer models would, of
course, increase the probability of such sequences at the loss of potential performance.
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Figure A.14: Residential Study Results

A.6 Residential Study

To further test our ensemble approach, we have repeated the single model batch study,
single model moving horizon study, and multiple model ensemble study using 24 residential
electricity demand datasets. This time-series demand data has been downloaded by the
individual customers from the electric utility’s website and provided to our research group.
Each dataset is from a home in northern California but has been anonymized such that we
do not know its exact location. Accordingly, for this study, we have excluded the forecasting
models that use weather data as inputs.

We utilize two regression models [Ordinary Least Squares with `2 Regularization (Ridge)
and k-Nearest Neighbors (k-NN)] and three input types [electricity demand (D), time (T),
and demand and time (DT)]. The regression models are trained in both batch (BA) and
moving horizon (MH) manners, for a total of 12 forecasting models. In each of the studies,
we generate a 6 hour electricity demand forecast (ŷ ∈ R6) for every hour between October
1st, 2014, and January 1st, 2015. The batch models are trained once on 9 months of data
and the moving horizon models are trained at every time step on 3 months of data.

The results from the single model batch, single model moving horizon, and multiple
model ensemble studies are presented in Figure A.14. In the figure, each bar represents the
mean absolute percent error (MAPE) of the respective predictions across all 24 residential
building datasets. Moving from left to right, the first 6 bars represent the results from the
single model batch study and the next 6 bars, the single model moving horizon study. Here,
we observe that the MAPEs are much larger for the residential predictions than for the
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Figure A.15: Oracle Forecaster Utilization

commercial/university predictions. This can be explained by the fact that the residential
electricity demands are much smaller and are composed of fewer loads than the commer-
cial/university demands. Therefore, any change to the residential demand produces a larger
percent change and any prediction error will correspond to a larger percent error. In the
single model studies, the highest performing forecaster is the k-Nearest Neighbors regression
model with demand input (D) trained in a moving horizon manner (MAPE: 63.5%).

In Figure A.14, the Oracle, CV, and SR bars show the results produced by our ensemble
learning method. As previously stated, the results from the Oracle gate (MAPE: 37.1%)
represent the optimal potential given the forecasters in the bucket of models. The CV gate
represents the results (MAPE: 61.5%) using cross-validation to select which forecaster to
utilize. Here, we observe that the CV gate performs comparably to the best forecaster
in the single model studies. The SR gate represents the results (MAPE: 55.8%) using a
single recursively trained linear regression model to select a forecaster by predicting the
performance of each model. These results suggest that the SR gate outperforms the CV gate
as well as any of the single model approaches. In other words, the SR gate is able to learn
from the past performance of each model and to make better decisions about which model
to select at each time step.

The Oracle gate’s percent utilization of each forecaster in the bucket of models is shown in
Figure A.15. These results show that, across the 24 residential electricity demand datasets,
the Oracle gate shows a slight preference for the k-Nearest Neighbors models. This does not
indicate that the k-NN models perform significantly better (lower RMSE) than the Ridge
models, only that the k-NN models produce the best prediction with a higher frequency.
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Figure A.16: Optimal Prediction Generation by a Forecaster over Consecutive Time Steps
When Applied to Residential Dataset

Lastly, Figure A.16 shows, for all 24 residential buildings, the number of times a fore-
caster produced the best prediction over multiple consecutive time steps and the lengths of
such sequences. Compared to the commercial/university buildings (Figure A.13), we ob-
serve larger sequences of optimal prediction generation when applying the ensemble method
to the residential buildings. It should be noted that for the residential studies we have not
incorporated weather data and are thus using 4 fewer forecasting models than in the commer-
cial/university studies. Nonetheless, the Oracle’s forecaster utilization rates (ranging from
5.0% to 14.6%) and the presence of large optimal prediction generation sequences support
the underlying assertion of our ensemble learning method: by selecting between multiple
models at each time step, we can obtain better results than a single model approach.

A.7 Conclusions

In this appendix, we have presented a gated ensemble learning method for short-term elec-
tricity demand forecasting. The contribution of this method is to allow for the incorporation
of multiple forecasting models trained in both batch and moving horizon manners. Stated
more explicitly, rather than choosing a single approach, an engineer can utilize multiple
models with the intention of improving the reliability of the forecaster to produce useful
results. This makes the method well suited for real world applications. At deployment, the
moving horizon models can be utilized until sufficient data is available to train the batch
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models. This adaptability also makes the method suitable for control applications. Rather
than assuming that demand behaviors are time invariant, the method will work to recognize
both long and short-term electricity demand patterns.

The relative performance of the Oracle gate suggests that there is potential for continued
development of the gating functions. For instance, none of the gating functions attempt to
identify repeated model selection sequences. Given the optimal model in the previous few
time steps, a gating method could determine the probability that a model will be optimal
in the next time step. Also, in our implementation, the validation step uses the RMSE of 6
multivariate forecasts to measure the performance of each model. It may be more effective
to use fewer forecasts or even univariate predictions in order to identify the optimal model
at the given time step. Finally, the addition of a feature selection procedure may help to
reduce the dimensionality of the regression models or even eliminate certain input types from
consideration.

By applying our gated ensemble learning method to 32 unique building electricity demand
data sets (8 commercial/university and 24 residential), we demonstrate that the incorpora-
tion of multiple models can yield better results than a single model approach. While the
development of the gating methods is ongoing, the ability of each gate to perform model
validation and selection in real time greatly improves the method’s adaptability and ease of
use. Utilizing this data-driven approach, we empirically show that the ensemble method is
capable of aiding in the production of accurate multivariate electricity demand forecasts for
building-level applications.
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Appendix B

Model Predictive Control of
Residential Baseboard Heaters with
Distributed System Architecture

This appendix describes research on the application of model predictive control to the prob-
lem of optimizing the energy use of a residential baseboard heating system.

B.1 Motivation & Background

A common system for residential space heating is electric resistance baseboard heaters. Such
systems are cheap to produce but costly to operate due to poor primary to end-use energy
efficiency (∼30%) and the varying cost of electricity [95]. However, as long as comfort levels
are maintained, homeowners are indifferent to precisely when energy is used. Additionally,
because homeowners often pay time-of-use electricity rates, we can know the price of elec-
tricity a priori and use the price as a proxy for power grid demand. By forecasting the space
heating demand and incorporating the electricity price schedule, residential space heating
can be controlled to minimize electricity costs. In practice, this optimal control strategy
performs load shifting to avoid high electricity prices, thereby reducing peak loads on the
grid.

The potential advantages of such load shifting, as well as models of thermal zones, system
identification techniques, and model predictive control (MPC) strategies, are well developed
in the literature. For example, [102] details the modelling, parameter estimation, and val-
idation of a variable air volume (VAV) HVAC system. The work in [57] and [80] propose
frameworks for online estimation of states and unknown parameters of buildings using ex-
tended and unscented Kalman filters. Model predictive controllers are implemented in [59,
58, 56] which optimizes the HVAC system to minimize total energy consumption, peak power
consumption, and/or total comfort violations.

In these and other related works, the system architecture employed to implement these
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components is either briefly mentioned in the results, proposed in the conclusion, or entirely
left out. To address this limitation, we have developed a distributed cloud-based system
architecture for a residential heating system using readily available electronics and popular
application development platforms. While we have selected a basic thermal model and a sin-
gle system ID and MPC algorithm, future work will focus on comparing various alternatives
to determine their relative advantages.

In this work, we demonstrate how these pieces can be linked into a robust and adaptable
system. Our cloud-based system architecture enables us to remotely monitor and modify the
control algorithm. Using mobile application platforms, we are able to move computationally
intensive tasks to the cloud, thereby reducing the cost and complexity of local hardware. By
breaking up the system’s resources (database, linear program solver, model predictive con-
troller, etc.) into distinct components, it becomes possible to modify sections of the system
without reconstructing the whole. These system characteristics enable the implementation
and continued development of the thermostatic control strategies presented in literature.

In this appendix, we propose a distributed cloud-based system architecture for a residen-
tial heating system. We then deploy a sensor network, local computer, and Internet server
to collect real-time temperature data from an apartment. Using the sensor data, we per-
form system identification on the apartment using the online gradient update law algorithm.
Next, we propose a model predictive control algorithm to minimize the cost of the heating
system. Finally, we test the cloud-based system with simulated sensory input to demonstrate
the economic advantage of the control strategy.

B.2 System Architecture

A fundamental challenge of a “smart” or “predictive” control system is access to the informa-
tion and computing power needed to forecast and respond to future conditions. Therefore, we
begin by proposing a distributed cloud-based system architecture. The term “distributed”
refers to the incorporation of several autonomous computers that communicate with each
other by passing messages. A distributed network can consist of different types of comput-
ers, each with an incomplete view of the system. The term “cloud-based” refers to the use
of Internet-connected servers which allow a client computer to connect and perform a task
from anywhere in the world.

The system architecture implemented in this work is shown in Figure B.1 where the
rectangles represent physical hardware installed in the apartment, the clouds represent In-
ternet servers or services, and the arrows indicate the flow of information. The temperature
sensor network consists of six nodes placed throughout the apartment and communicating
wirelessly with the ZigBee protocol [112]. Each sensor node, shown in Figure B.2, includes
a Honeywell HIH6130 sensor, a Digi XBee S2 radio, and an Arduino Pro Mini board with
an ATmega328 microcontroller. The local thermostat is an Internet-connected BeagleBone
Black microcomputer that acts as a gateway between the heating system, the sensor network,
and the cloud-based system.
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Figure B.1: System Diagram

The system parameters, electricity price schedule, optimization program, and control
algorithm are coded into the MPC server and hosted by the mobile-application platform,
Google App Engine [28]. Each of the cloud-based services include an application program-
ming interface (API) built on the hypertext transfer protocol (HTTP) with JavaScript Object
Notation (JSON) response format. This enables reliable communication across computing
platforms and languages, an essential characteristic for our distributed system. The commu-
nication and database service, provided by Xively, implements an API to send, store, and re-
trieve time-series data [106]. This enables the thermostat and MPC server to asynchronously
pass messages. The linear program (LP) and mixed integer linear program (MILP) solver
is a service developed as part of this work. It consists of a solver hosted on the mobile-
application platform, Heroku, and accompanied by an API for sending linear programs in a
matrix/vector format [32]. Finally, the weather forecast is provided by the Internet service,
Weather Underground [101].
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Figure B.2: Sensor Node

The system is executed as follows

• Sensor Network: Once per minute, the sensor network collects temperature measure-
ments and sends them to the thermostat, which stores them in the database service.
In this work, only one of the temperature streams is used for system ID and control.

• Weather Forecast: Once every 15 minutes, The MPC server retrieves and parses the
weather conditions and temperature forecast.

• MILP: Once the forecast is parsed, the MPC server constructs the matrices of the
MILP with the current sensor reading, weather forecast, and electricity price schedule
for a 6 hour time horizon (N=24). These matrices are sent to the LP solver service.

• Optimal Solution: Once the problem is solved by the LP solver service, the response
is parsed by the MPC server and the optimal heater state (ON or OFF) is sent to the
online database service.

• Thermostat: Once every 5 minutes, the local thermostat checks the database service
for a change in the optimal heater state record.

A necessity of any distributed computing architecture is fault tolerance. In this case,
the local thermostat is programmed to fall back to simple deadband control in the case of
communication failure or an infeasible solution from the LP solver service. The deadband
control is implemented such that when a lower bound temperature is reached, the apart-
ment is heated for one time step. Because the MPC server is only capable of load shifting
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(instructing the thermostat to turn the heater on before the lower bound temperature is
reached), this fall back does not conflict with our control strategy.

Overall, this work is intended to serve as a demonstration of how distributed and cloud-
based systems can aid engineers in developing smarter control systems. By utilizing platforms
for electronics hardware, mobile-applications, and Internet services, it is possible to quickly
prototype a distributed control system.

B.3 Model Development & Identification

Thermal RC Model

This work employs a simple continuous time RC model to capture the thermal characteristics
of the apartment. The modeled dynamics include the heat transfer between the interior and
the environment, power from the electric baseboard heaters, and solar heat gain. Radiative
heat transfer from the ambient will not be considered. Therefore, the change in temperature
within the apartment can be represented by the state equation

Ṫ (t) =
−1

RC
T (t) +

1

RC
T∞(t) +

PH
C
h(t) +

1

C
PS(t), (B.1)

where T (t), h(t), T∞(t), PS(t) are the indoor temperature (state, ◦C), heater state (input,
binary), outdoor temperature (disturbance input, ◦C), and solar gain (disturbance input,
kW ), respectively. The parameters used in this model are R (◦C/kW ), C (kJ/◦C), PH
(kW ) which represent the thermal resistance, thermal capacitance, and baseboard heater
power, respectively. In this appendix, we will use “solar gain” to refer to power delivered to
the apartment attributable to solar irradiance (kW/m2).

Exogenous Signals

To utilize (B.1) in a model predictive controller, it is necessary to forecast the disturbance
inputs, T∞(t) and PS(t). Fortunately, there are several web services that provide searchable
application programming interfaces (APIs) for temperature forecasts. Such services include
Wundergound.com, OpenWeatherMap.com, and Forecast.io. Unfortunately, at the time of
this writing, there is no equivalent service for solar irradiance forecasts, making it difficult
to accurately predict solar gain. Therefore, we have created a means of approximating solar
gain based on forecasted weather conditions. First, we redefine solar gain

PS(t) = PS,maxs(t), (B.2)

where PS,max is the maximum solar gain (kW ) and s(t) is a solar gain scaling factor. In this
appendix, we assume that PS,max is constant, however PS,max will actually vary according to
the position of the sun (i.e. season and time of day). Next, we use forecasted cloud cover
conditions to define the scaling factor, s(t), shown in Table B.1. Between sunrise and sunset,
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the input s(t) is equal to a normalized number based on the weather condition. Otherwise
(i.e. at night), s(t) = 0. This approach provides a crude but useful approximation of the
impact of solar irradiance on the temperature inside the apartment.

Table B.1: Solar Gain Scale

Weather Condition Scale Normalized, s(t)

Day

Clear 4.5 1

Scattered Clouds 3.5 0.778

Partly Cloudy 3 0.667

Mostly Cloudy 2 0.444

Overcast 0.5 0.111

Night N/A 0 0

Finally, (B.1) can be rewritten as

Ṫ (t) =
−T (t) + T∞(t)

RC
+
PHh(t)

C
+
PS,maxs(t)

C
. (B.3)

Parametric Modeling

We reformulate the temperature dynamics equation into a linear in the parameters form for
identification purposes. The linear model is derived from (B.3) as follows,

Ṫ (t) =
[

1
RC

PH

C

PS,max

C

]




T∞(t)− T (t)

h(t)

s(t)



. (B.4)
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Let

z(t) = Ṫ (t), (B.5)

θ =




θ1

θ2

θ3




=




1
RC

PH

C

PS,max

C



, (B.6)

φ =




φ1

φ2

φ3




=




T∞(t)− T (t)

h(t)

s(t)



. (B.7)

Therefore,
z(t) = θTφ. (B.8)

Identification Algorithm

For parameter estimation, we employ a normalized recursive gradient update law, given by,

d

dt
θ̂(t) = Γε(t)φ(t), θ̂(0) = θ̂0, (B.9)

ε(t) =
z(t)− θ̂(t)φ(t)

m2(t)
, (B.10)

m2(t) = 1 + φ̂(t)φ(t), (B.11)

System Identification Results and Validation

With Γ = 10−4.1 ∗ I and initial parameter guesses θ1(0) = 0.00024, θ2(0) = 0.00045, and
θ3(0) = 0.000145, the resulting parameter estimates are shown in Figure B.3. The dataset
used for identification is shown in Figure B.4, where T̂ (t) is the estimate and T (t) is the
measurement. Due to the lack of persistent excitation in regressor element h(t), θ2 required
manual tuning to find a suitable estimate [39]. In other words, the heater was not turned on
often enough for θ2 to be identifiable using the recursive gradient descent algorithm.

For model validation, we rewrite the system in state-space form,

Ṫ (t) =
[
−θ1

] [
T (t)

]
+
[
θ1 θ2 θ3

]




T∞(t)

h(t)

s(t)



, (B.12)
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Figure B.3: Parameter Estimates

u(t) =




T∞(t)

h(t)

s(t)



. (B.13)

From Fig. B.3, the exit estimates are

θ =




θ1

θ2

θ3




=




1.054 ∗ 10−5

4.51 ∗ 10−4

1.960 ∗ 10−4



. (B.14)

Using these parameter estimates and the state-space model, we can validate against a
different dataset, shown in Fig. B.5. The validation results show a root mean square error
of 0.9130 ◦C.
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Figure B.4: System Identification Dataset

B.4 Model Predictive Control

Model Discretization

Since the model we identified above is in the continuous time domain, we now transform the
model into the discrete time domain for use in the optimization program.

Recall the continuous time state-space model, (B.12), where

A =
[
−1.054 ∗ 10−5

]
, (B.15)

B =
[
1.054 ∗ 10−5 4.51 ∗ 10−4 1.960 ∗ 10−4

]
. (B.16)

We obtain the discrete time state-space form

T (k + 1) = Ad

[
T (k)

]
+Bd




T∞(k)

h(k)

s(k)



. (B.17)
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Figure B.5: Validation Dataset

by using the transformations

Ad = eA∆t, (B.18)

Bd =

(∫ ∆t

0
eAτdτ

)
B. (B.19)

Since the A matrix is non-singular, we can find Bd as

Bd = A−1(Ad − I)B. (B.20)

We solve for these discrete matrices with ∆t = 15 minutes = 900 seconds, resulting in

Ad =
[
0.9906

]
, (B.21)

Bd =
[
0.009441 0.4040 0.17557

]
(B.22)

Optimization Formulation

The optimization program is formulated as

J = min
h(0)

N−1∑

k=1

c(k)PHh(k)
∆t

3600
, (B.23)
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subject to

T (k + 1) = Ad

[
T (k)

]
+Bd




T∞(k)

h(k)

s(k)



, k = 0, ..., N − 1, (B.24)

T (k + 1) ≥ Tmin, k = 0, ..., N − 1, (B.25)

h(k) = {0, 1}, k = 0, ..., N − 1, (B.26)

T (0) = T0. (B.27)

The optimization program is a mixed integer linear program (MILP) which minimizes the
cost of electricity while keeping the indoor temperature above a minimum setpoint. Since
the home has an electric-resistance heating system, the optimal decision variable h∗(k) will
be binary (1 or 0) representing an ON or OFF state, respectively. The electricity prices,
c(k), are shown in Table B.2. The off, partial, and peak costs are based on PG&E’s weekday
summer rates for residential time-of-use schedule E-6 [74]. The morning and evening peak
rates were added to make the problem more interesting. For the purposes of simulating the
system, we have assumed a heater power, PH , of 1.5kW and a minimum temperature, Tmin,
of 20 ◦C.

Table B.2: Residential Time-of-Use Price Schedule

Time Cost($/kWh)

Off Peak 12:00AM to 7:00AM & 11:00PM to 12:00AM 0.10376

Morning Peak 7:00AM to 9:00AM 0.25913

Partial Peak 9:00AM to 2:00PM & 9:00PM to 11:00PM 0.18054

Peak 2:00PM to 4:00PM & 6:00PM to 9:00PM 0.29581

Evening Peak 4:00PM to 6:00PM 0.44012

As formulated, it is possible for the MILP to return an infeasible solution error. For
example, if T (0) is low and T (k + 1) cannot be raised above Tmin in one time step or if
the losses to ambient exceed the energy delivered by the heater for several time steps, then
the minimum temperature constraint will be violated and the solver will return no solution.
This limitation could be resolved by penalizing the MILP for allowing T (k+ 1) to fall below
Tmin rather than applying Tmin as a lower bound constraint.
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Figure B.6: Weather Forecast Data

Control Algorithm

The MPC algorithm is executed as follows

1. Set the current temperature measurement as the initial state, T (0) = T0.

2. Solve the MILP for the optimal open loop input sequence h∗(0), h∗(1), .., h∗(N − 1),
given forecasts of disturbances T∞(t) and s(t).

3. Implement the first input h∗(0) to advance the system one time step.

4. Repeat the algorithm at the next time step.

An advantage of this control algorithm is that a system can be predictively controlled
despite inaccuracies in the identified model parameters. In this work, the MILP was solved
for a 6 hour time horizon (N=24). It is unlikely that the model accurately predicts the
temperature in the apartment 6 hours into the future. Nonetheless, the MILP is capable of
estimating the impact of the system’s inputs and helping to determine the optimal course of
action in the next time step.
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Figure B.7: Deadband Control Simulation

Simulation Results

A real-time software-in-the-loop simulation was conducted to compare the performance of
a traditional deadband controller with our model predictive controller. The identified dis-
crete thermal model with added Gaussian noise was used to represent the evolution of the
temperature inside the apartment. The simulation was run for approximately 2 weeks using
actual weather forecast data, an example of which is shown in Figure B.6. A subset of the
results are presented in Figures B.7 and B.8.

As shown in the Figure B.7, the deadband controller switches on whenever energy is
needed to maintain the desired temperature in the apartment. In contrast, the MPC system
avoids peak and partial-peak electricity prices, resulting in the more concentrated periods of
heating shown in Figure B.8.

Based on the real time simulation, both the MPC and deadband controllers consume
close to the same amount of energy (42.0 kWh and 46.4 kWh, respectively) and maintain
comparable average temperatures (21.37 ◦C and 21.06 ◦C, respectively) during the 2 weeks
studied. However, the MPC system showed a 31% reduction in heating costs compared to
the traditional deadband controller. This suggests that the MPC system meets the objective
of reducing electricity cost by shifting the time of electricity use rather than decreasing the
total energy demand.

While “a 31% reduction in heating costs” is an encouraging finding, it is an insufficient
metric for representing the performance of our MPC system. Firstly, it compares MPC
with deadband control, which is a trusted but ultimately rudimentary control strategy. By



APPENDIX B. MODEL PREDICTIVE CONTROL OF RESIDENTIAL BASEBOARD
HEATERS WITH DISTRIBUTED SYSTEM ARCHITECTURE 146

5

10

15

20

25

T
e
m

p
e
ra

tu
re

 [o
C

]

 

 

0

0.4

0.8

1.2

S
o

la
r 

S
c
a
le

T (t)
T∞(t)
s(t)

12AM  6AM 12PM  6PM 12AM  6AM

0

1

H
e

a
te

r 
S

ta
te

 [
O

n
/O

ff
]

 

 

0

0.2

0.4

0.6

E
le

c
tr

ic
y
 P

ri
c
e
 [
$

/k
W

h
]

h(t)
c(t)

Figure B.8: MPC Simulation

comparing to a strategy that we know to perform poorly, the metric gives an exaggerated
impression of success. Secondly, the metric fails to recognize regional or seasonal changes in
weather conditions and energy prices. For example, a 5% reduction in cost in a cold climate
or during a winter month may be far more significant than a 30% reduction in a temperate
climate or during an autumn month. What is needed is a means of defining an optimal
control strategy with perfect forecasting. Then, rather than making claims of cost savings,
it is possible to express how a system performs relative to the optimal solution.

For the purposes of this work, we have formulated a dynamic program (DP) that im-
plements the same objective and system dynamics as the MILP above. Then, we collected
weather forecast data for a period of 3 weeks. For each day, we simulated the thermostatic
control system with varying degrees of foresight. The deadband controller (DBand) has
no forecasting capability and simply turns on the heater for one time step when the lower
bound condition is reached. The MPC controller (MPC) was run using the actual (imper-
fect) weather forecasts at each time step with forecast horizons of 1, 3, 6, and 10 hours.
A Deterministic MPC controller (DMPC) was simulated using the recorded conditions as
(perfect) weather forecasts with forecast horizons of 1, 3, 6, and 10 hours. Lastly, the DP
was simulated to determine the optimal solution to the given objective and compared with
the results of the DBand, MPC, and DMPC simulations, as shown in Figures B.9 and B.10.
The cost optimality (CO) for each day simulated is defined as
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Figure B.9: Simulation Example

CO(i, j) =
J(DP, j)

J(i, j)
, (B.28)

where
i = Controller [DBand, MPC, DMPC, DP]
j = Day simulated (out of N=20)
J(i, j) = Cost of heating on day j with controller i

By comparing the results of each controller, we are able to identify some of their be-
haviours. For example, the MPC and DMPC controllers with 1 hour forecast horizons are
not able to see changes in the price of electricity until 1 hour before they take effect. As a
result, the controllers are less able to avoid high electricity prices than the DP and, on av-
erage, incur higher costs than the non-forecasting DBand controller. For each time horizon,
the difference in the cost optimality between the MPC and DMPC simulations indicate the



APPENDIX B. MODEL PREDICTIVE CONTROL OF RESIDENTIAL BASEBOARD
HEATERS WITH DISTRIBUTED SYSTEM ARCHITECTURE 148

60

70

80

90

100

C
o
s
t 
O

p
ti
m

a
lit

y
 [

%
]

20

21

22

T
e

m
p

e
ra

tu
re

 [o
C

]

4

5

6

E
n

e
rg

y
 [

k
W

h
]

D
Ban

d

M
PC

 1
h

D
M

PC
 1

h

M
PC

 3
h

D
M

PC
 3

h

M
PC

 6
h

D
M

PC
 6

h

M
PC

 1
0h

D
M

PC
 1

0h D
P

Figure B.10: Mean Cost Optimality, Temperature, and Energy Use per Day over 20 days.
Error bars indicate standard deviation over 20 days.

benefit of accurate weather forecasting. By comparing the various forecast horizons of the
MPC or DMPC simulations, we can see the diminishing returns of foresight. Additionally,
we can see that as the horizon increases, the controller will maintain a slightly higher average
temperature so as to minimize heating during on-peak periods.
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B.5 Conclusions

The results of our work show that the system is capable of a) monitoring the real-time
thermal conditions in a space, b) reducing peak loads on the power grid by using electricity
price as a proxy for peak demand, c) making use of weather forecast data to predict heating
requirements according to the apartment’s thermal dynamics, and d) enable smart home
technology development with a distributed and cloud-based system architecture. Addition-
ally, this simple MPC control system is capable of reducing the consumer’s electricity costs
while maintaining a given temperature range.
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Appendix C

TCL Simulation Studies

This appendix expands on the TCL parameter estimation results in Chapter 3. Below are
simulation studies demonstrating the capability of the algorithm to quickly converge to new
parameter estimates and evaluating the advantage of employing a recursive algorithm in a
demand response context.

C.1 Adaptive Parameter Estimation

In this section, we demonstrate the capability of the single UKF method (presented in
Chapter 3, Section 6) to quickly converge to new parameter estimates in response to changes
in the system. In this simulation study, we first generate data of a residential refrigerator with
time-varying parameters. We then employ the single UKF method to recursively estimate the
parameters using the temperature and compressor state signals. We have tuned the values of
the covariance matrices Qv and Qw to allow the UKF to converge to new parameter estimates
more quickly than in the previous TCL studies.

The refrigerator simulated in this study has parameters which vary periodically due to
the loss or gain of thermal capacitance and changes in the unmodeled noise process. The
change in thermal capacitance is represented by randomly drawing a value for θ1 from the
uniform distribution [0.985, 0.995] once an hour and drawing θ3 from the uniform distribution
[-0.16,-0.08] once every 3 hours. We assume that θ2 is constant and equal to -40. Internal
temperature and compressor state data is generated by simulating the deadband control of
the system for 7 days using the random time-varying parameters and employing the ambient
temperature data collected by TCL1.

Next, we apply the single UKF method to recursively estimate the model parameters
based on the simulated internal temperature and compressor state signals. Figures 3.21 and
3.22 presents examples of the time-varying system parameters and the parameter estimates
produced by the single UKF method. The figure illustrates how the UKF is able to converge
to new parameter estimates within a few time steps. We observe that the UKF often updates
both θ1 and θ3 in response to changes in the thermal capacitance of the system. This
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Figure C.1: Adaptive Parameter Estimation of Simulated TCL (estimates over 10 hours)
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Figure C.2: Adaptive Parameter Estimation of Simulated TCL (estimates over 100 hours)

observation is comparable to how the parameter estimates changed in response to removing
thermal mass from TCL2, as shown in Figure 3.22 (Chapter 3, Section 7).

To quantify the advantage of using an adaptive modeling approach, we compare the
performance of 3 observers which model the fridge and produce 1-hour ahead forecasts of
the internal temperature and compressor state. The first observer, referred to as the “static”
observer, employs a model with fixed parameters (θ1 = 0.99, θ2 = −40, and θ3 = −0.12).
The second observer, referred to as the “adaptive” observer, employs the parameter estimates
produced by the single UKF method. Note that the adaptive observer uses the model
parameters as estimated at the time step that the forecast was produced and that the
parameters do not vary within a 1-hour ahead forecast. Finally, the third observer, referred
to as the “informed” observer, has perfect knowledge of the system parameters at the time
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that each forecast is produced. Note that the informed observer does not have knowledge of
how the parameters will change in the future and thus the parameters do not vary within a
1-hour ahead forecast.

For each observer, we produce a 1-hour ahead forecast of the internal temperature and
compressor state starting at each minute over a 7 day period. The performance of each
observer is quantified as the root mean squared error (RMSE) of the forecasts compared to
the simulated data with random time-varying parameters. The RMSE of the internal tem-
perature forecasts for the static, adaptive, and informed observers are 1.37◦C, 1.12◦C, and
0.73◦C, respectively, and for the compressor states are 0.402, 0.305, and 0.234, respectively.
Based on these results, the adaptive observer reduces the temperature forecast RMSE by
24.1% and the compressor state forecast RMSE by 18.2% relative to the static observer.
Assuming that the electrical power demand of the TCL is linearly proportional to the com-
pressor state, the adaptive observer also reduces the power demand forecast RMSE by 18.2%
relative to the static observer.

C.2 TCL Demand Response

In this section, we present a simulation study in which a population of residential refrigera-
tors optimizes its power demand according to a price signal from a demand response event
using model predictive control (MPC). Because the individual TCLs all respond to the same
price signal and do not coordinate with each other or with a grid entity, the demand response
approach can be described as decentralized model predictive control. The objective of this
study is to illustrate the impact of model fidelity on the decision making of the TCLs. Specif-
ically, we illustrate the advantage of using the single UKF method to recursively estimate
a system’s parameters rather than employing a fixed set of parameters for model predictive
control. By more accurately representing the dynamics of a TCL, a controller with recursive
parameter estimation is capable of identifying and implementing a better solution.

To avoid using electricity during the hour long event, the fridges are able to shift their
demand by decreasing their temperature setpoints by 1◦C for a certain amount of time.
Note that the setpoint will never deviate by more than −1◦C from the original temperature
setpoint. The power demand of a TCL at each time step is defined by

pk =
|P |
COP

mk (C.1)

where pk ∈ R is the electric power demand (kW) and COP the coefficient of performance.
To determine when to change the setpoints, each refrigerator employs a receding horizon

model predictive controller. Every 10 minutes, the controller generates a temperature set-
point schedule for the next 2 hours that minimizes the electricity costs. The refrigerator then
implements the first 10 minutes of the 2-hour setpoint schedule. This procedure is repeated
every 10 minutes over one day.
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Parameter Refrigerator

Thermal resistance, R (◦C/kW) [80, 100]

Thermal capacitance, C (kWh/◦C) [0.4, 0.8]

Energy transfer rate, P (kW) [-1, -0.2]

Coefficient of performance, COP 2

Temperature setpoint, Tset (◦C) [1.7, 3.3]

Deadband width, δ (◦C) [1, 2]

Ambient temperature, Ta (◦C) 21

Table C.1: Refrigerator thermal parameter ranges adopted from [64]

Setpoint changes are applied over 10 consecutive time steps. In other words, the 2-hour
horizon is divided into 12 segments of 10 minutes. For each segment, the controller must
decide whether to employ the original setpoint temperature or to decrease the setpoint by
1◦C. Therefore the controller must consider 212 possible 2-hour setpoint schedules. To find
the optimal setpoint schedule, the controller simulates the refrigerator with each of the 212

setpoint schedules and selects the schedule that has the lowest electricity cost.
In this study, we simulate the dynamics of 1000 refrigerators. To generate a diverse

population of refrigerators, we employ published model parameter ranges, given in Table
C.1 and adopted from [64]. For each refrigerator in the population, we randomly draw the
R, P , Tset, and δ values from a uniform distribution between the maximum and minimum
values shown in the table. These values remained fixed for a specific TCL. To represent
periodic loss or gain of thermal capacitance and changes in the unmodeled noise process, we
randomly vary the C and θ3 parameters of each TCL. Once an hour, a new value of C is
randomly drawn from the uniform distribution in Table C.1. Once every 3 hours, a new θ3

is drawn from the uniform distribution [-0.16,-0.08]. Finally, we assume a constant COP of
2 and ambient temperature T∞ of 21◦C.

To quantify the impact of model accuracy on the decision making, we implement 3 model
predictive controllers. The first controller, referred to as the “static” controller, employs a
model with fixed parameters (C = 0.6 and θ3 = −0.12). The second controller, referred
to as the “adaptive” controller, employs parameter estimates produced recursively using
the single UKF method. The third controller, referred to as the “informed” controller, has
perfect knowledge of the system parameters at the time that each forecast is produced. We
employ each of these controllers to simulate the TCLs in the population and to minimize
the electricity costs by adjusting the temperature setpoints using the procedure described
above.

For each of the 1000 TCLs in the population, we simulate the receding horizon model
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Figure C.3: Demand Response of Simulated TCL Population (Full Day)
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Figure C.4: Demand Response of Simulated TCL Population (Price Event)
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predictive control (MPC) over one day using the static, adaptive, and informed controllers.
The results of this study are illustrated in Figures C.3 and C.4. The top subplots show the
demand response event pricing and the bottom subplots show the aggregate power demand
of the refrigerator population. In Figure C.4, we can observe how the controllers respond to
the demand response pricing event and how the model accuracy impacts the capability of
the controllers to optimally schedule the temperature setpoints. In other words, the static,
adaptive, and informed controllers each produce an optimal temperature setpoint schedule
using their respective TCL models. However, if the models do not accurately represent the
dynamics of the system, the setpoint schedule implemented by the controller is likely to be
suboptimal. This is illustrated in Figure C.4 by the fact that the static controller does not
avoid the peak pricing as well as the adaptive and informed controllers. The average cost
of operating a TCL in the population is $0.0769 per day using the static controller, $0.0740
per day using the adaptive controller, and $0.0725 per day using the informed controller.
Based on these results, the adaptive controller achieves a 3.71% cost savings compared to
the static controller.

Additionally, the adaptive controller is more capable of achieving the desired demand
response behavior of shifting load away from the peak price period. Within the 1-hour
event, the average electricity costs of operating a TCL are $0.01175 per hour, $0.00855 per
hour, and $0.00702 per hour using the static, adaptive, and informed controllers, respectively.
Within the 1-hour event, the adaptive controller achieves a 27.2% cost savings compared to
the static controller. By recursively estimating the parameters using the single UKF method,
the adaptive controller better enables the TCL to participate in demand response programs
and other smart grid applications.

C.3 Conclusions

In this appendix, we presented 2 simulation studies. The first study demonstrates the capa-
bility of the single UKF method to quickly converge to new parameter estimates in response
to changes in the system dynamics. The second study presents simulation results for a pop-
ulation of refrigerators which optimize their power demand based on a demand response
electricity price event. These studies show the advantage of using model predictive control
with the single UKF method rather than employing a fixed set of model parameters.
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Appendix D

Distributed Optimization of
Thermostatically Controlled Loads

D.1 Notation

To simplify equations, we employ the following notation and abbreviations throughout the
chapter.

`1-norm:

‖x‖1 =
N∑

i=1

|xi| (D.1)

`2-norm:

‖x‖2 =

√√√√
N∑

i=1

x2
i (D.2)

Root Mean Squared Error:

RMSE =

√√√√ 1

N

N∑

i=1

(xi − x̂i)2 (D.3)

Mean:

x̄ =
1

N

N∑

i=1

xi (D.4)

Sum:
∑
xi =

N∑

i=1

xi (D.5)

Inner product:
〈λ, x〉 = λTx (D.6)

with variable x, λ ∈ RN .
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D.2 Sharing ADMM Optimality and Residuals

In this section, we derive the sharing ADMM residuals, which are required to define the
stopping criteria. The necessary and sufficient optimality conditions for the sharing ADMM
problem (6.9) are given by the primal feasibility,

x∗i − z∗i = 0 (D.7)

and dual feasibility,
0 = ∇fi(x∗) + λ∗i (D.8)

0 = ∇g(
∑
z∗i )−

∑
λ∗i (D.9)

for i = 1, . . . , N assuming fi and g are differentiable.
Since zk+1 minimizes (6.9b) by definition, we can show that zk+1 and λk+1 always satisfy

(D.9),

0 = ∇g(
∑
zk+1
i )− (

∑
λki +

∑
ρ(xk+1

i − zk+1
i ))

= ∇g(
∑
zk+1
i )−∑ (λki + ρ(xk+1

i − zk+1
i ))

= ∇g(
∑
zk+1
i )−∑λk+1

i

Therefore, optimality is achieved by satisfying (D.7) and (D.8). From (D.7), we can define
the primal residual as

rk+1
i = xk+1

i − zk+1
i (D.10)

Since xk+1
i minimizes (6.9a) by definition, we can show

0 = ∇fi(xk+1
i ) + λki + ρ(xk+1

i − zki )

=∇fi(xk+1
i ) + λki + ρ(xk+1

i − zki + zk+1
i − zk+1

i )

=∇fi(xk+1
i ) + (λki + ρ(xk+1

i − zk+1
i )) + ρ(zk+1

i − zki )

=∇fi(xk+1
i ) + λk+1

i + ρ(zk+1
i − zki )

Thus, we can define the dual residual as

sk+1
i = ∇fi(xk+1

i ) + λk+1
i = −ρ(zk+1

i − zki ) (D.11)

D.3 Averaged Sharing ADMM

In this section, we derive the averaged form of the sharing ADMM algorithm. The sharing
ADMM algorithm (6.9) requires the local calculation of a zki , λki , and rki term for each agent
i = 1, . . . , N in the network. Next, we will show that we can simplify the algorithm by
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introducing global variables x̄k, z̄k, and λ̄k representing the arithmetic mean of all xki , z
k
i ,

and λki , respectively.
We begin by introducing z̄k into the z-update equation (6.9b), which can be rewritten as

min
z,z̄

g(Nz̄)

+
∑

(〈λki ,−zi〉+
ρ

2
‖xk+1

i − zi‖2
2)

s.t. z̄ =
1

N

∑
zi

(D.12)

or in augmented Lagrangian form

L (z, z̄, µ) = g(Nz̄) +
∑ 〈λki ,−zi〉

+
∑

(
ρ

2
‖xk+1

i − zi‖2
2)

+ µT (z̄ − 1

N

∑
zi)

Thus, for every iteration of the sharing ADMM algorithm, the optimal value of each zi is

0 =
∂L

∂zi
(z∗i , z̄

∗, µ∗)

= λki + ρ(xk+1
i − z∗i ) +

µ∗

N

=
1

ρ
(λki +

µ∗

N
) + xk+1

i − z∗i

z∗i =
µ∗

Nρ
+
λki
ρ

+ xk+1
i

(D.13)

Finally, we can calculate the optimal value of z̄

z̄∗ =
1

N

∑
z∗i

=
1

N

∑
(
µ∗

Nρ
+
λki
ρ

+ xk+1
i )

=
1

N
(
µ∗

ρ
+

1

ρ

∑
λki +

∑
xk+1
i )

=
µ∗

Nρ
+
λ̄k

ρ
+ x̄k+1

(D.14)
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Thus, substituting µ∗/Nρ from (D.14) into (D.13),

z∗i = z̄∗ − λ̄k

ρ
− x̄k+1 +

λki
ρ

+ xk+1
i (D.15)

or equivalently

zk+1
i = z̄k+1 + (xk+1

i − x̄k+1) +
1

ρ
(λki − λ̄k) (D.16)

Next, we can replace zk+1
i in the λi-update equation (6.9c)

λk+1
i = λki + ρ(xk+1

i − zk+1
i )

= λki

+ ρ(xk+1
i − (z̄k+1 + xk+1

i − x̄k+1))

− (λki − λ̄k)

= λ̄k + ρ(x̄k+1 − z̄k+1)

(D.17)

which shows that the dual variables λki are all equal to the global λ̄k and thus

zk+1
i = z̄k+1 + (xk+1

i − x̄k+1) (D.18)

Therefore, the unscaled form of the averaged sharing ADMM algorithm is

xk+1
i = argmin

xi
fi(xi) + 〈λ̄k, xi〉 (D.19a)

+
ρ

2
‖xi − xki + x̄k − z̄k‖2

2

z̄k+1 = argmin
z̄

g(Nz̄) + 〈λ̄k,−Nz̄〉 (D.19b)

+
Nρ

2
‖x̄k+1 − z̄‖2

2

λ̄k+1 = λ̄k + ρ(x̄k+1 − z̄k+1) (D.19c)

With this averaged sharing ADMM form, the individual agents no longer update their
own λi variable. Instead, a single aggregator updates λ̄, along with x̄ and z̄, and reports
these global variables to every agent in the network.

D.4 Averaged Sharing Residuals

In order to apply the stopping criteria, we must redefine the primal and dual residuals for
the averaged form. We can substitute zk+1

i from (D.18) into (D.10) and (D.11) in order to
define the primal residual rki and dual residual ski in terms of z̄
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rk+1
i = x̄k+1 − z̄k+1 (D.20)

sk+1
i = ρ((x̄k+1 − x̄k)− (xk+1

i − xki )

− (z̄k+1 − z̄k))
(D.21)

and the corresponding `2-norms of the stopping criteria

‖rk‖2 = N‖x̄k − z̄k‖2

‖sk‖2 =
∑‖ski ‖2

(D.22)
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