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Abstract— This paper presents an optimal Day-Ahead Elec-
tricity Market (DAM) bidding strategy for an aggregator lever-
aging a pool of residential prosumers: residential customers
with local photovoltaic (PV) production and plug-in electric
vehicle (PEV) charging flexibility. The aggregator’s point-of-
view differs from the social planner angle that is taken in the
majority of the existing literature, mainly the aggregator is
considered to be a private entity (e.g. an electricity retailer). We
propose a novel approach to tackling this optimization problem,
by including risk management in the objective function and
chance constraints on the aggregated PEV mobility constraints.
In a first step, we model local system constraints and define
a stochastic optimization scheme that exploits the problem
structure to distribute the objective among prosumers via
dual-splitting. Dual splitting is achieved with two consensus
variables: a shadow price for energy and for PEV charging. In
a second step, we propose a projected gradient ascent algorithm
to solve the dual problem and we prove its corresponding rate of
convergence (upper-bound). Finally, we implement a case study,
with a model of 100 prosumers, to illustrate the convergence
rate of our algorithm. We show that we reach an acceptable
level of precision with less than 50 iterations.

I. INTRODUCTION

This paper derives and analyzes distributed optimization
algorithms for scheduling an aggregate of distributed energy
resources (DERs), with specific considerations for uncertain-
ties in electricity prices and DER availability.

A. Context and Motivation

In current electricity systems, residential electricity de-
mand is typically inelastic and, most of the time, end-
users are subject to flat rates. That said, the recent massive
integration of renewable electricity supply has lead to in-
creasing power rampings in the net electricity demand. In
many electricity markets (e.g. Germany, Italy, California)
peak demand occurs after sunset, when solar power is no
longer available, this phenomenon is commonly referred to
as the ’duck curve’ [1]. Peak power demand creates a need
for more flexible power supply [2] which could be leveraged
on the residential demand-side as often suggested in the
literature [3]–[5].

In this paper, residential electricity end-users with con-
trollable plug-in electric vehicle (PEVs) chargers and pho-
tovoltaic (PV) systems are referred to as prosumers. An
aggregator is a company pooling prosumers to bring them

*This work was was supported by TOTAL SA. and Lawrence Berkeley
National Laboratory

1 Energy, Controls, and Applications Lab (eCAL), Civil & Environmen-
tal Engineering, University of California, Berkeley, USA. Corresponding
author: bertrand.travacca@berkeley.edu

2 Mechanical Engineering, University of California, Berkeley, USA.

to the Day-Ahead energy Market for electricity (DAM).
The DAM takes place one day before the operating day,
and consists in various market entities bidding prices and
quantities for each hour of the next day. The objective of
the aggregator is to maximize the total electricity profits it
delivers in the DAM. It is important to highlight the fact that
a single prosumer cannot participate in the DAM because
it does not fulfill the power threshold requirements of the
market regulator. It is true that Time-of-Use tariffs (TOU)
and Real Time Prices (RTP) aim to bring the market to the
prosumer level. Nevertheless, there might arguably be at this
level a low acceptance of RTP [6]. Moreover TOU rates are
not able to capture entirely the state of the electricity system
and can even create higher peak loads as [7] suggests.

Two main challenges for managing a large population of
flexible resources are (i) uncertainty and (ii) computational
scalability. (i) First, we must ensure consumer comfort (e.g.
mobility) in the face of uncertain electricity consumption and
limit financial risk in the face of uncertain DAM prices. (ii)
Second, we require computationally scalable scheduling al-
gorithms that guarantee delivered power from the aggregator
to the power system operator.

B. Literature Review

A growing body of literature addresses optimal charg-
ing of PEV populations and residential demand response.
This research can be classified as having centralized or
distributed protocols. Centralized algorithms [8]–[10], use
a central infrastructure to communicate with each agent,
gather their information, and compute the optimal aggregated
load profile. The challenges for centralized methods are
scalability with respect to communication and computation,
as well as privacy issues. In distributed or decentralized
optimization algorithms [11], [12], each local agent solves its
own problem and communicates information to its neighbors
or the aggregator.

Market bidding strategies and market uncertainty for ag-
gregated PEVs have been studied in [13]–[15]. The afore-
mentioned methods could successfully address uncertainty
in aggregated load scheduling, but do not provide a rigorous
convergence analysis (except [11]). In particular, finding the
necessary number of iterations to reach a specific precision
is crucial if we seek to assess implementation burdens for
the aggregator.

In this paper, we construct a tailored optimization method
for scheduling uncertain electricity resources in the uncer-
tain DAM using our aggregated resources. Leveraging the
particular structure of the problem, we derive a distributed



dual-optimization scheme. We then perform a convergence
analysis to yield an explicit upper-bound on the rate of con-
vergence, for the projected gradient ascent algorithm. Finally,
a case study is implemented to illustrate the performance of
our algorithm. Ultimately, the contributions of this paper to
ensemble DER control are twofold:

1) Formulation of a convex optimization scheduling prob-
lem and distributed algorithm that accounts for uncer-
tain DAM prices and PEV availability.

2) Proof of an upper-bound for convergence (without
strong convexity properties).

C. Paper Structure

The report is structured as follows:

• In Section II, we formulate the DER model with local
constraints on power, energy, and availability. Next, we
define an optimization model to address risk manage-
ment for DAM bidding, in the face of uncertain DAM
prices and uncertain PEV mobility aggregation.

• In Section III, we show how to exploit the problem
structure to enable distributed computations.

• In Section IV, we propose a distributed gradient ascent
method to solve the problem and derive an explicit
bound for convergence.

• In Section V, we illustrate our model for price pre-
diction and corresponding risk (covariance matrix). We
then show how our algorithm performs with a case study
of 100 prosumers.

D. Notation and Nomenclature

This paper uses the following notation: (x, y) ∈ Rd, xT y
refers to the euclidean scalar product of x and y, ‖ · ‖22
refers to the corresponding euclidean norm. x ≤ y refers
to element-wise inequality and A � B for A,B ∈ Rd×d
symmetric matrices means that A − B is positive semi-
definite. If A is symmetric positive definite matrix, then
M = A1/2 denotes the unique matrix square root of A (i.e.
M2 = A). For A ∈ Rq×d, ‖A‖2 refers to the operator norm
defined by: ‖A‖2 = maxx∈Rd 6=0

‖Ax‖2
‖x‖2 .

The following notation is specific to this paper. Uppercase
letters refer to variables with units of power (kW ) while
lower case letters refer to variables with units of energy
(kWh). Symbol xt refers to the value taken by variable x
at time t. In the absence of the exponent we will consider
the variable x as a vector ∈ R24. Symbol xi refers to a
local prosumer variable i ∈ {1, ...N} and xΣ =

∑N
i=1 xi

to the sum of these local variables. Symbol X̂ refers to the
average or estimate of a random or unknown variable X .
Finally, x (respectively x) refers to an upper (lower) bound
of the variable x.

TABLE I
NOMENCLATURE

N Number of prosumers

∆t Time-step: 1 hour

Li Residential Load of prosumer i (not including PEV charge)

EVi Charging rate of PEV i

evi State of Energy of PEV i

Si Solar PV production of prosumer i

Gi Power imported from the grid for prosumer i

Fig. 1. Local system representation

II. LOCAL SYSTEM MODEL AND PROBLEM
FORMULATION

A. Local System Model

1) Local Power Balance: The power balance (1) estab-
lishes the link between the control variables Gi and EVi.

Li + EVi ≤ Si +Gi (1)

Note that the power balance has been relaxed from an
equality constraint to an inequality constraint representing
the fact that PV production can be curtailed.

2) Local Grid Constraints: At any given node in the
distribution network, there is a limit on power import or
export (2). Typically, for residential customers, Gi ' 8 kW .

Gi ≤ Gi ≤ Gi (2)

3) Local PEV Constraints: Equation (3) governs the
PEV battery state of energy (SOE) dynamics. The subtle
difference with the model used in [11] is the fact that the
PEVs are not in a closed system. When the i-th PEV leaves
its house, it is no longer in the aggregator’s perimeter. For
instance, a PEV can leave with SOC = 0.5 and come back
fully charged (because it has charged elsewhere). Therefore,
EVi represents the on-site charge only, while EVD,i is an
algebraic value that represents the observed and uncontrolled
charge or discharge of the PEV while off-site.

evti = evt−1
i + EV ti ∆t− EV tD,i∆t (3)

Considering a SOE constraint for each hour, we rewrite (3) as
an on-site cumulative energy consumption constraint, which



is expressed as:

evi ≤ A · EVi ≤ evi (4)

With A the discrete integration matrix:

A = ∆t


1 . . . 0

...
. . .

...

1 . . . 1


Finally, the PEVs charging power constraint is given by:

EV i ≤ EVi ≤ EV i (5)

Note that when the PEV is un-plugged at a given time t,
then EV ti = EV

t

i = 0 is required.
For the purpose of conciseness, the convex feasibility set
generated by the local constraints (1), (2), (4) and (5) is
hereby referred to as locali.

B. Optimization problem formulation
1) Aggregator’s objective: As described in Section V-A,

the DAM price p is considered as a random variable ∈ R24

with multivariate Gaussian distribution:

p ∼ N (p̂,Σp), with Σp � 0 (6)

The total power bought or sold by the aggregator in the DAM
is the vector GΣ =

∑N
i=1Gi. The choice of the quantity GtΣ

for t ∈ {1, ...24} can be considered as a portfolio problem
where the assets are the DERs, the returns are the DAM
prices and the budget constraint is the flexibility constraint
described in the previous section. The choice of the portfolio
GΣ involves a trade-off between the expected DAM cost
p̂TGΣ and its variance GTΣΣpGΣ.

We define the optimization objective for the aggregator
to be given by (7). With α representing the risk aversion
propensity of the aggregator. This objective corresponds to
a scalar bi-criterion objective. This produces Pareto optimal
portfolios except for the two limiting cases: α→ 0 or α→
∞ [16].

p̂TGΣ + αGTΣΣpGΣ +
δ

2

[
N∑
i=1

‖EVi‖22 +

N∑
i=1

‖Gi‖22

]
(7)

Remark: If one wishes to consider a risk-seeking
aggregator (i.e. α < 0), then the objective would be
concave and therefore the problem would be non convex.
This changes the problem structure dramatically, and is not
considered here.

Tikhonov (a.k.a. L2 or “ridge”) regularization terms are
also included in the objective. The term δ

2

∑N
i=1 ‖EVi‖22

penalizes PEV battery degradation as described in [11],
[17]. Nevertheless, battery degradation can also depend on
other factors than charging power magnitude. The term
δ
2

∑N
i=1 ‖Gi‖22 penalizes the magnitude of the Gi’s. This

term can be interpreted as a cost linked to local stability
of the distribution grid. The parameter δ is tuned by the
practitioner.

2) Aggregated PEV mobility uncertainty: It is extremely
difficult to perfectly predict the total hourly day-ahead
mobility energy demand profile. Modeling PEV mobility
uncertainty at the local level is not tractable, as the individual
PEV use is highly unpredictable and may require access to
private information. This is not the case at the aggregated
level, where behaviors are ’smoothed’ via the law of large
numbers. Therefore, PEV mobility uncertainty is modeled at
the aggregate level via chance constraints – explained next.

We hypothesize that the aggregated energy and power
bounds evΣ, evΣ, EV Σ, EV Σ follow multivariate normal
distributions with diagonal covariance matrices. We require
these bounds to be respected for each hour with a probability
of at least η. Let us denote Φ(·) the cumulative distribution
function for a zero-mean, unit variance Gaussian random
variable. Consider the first lower bound. We can write:

evtΣ ∼ êv
t
Σ + σtevN (0, 1) (8)

where êvtΣ and σev,t are the mean and standard deviation of
evtΣ, respectively. Instead of requiring this lower bound to
be satisfied for all realizations of êvtΣ, we require the lower
bound is satisfied with probability η. In our particular case:

P(evtΣ ≤ (A·EVΣ)t) ≥ η ≡ (A·EVΣ)t ≥ êvtΣ +σtevΦ
−1(η)

(9)
The same procedure is applied to evΣ, EV Σ, EV Σ. The
interpretation of chance constraints, like (9), is that they
provide tighter deterministic bounds on mobility constraints
that are more robust to error on mobility prediction. The
right hand-side of the second inequality in (9) are denoted
as ẽvΣ, ẽvΣ,ẼV Σ,ẼV Σ. In the following, for legibility, the
symbols ·̂ and ·̃ are dropped for all variables.

3) Stochastic Optimization Problem Formulation: We are
now positioned to formulate the stochastic optimization
problem:

min
EVi,Gi,EVΣ,GΣ

pTGΣ + αGTΣΣpGΣ + ... (10)

δ

2

[
N∑
i=1

‖EVi‖22 +

N∑
i=1

‖Gi‖22

]
subject to: Local constraints : ∀i locali

Aggregated variable constraints :

EVΣ =

N∑
i=1

EVi, GΣ =

N∑
i=1

Gi

Aggregated EV chance constraints :

evΣ ≤ A · EVΣ ≤ evΣ

EV Σ ≤ EVΣ ≤ EV Σ (11)

Let us denote c∗ the optimal cost for (11). The optimiza-
tion problem (11) couples the individual EVi, Gi variables in
the objective via the variance term GTΣΣpGΣ. Additionally,
coupling terms appear with the aggregated PEV mobility
constraints. Without these coupling terms, the optimization
problem is sum-separable. That said, the problem contains
independent local constraints locali, and this structure can
be exploited to distribute the objective – discussed next.



III. DISTRIBUTED OPTIMIZATION SCHEME

Dual splitting is used to exploit the inherent problem
structure described previously. This enables us to achieve
the following key result, which enables scalability:

Theorem 3.1: Solving (11) is equivalent to solving:

max
µ∈R96, µ≥0, ν∈R24

[
− 1

4α
νTΣ−1

p ν + cTµ+ ...

N∑
i=1

min
EVi,Gi, s.t. locali

[
GTi (p− ν) + EV Ti Bµ+ ...

δ

2
(‖EVi‖22 + ‖Gi‖22)

]]
(12)

With B ∈ R24×96, and c ∈ R96 given (cf. Proof).

Proof: This proof utilizes duality theory. Namely, the
aggregated decision variables and EV chance constraints
from (11) are used to form the dual problem and the
corresponding Lagrangian L given by (13). Slater condition
holds, henceforth min and max symbols can be interchanged
without generating a dual gap.

L =
∑
i

pTGi + αGTΣΣpGΣ +
δ

2
(
∑
i

‖EVi‖22 +
∑
i

‖Gi‖22)

+ µTev(−A · EVΣ + evΣ) + µTev(A · EVΣ − evΣ)+

µTEV (−EVΣ + EV Σ) + µT
EV

(EVΣ − EV Σ)+

νTEV (EVΣ −
∑
i

EVi) + νTG(GΣ −
∑
i

Gi) (13)

where the µ’s≥ 0 and ν’s are dual variables associated with
corresponding inequality and equality constraints, respec-
tively. Using the facts that:

min
GΣ

[
αGTΣΣpGΣ + νTGGΣ

]
= − 1

4α
νTGΣ−1

p νG

min
EVΣ

EV TΣ

(
AT (µev − µev) + µEV − µEV + νEV

)
= 0

The following equality constraint on the dual variables
ensures the problem is bounded:

AT (µev − µev) + µEV − µEV + νEV = 0

This leads to the dual function:

L∗(µ, ν) = − 1

4α
νTΣ−1

p ν + cTµ+ ...

N∑
i=1

min
EVi,Gi, s.t. locali

GTi (p− ν) + EV Ti Bµ+ ...

δ

2
(‖EVi‖22 + ‖Gi‖22)

(14)

with,

µ = [µev; µev; µEV ; µEV ] ∈ R96 ≥ 0,

ν = νG,

c = [evΣ; −evΣ; EV Σ; −EV Σ] ∈ R96,

B =

[
−AT AT −I I

]
∈ R24×96

Since all these steps are necessary and sufficient, we con-
clude (11)⇐⇒ maxµ≥0,ν L∗(µ, ν).

Theorem 3.1 shows that only the dual variables (µ∗, ν∗)
need to be sent to the prosumers in order to reach the primal
optimal objective c∗ described by (11). With this distributed
scheme the aggregator partakes the primal objective and the
computational burden between the prosumers (each prosumer
solves its own linear constrained quadratic program) while
enforcing the chance constraint on aggregated PEV mobility.
Figure 2 depicts this distributed scheme. Note that, how to
find the optimal dual variables (µ∗, ν∗) has not been tackled
yet– discussed in the next section.

Fig. 2. Distributed scheme visualization

Remark In the local objective the term −ν∗ can be
interpreted as a shadow price for power import for the grid
and Bµ∗ as a shadow price for PEV charging.

IV. DISTRIBUTED ASCENT METHOD

A. Algorithm Objective

In this section, a projected gradient ascent algorithm with
constant step-size is outlined to solve the Lagrange dual
problem in Theorem 3.1. The algorithm’s rate of convergence
and its so-called “oracle complexity” K(ε) are proven. The
oracle complexity guarantees that for a number of iterations
k > K(ε):

|L∗(µ∗, ν∗)− L∗(µk, νk)| < ε (15)

with L∗ the optimal dual function defined in the proof of
Thm 3.1, ε > 0 is the desired algorithm solution precision,
and µ∗ and ν∗ denote the optimal dual variables. Note that
L∗(µ∗, ν∗) = c∗. A unique contribution of this result is
quantifying the rate of convergence without strong convexity.
In contrast, previous work [11] required strong convexity to
bound convergence.

The regularization parameter δ in (7) can be tuned by the
practitioner. These local regularization terms are central to
prove response continuity, differentiability and smoothness of
the local optimizer with respect to the dual variables. Without
these regularization terms, the local optimizations are linear



programs, where the local optimal solution EVi and Gi lie
on the polyhedron edge defined by the linear constraints. As
highlighted in [16], a small change in the dual variable can
lead to a ’jump’ from one edge to another. The regularization
terms serve to smooth this behavior.

B. Projected Gradient Ascent Method

Denote P+ the projection map onto the positive orthant
of R24. Parameter γ denotes the step-size of the projected
gradient ascent. Our proposed projected gradient ascent is
given by Algorithm 1 and consists in updating the dual
variables at iteration k with a linear feedback of the ag-
gregated optimal local response

∑N
i=1EV

k
i and

∑N
i=1G

k
i

(here the exponent k does not refer to time but the number of
iterations, cf. algorithm). The structure of this linear feedback
to the aggregator shows that private consumption profiles do
not have to be sent: the aggregator only has to have access
to the sum of these profiles, therefore privacy is respected
with this scheme. Figure 3 depicts this iterative dynamic that
allows to converge to the optimal dual variables.

Fig. 3. Project gradient ascent method: a linear ’time’ variant dynamic
system

Algorithm 1 Projected Gradient Ascent Method
1: Initialization: k = 0, µ := µ0 ≥ 0 and ν := ν0

2: while L∗(ν∗, µ∗)− L∗(νk, µk) ≥ ε do
3: k + 1← k
4: (1) Find the optimal local solutions EVi and Gi
5: for i = 1 to N do
6: EV ki , G

k
i = argmin

[
GTi (p− νk) +EV Ti Bµ

k +

δ
2 (‖EVi‖22 + ‖Gi‖22)

]
s. to: locali

7: end for
8: (2) Update dual variables µ and ν
9: µk+1 := P+(µk + γc+ γ

∑
iB

TEV ki )
10: νk+1 := νk − γ 1

2αΣ−1
p νk − γ

∑
iG

k
i

11: end while

Next we quantify the convergence rate of the projected
gradient ascent algorithm. Let us re-write the Lagrangian:

L∗(ν, µ) = Φ0(ν, µ) +

N∑
i=1

Φi(ν, µ)

with:

Φ0 = − 1

4α
νTΣ−1

p ν + cTµ (16)

Φi = min
EVi,Gi, s.t. locali

[
GTi (p− ν) + EV Ti Bµ+ ...

δ

2
(‖EVi‖22 + ‖Gi‖22)

]
(17)

The gradient of Φ0 w.r.t. (ν, µ) is given by:

∇Φ0 =
[
− 1

2α
Σ−1
p ν ; c

]
(18)

Therefore, the Hessian of Φ0 respects the following bounds
that characterize smoothness condition:

M0I � −∇2Φ0 (19)

with M0 = 1
2αλmin

, λmin being the smallest eigenvalue of
Σp. Using Danskin’s Theorem [16] to derive the gradient of
Φi w.r.t. (ν, µ) yields:

∇Φi =
[
−Gki ; +BTEV ki

]
(20)

Where:

EV ki , G
k
i = argmin

s.t. locali

[
GTi (p− νk) + EV Ti Bµ

k...

+
δ

2
(‖EVi‖22 + ‖Gi‖22)

] (21)

Note that the local optimization problems are strictly convex
and therefore the local solutions are unique for a given
{ν, µ}. Using the first order optimality condition for convex
constrained problems on the local optimization problems and
the above gradient formulae allows us to prove that Φi is
1
δ ‖Θ‖

2
2-smooth, where:

Θ =

B 0

0 I

 ∈ R48×120

Since Φi is the point-wise minimum of a jointly concave
function of (ν, µ), we conclude Φi is concave w.r.t. (ν, µ).
Using the concavity of Φi, (19) and (20), we conclude that
L∗ is a M-smooth differentiable concave function with:

M = M0 +
N

δ
‖Θ‖22 (22)

This M -smoothness of the Lagrangian L∗ plays an important
role in the following convergence result.

Theorem 4.1: Consider Algorithm 1. A step-size of γ =
1
M leads to:

L∗(µ∗, ν∗)− L∗(µk, νk) <
M

2k
(‖ν0 − ν∗‖22 + ‖µ0 − µ∗‖22)

(23)
Additionally, the oracle complexity of Algorithm 1 is:

K(ε) =
M

2ε
(‖ν0 − ν∗‖22 + ‖µ0 − µ∗‖22) (24)

Remark: Equation (23) says the convergence precision is
upper-bounded by a value proportional to M/k. Previous



work [11] derived linear convergence rate, but leveraged
strong convexity. In this case, we have 1/k convergence rates
since the objective is not strongly convex.

Proof: Let k ∈ N∗ and denote ωk := [νk, µk], then by
M-smoothness of L∗:

L∗(ωk+1)− L∗(ωk)

≤ ∇L∗(ωk)T
(
ωk+1 − ωk

)
+
M

2
‖ωk+1 − ωk‖22

(25)

Noting that ωk+1 = P+(ωk + γ∇L∗(ωk)), with P+

denoting the projection on the convex set {(ν, µ) |µ ≥ 0},
using the non-expansiveness property of P+ and Cauchy-
Schwartz inequality yields:

L∗(ωk+1) ≥ L∗(ωk) + (γ − Mγ2

2
)‖∇L∗(ωk)‖22 (26)

The maximum of the quadratic function t 7→ t − Mt2

2 is
achieved at t = 1

M . Substituting this step-size choice, taking
the opposite of the inequality and adding L∗(ω∗), with ω∗ ∈
argmaxL∗(ω) from both sides yields:

L∗(ω∗)−L∗(ωk+1) ≤ L∗(ω∗)−L∗(ωk)− 1

2M
‖∇L∗(ωk)‖22

(27)
Consequently, the error sequence {L∗(ω∗)−L∗(ωk+1)}+∞k=0

is decreasing in k. By concavity of L∗:

L∗(ω∗) ≤ L∗(ωk) +∇L∗(ωk)T
(
ω∗ − ωk

)
(28)

Combining (27) and (28) leads to:

L∗(ω∗)− L∗(ωk+1) ≤∇L∗(ωk)T
(
ω∗ − ωk

)
...

− 1

2M
‖∇L∗(ωk)‖22

=
M

2
(‖ωk − ω∗‖22 − ‖ωk+1 − ω∗‖22)

Using the fact that the error is decreasing, it is possible to
write this bound as a telescopic sum in the following way:

L∗(ω∗)− L∗(wk) ≤ 1

k

k−1∑
j=0

(L∗(ω∗)− L∗(wj))

≤ M

2k

k∑
j=0

(‖ωj − ω∗‖22 − ‖ωj+1 − ω∗‖22)

≤ M

2k
‖ω0 − ω∗‖22

Which establishes the claim.

V. STUDY CASE FOR CONVERGENCE ANALYSIS

Next we illustrate the proposed algorithm and convergence
analysis via a case study on 100 prosumers. To begin, we
describe our price forecast model.

A. Day-Ahead Energy Market price Model

Three years of data (Jan 2013- Dec 2015) have been
collected from the California Independent System Operator
(CAISO) across the Pacific Gas and Electricity (PG&E)
service territory. These data are publicly available [21].
An online prediction model for DAM prices is built using
random forest regression with 10 trees [23]. The features for
prediction are:
• hourly demand forecast (provided by CAISO)
• year, month, day, and hour

The model is initially trained with data from 2013, and then
recursively updated as follow. Let us denote pd = {p1, ...pd}
the available price history. Let us denote Md the random
forest regression model corresponding to this historical data.
In order to predict the next day price p̂d+1 ∈ R24, the model
Md is used. For the next day, an updated modelMd+1 using
historical data pd+1 is used to predict the price p̂d+2, etc. In
other words, it is an online model with a retrospective rolling
horizon of d days. The obtained DAM price prediction model
has a root mean square error (RMSE) of 3.5 USD and a mean
absolute percentage error (MAPE) of 8.4 %.

A Gaussian mixture model (GMM) is then implemented
on the ex-post prediction error. It shows that the lowest
Bayesian information criterion score is attained for a single
GMM component. This justifies the use of a simple multi-
variate Gaussian distribution to model price uncertainty as
it is stated in II-B.1. A sparse covariance matrix estimator
[23] is then fitted to the ex-post DAM price forecasting
error with a L1 regularization parameter equal to 5. This
estimator allows to delete covariance between hours that are
less significant while empirically increasing the covariance
matrix condition number (which has a favorable impact on
the projected gradient ascent convergence).

B. Prosumer Modeling and Parameters

A total of 100 prosumers are modeled. Each prosumer
is considered to have a PEV with identical battery size of
24 kWh and itineraries based on National Household Travel
Survey [20]. We assume PEVs cannot provide power to the
grid: EVi = 0. As the mobility data [20] does not allow to
fit a stochastic model as described in (8), and because we
showed that the chance constraint on the aggregate PEVs
can be expressed using (9), we make the assumption that
(A.EVΣ)t ≥ (1 + 0.05)êvtΣ and (A.EVΣ)t ≤ (1− 0.05)êv

t

Σ

(similar assumptions for EV tΣ). Table II details parameter
values used for the simulation.

C. Simulation Results

The projected gradient ascent algorithm described in Sec-
tion IV-B is implemented in Matlab with the parameters
displayed in Table II. In Figure 4, L∗(ωk) is plotted with
respect to k (the number of iterations). We compare it to
the optimal primal cost L∗(ω∗) = c∗ depicted by the solid
red line. The primal optimal cost was obtained by solving
the primal problem with CVX [24]. In the proof of Theorem
4.1 we show that the choice of γ = 1/M with M given by



TABLE II
PARAMETER VALUES FOR THE MODEL

N 100

∆t 1 hour

α 1

δ 10−2

Li Heterogeneous, same load data scaled from [21]

with uniform independent noise added for each prosumer

Si Heterogeneous, same production data generated via [19]

with uniform independent noise added for each prosumer

η 90 %

EV i 1.4 kW ∀i
evi, evi Heterogeneous, generated from [20]

Gi, Gi +/− 10 kW ∀i
p,Σp cf. Section V-A

(22) guarantees convergence to c∗. From theory we have that
γ = 2.10−7, but in practice we find that γ = 10−5 displays
better convergence behavior because the derived smoothness
value M is conservative. From Theorem 4.1 we have that:

L∗(ω∗)− M

2k
‖ω0 − ω∗‖22 < L∗(ωk) (29)

The left hand side of the inequality is called an upper-
bound for the projected gradient ascent algorithm conver-
gence to the optimum. This upper-bound is represented by
the solid blue curve in Figure 4. For this simulation we take
1
M = γ = 10−5 to illustrate the fact that the derived M -
smoothness bound is indeed conservative. We find that our
simulation is consistent with theorem 4.1:

• convergence is sub-linear because the problem is not
strictly convex

• derived upper-bound is verified in practice

From Fig. 4, it can be seen that the scheme converges
to a rough consensus in less than 50 iterations. It practice,
this means that the aggregator needs to communicate less
than 50 times with all the prosumers. Nevertheless, as the
convergence is not linear, extra precision requires more
iterations. However, since our main objective is to schedules
the aggregated load GΣ in the DAM, this algorithm offers an
appropriate convergence rate that is robust and theoretically
guaranteed.

The algorithm is scalable with N in terms of computa-
tional burden for the aggregator: the aggregator only has to
update the dual variable (and this update complexity does
not depend on the number of prosumers). Nevertheless for a
given precision ε, the number of iterations required increase
linearly with the number of prosumers. We argue that in
practice, the required precision should be relative to the total
cost c∗ which also scales (more than) linearly with N . It is
important to remember that the dual variables obtained from
this algorithm allow to minimize the risk taken on the DAM

while guaranteeing chance constraints/robust bounds on EVΣ

and AEVΣ.

Fig. 4. Simulated convergence of Lk(ωk) to the optimal primal cost
c∗(ω∗), using the Projected Gradient Ascent Algorithm.

VI. CONCLUSION

This article studies a scalable scheduling optimization
algorithm for an aggregation of residential energy prosumers
in the DAM, taking into account uncertainty in market
prices and PEV flexibility. More precisely a model for
prosumers with PEVs and PV panels is considered. We
consider stochastic constraints on PEV mobility. The pre-
sented methodology can be extended to various sources of
electricity production, flexibility and uncertainties.

The structure of the primal optimization problem is ex-
ploited to distribute the objective among the prosumers. In
the distributed scheme, the aggregator broadcasts price sig-
nals (i.e. dual variables) to the prosumers, and the prosumers
send back their corresponding energy consumption profile.
These price signals are then updated by the aggregator until
a consensus is reached.

It is shown that the price signal updates can be generated
by the aggregator using a projected gradient ascent method.
An upper-bound on the number of iterations needed to reach
a given precision is then derived. The convergence rate is
slower than linear, but well-suited for an aggregator bidding
into the DAM. Finally, the theory is illustrated in a case study
with real-world price and PEV mobility data. We show that
an acceptable level of precision is reached for less than 50
iterations.
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