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Abstract— This paper presents a tutorial on estimation and
control problems for battery electrochemistry models. We
present a background on battery electrochemistry, along with a
comprehensive electrochemical (EChem) model. EChem models
present a remarkably rich set of control-theoretic questions
involving model reduction, state & parameter estimation, and
optimal control. We discuss fundamental systems and controls
challenges, and then present opportunities for future research.

I. INTRODUCTION

Batteries are ubiquitous – they exist in our smart phones,
laptops, electric vehicles (EVs), and electric grids. Energy
storage is a critical enabling technology for designing sus-
tainable energy systems. Although battery materials sci-
ence has seen rapid advances [1], batteries are chronically
underutilized and conservatively designed [2]. Consumers
purchase batteries with 20-50% excess energy capacity, lead-
ing to added weight, volume, and upfront cost. Intelligent
battery control can lead to faster charge times, increased
energy and power capacity, as well as a longer life. The key
to realizing such advanced battery management systems is
electrochemical model based controls. These electrochemical
models, however, contain a multitude of fundamental control-
theoretic challenges, yielding a rich opportunity for systems
and controls researchers.

A. Background & Fundamentals of Battery Electrochemistry

Italian physicist Alessandro Volta invented the first battery
cell in 1800. The so-called voltaic pile consisted of two
metals in series, zinc and copper, coupled by a sulphuric
acid electrolyte. Volta constructing this system in response
to experiments performed by his colleague Luigi Galvani,
who was fascinated by the interaction between electricity and
biological nervous systems. During an experiment, Galvani
discovered that a dead frog’s legs would kick when connected
to two dissimilar metals. Galvani conjectured the energy
originated within the animal, coining the phenomenon “an-
imal electricity.” Volta believed the different metals caused
this behavior, and proved his hypothesis true with the voltaic
pile [3]. Thus, the electrochemical battery cell was born.

A battery converts energy between the chemical and
electrical domains through oxidation-reduction reactions. It
consists of two dissimilar metals (electrodes) immersed in an

This work was supported in part by the National Science Foundation
under Grant No. 1408107 and the Advanced Research Projects Agency-
Energy, U.S. Department of Energy, under Award Number DE-AR0000278.

S. J. Moura is with the Energy, Controls, and Applications Lab (eCAL) in
Civil and Environmental Engineering at the University of California, Berke-
ley in Berkeley, California, 94720, USA smoura@berkeley.edu

Zn(s)	
   Cu(s)	
  

e- e- 

ZnSO4(aq)	
   CuSO4(aq)	
  

Separator	
  

Zn+2
(aq) Cu+2

(aq) 

_	
   +	
  
SO-2

4 

Oxida7on	
   Reduc7on	
  

Ca7on	
   Ca7on	
  

Anion	
  

Zinc	
  	
  
Anode	
  

Copper	
  	
  
Cathode	
  

Fig. 1. An example zinc-copper Galvanic (or Voltaic) cell demonstrating
the principles of operation for an electrochemical cell.

electrolyte, exemplified by the zinc-copper Galvanic cell in
Fig. 1. The cathode and anode materials are jointly selected
to have a large electrochemical potential between each other.
This creates the desired electrochemical energy storage prop-
erty. The electrodes are electrically isolated by a separator.
Hence, conservation of charge forces electrons through an
external circuit, powering a connected device, while cations
flow between the electrodes within the electrolyte.

Electrode and electrolyte materials are selected for their
voltage, charge capacity, weight, cost, manufacturability,
etc. For example, lithium-ion cells are attractive in mobile
applications because lithium is the lightest (6.94 g/mol) and
most electropositive (-3.01V vs. standard hydrogen elec-
trode) metal in the periodic table. Lead acid cells feature
heavier electrodes (Pb and PbO2), yet provide high surge
currents at cost effective prices. Lithium-air batteries feature
cathodes that couple electrochemically with atmospheric
oxygen, thus producing energy densities that rival gaso-
line fuel. In battery energy management, we are interested
in maximizing performance and longevity. This requires a
detailed understanding of the underlying electrochemistry.
However, the electrochemical state variables are not directly
measurable. At best, one can measure voltage, current, and
temperature only. Consequently, modeling and control are
necessary to extract the full potential from batteries.

B. Estimation and Control Problem Statements

Figure 2 outlines an electrochemical model based control
system, comprised of a state estimator, parameter estimator,
and controller. Next, we provide precise problem statements
for each control-theoretic task.

1) State-of-Charge (SOC) Estimation: SOC indicates the
quantity of lithium within each electrode’s solid phase. It
is analogous to a fuel tank level, since it represents the
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Fig. 2. Block diagram for ElectroChemical Control (ECC) System,
comprised of a battery cell, state/parameter estimator, and controller.

stored electrochemical energy. Unlike fuel tanks, SOC is not
measurable and must be estimated. This can be directly cast
as a state estimation problem.
The State Estimation Problem: Given measurements of
current I(t), voltage V (t), and temperature T (t), estimate
the concentration of lithium in each electrode’s solid phase
material. Optionally, one may estimate other electrochem-
ical variables of interest, such as electrolyte concentration
and overpotentials (see Section II-B).

The key challenges for state estimation are lack of complete
observability and model nonlinearities.

2) State-of-Health (SOH) Estimation: Battery SOH met-
rics indicate a battery’s relative age. The two most common
SOH metrics are charge capacity fade and impedance rise
(i.e. power fade). Charge capacity fade indicates how charge
capacity has decreased relative to its nameplate value, e.g.
a 2 Ah cell may hold 1.6 Ah after two years of use. Power
capacity fade indicates how power capacity has decreased
relative to its nameplate value, e.g. a fresh cell may provide
360W of power for 10 seconds, but only 300W after two
years of use. Gradual changes in SOH metrics are directly
related to changes in the mathematical model parameters.
The Parameter Identification Problem: Given measure-
ments of current I(t), voltage V (t), and temperature T (t),
estimate uncertain parameters related to SOH, such as
cyclable lithium, solid-electrolyte interface resistance, and
volume fractions.

The key challenges for electrochemical models include
parametric modeling, nonlinear parameter identifiability, and
persistent excitation.

3) Controlled Charging/Discharging: In many applica-
tions, additional capacity is added to mitigate cell imbalance,
capacity/power fade, thermal effects, and estimation errors.
This leads to larger, heavier, and more costly batteries than
necessary. Electrochemical control alleviates oversizing by
safely operating batteries near their physical limits. Today,
operational limits are defined by what can be measured
– voltage, current, and temperature. Battery degradation,
however, is more closely related to limits on immeasurable
electrochemical states, such as overpotentials and surface
concentrations [2]. We seek a paradigm-shifting architecture
that expands the operating envelope by constraining internal
electrochemical states instead of measured values such as
voltage, current, and temperature (see Fig. 3).
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Fig. 3. An electrochemical model-based control architecture constrains
electrochemical state variables, as opposed to measurable outputs. This
expands the operational envelope and ensures safety.

The Constrained Control Problem: Given measurements
of current I(t), voltage V (t), and temperature T (t), control
current such that critical electrochemical variables are
maintained within safe operating constraints.

II. MATHEMATICAL MODELING

A. Background

Electrochemical (EChem) models capture the spatiotem-
poral dynamics of lithium-ion concentration, electric po-
tential, and intercalation kinetics. Most models in the bat-
tery controls literature are derived from the Doyle-Fuller-
Newman (DFN) model [4], which is based upon porous
electrode and concentrated solutions theory. Figure 4 shows
a cross section of the layers described in Fig. 1.

At full charge the majority of lithium exists within the
anode solid phase particles, typically a lithiated carbon
LixC6. These particles are idealized as spherically sym-
metric. During discharge, lithium diffuses from the interior
to the surface of these porous spherical particles. At the
surface an electrochemical reaction separates lithium into a
positive lithium ion and electron (1). Next, the lithium ion
migrates from the anode, through the separator, and into the
cathode. Since the separator is an electrical insulator, the
corresponding electron travels through an external circuit,
powering the connected device. The lithium ion and electron
meet at the cathode particle surface, typically a lithium
metal oxide LiMO2, and undergo the reverse electrochemical
reaction according to (2).

LixC6 ⇀↽ C6 + xLi+ + xe−, (1)
Li(1−x)MO2 + xLi+ + xe− ⇀↽ LiMO2. (2)

The resultant lithium atom diffuses into the interior of the
cathode’s spherical particle. This entire process is reversible
by applying sufficient potential across the current collectors
– rendering an electrochemical storage device. In addition to
lithium migration, this model captures the spatial-temporal
dynamics of internal potentials, electrolyte current, and cur-
rent density between the solid and electrolyte phases.

B. Doyle-Fuller-Newman Model

We consider the Doyle-Fuller-Newman (DFN) model in
Fig. 4 to predict the evolution of lithium concentration in
the solid c±s (x, r, t), lithium concentration in the electrolyte
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Fig. 4. Schematic of the Doyle-Fuller-Newman model [4]. The model
considers two phases: the solid and electrolyte. In the solid, states evolve in
the x and r dimensions. In the electrolyte, states evolve in the x dimension
only. The cell is divided into three regions: anode, separator, and cathode.

ce(x, t), solid electric potential φ±s (x, t), electrolyte electric
potential φe(x, t), ionic current i±e (x, t), molar ion fluxes
j±n (x, t), and bulk cell temperature T (t) [4]. The governing
equations are given by

∂c±s
∂t

(x, r, t) =
1

r2
∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(x, r, t)

]
, (3)

∂ce
∂t

(x, t) =
∂

∂x

[
De(ce)

∂ce
∂x

(x, t) +
1− t0c
εeF

i±e (x, t)

]
,

(4)
∂φ±s
∂x

(x, t) =
i±e (x, t)− I(t)

σ±
, (5)

∂φe
∂x

(x, t) = − i
±
e (x, t)

κ(ce)
+

2RT

F
(1− t0c)

×
(

1 +
d ln fc/a

d ln ce
(x, t)

)
∂ ln ce
∂x

(x, t), (6)

∂i±e
∂x

(x, t) = asFj
±
n (x, t), (7)

j±n (x, t) =
1

F
i±0 (x, t)

[
e
αaF
RT η±(x,t) − e−αcFRT η±(x,t)

]
,

(8)

ρavgcP
dT

dt
(t) = hcell [Tamb(t)− T (t)] + I(t)V (t)

−
∫ 0+

0−
asFjn(x, t)∆T (x, t)dx, (9)

where De, κ, fc/a are functions of ce(x, t) and

i±0 (x, t) = k±
√
c±ss(x, t)ce(x, t)

(
c±s,max − c±ss(x, t)

)
,

(10)
η±(x, t) = φ±s (x, t)− φe(x, t)

− U±(c±ss(x, t))− FR±f j±n (x, t), (11)

c±ss(x, t) = c±s (x,R±s , t), (12)

∆T (x, t) = U±(c±s (x, t))− T (t)
∂U±

∂T
(c±s (x, t)), (13)

c±s (x, t) =
3

(R±s )3

∫ R±
s

0

r2c±s (x, r, t)dr. (14)
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Fig. 5. Solid c±s (x, r, t) and electrolyte ce(x, t) concentrations as
functions of space, after 30sec of 5C discharge. Symbols {−,+} denotes
the negative electrode (anode) and positive electrode (cathode), respectively.
In the solid phase concentrations, the top and bottom denote particle center
r = 0 and surface r = R±

s , respectively.

Along with these equations are corresponding boundary
and initial conditions. For brevity, we only summarize the
differential equations here. Further details, including nota-
tion definitions, can be found in [2], [4]. Parameters for a
LiCoO2-C cell are publicly available from the DUALFOIL
model, developed by Newman and his collaborators [5]. Note
the mathematical structure, which contains PDEs (3)-(4),
ODEs in time (9), ODEs in space (5)-(7), and nonlinear
algebraic constraints (8). This presents a formidable task with
respect to control-oriented modeling, state estimation, and
control design (see Section III and IV).

C. Electrochemical Model Simulations

Illustrative simulations of the electrochemical model are
provided in Fig. 5. Specifically, this figure depicts the solid
phase c±s (x, r, t) and electrolyte ce(x, t) concentrations as
functions of space, after 30sec of 5C1 discharge. The anode
solid phase concentrations c−s (x, r, t) exhibit a decreasing
gradient as r increases toward the particle surface, since
lithium is exiting the anode during discharge. This creates
a spatial gradient in the electrolyte phase ce(x, t) along
the x-dimension. On the cathode, solid phase concentration
increases c−s (x, r, t) w.r.t. r, especially near the particle
surface, since lithium is entering the cathode.

Note our ultimate goal: estimate these spatio-temporal
dynamics and regulate their evolution, given only measure-
ments of voltage, current, and temperature.

D. Model Reduction

A rapidly growing body of literature is establishing a
spectrum of EChem models that achieve varying balances
of mathematical simplicity and accuracy. Concepts include
spectral methods [6], [7], residue grouping [8], quasilin-
earization & Padé approximation [9], principle orthogonal

1C-rate is a normalized measure of electric current that enables compar-
isons between different sized batteries. Mathematically, the C-rate is defined
as the ratio of current, I , in Amperes [A] to a cell’s nominal capacity, Q,
in Ampere-hours [Ah]. For example, if a battery has a nominal capacity of
2.5 Ah, then C-rates of 2C, 1C, and C/2 correspond to 5 A, 2.5 A, and 1.25
A, respectively. Note that C-rate has dimensions of [A] / [Ah] = [1/h].



decomposition [10], and single particle model variants [11],
[12], [13]. Due to the richness of existing literature, we do
not focus on model reduction in this paper. Instead, we focus
on the state/parameter estimation and control challenges.

III. STATE & PARAMETER ESTIMATION

A. Survey of SOC/SOH Estimation Literature

Over the past decade, the SOC/SOH estimation literature
has grown considerably rich with various algorithms, models,
and applications. Most existing literature to date uses equiv-
alent circuit models, but electrochemical model-based esti-
mation algorithms have also emerged. These studies develop
estimators for reduced-order models. The model reduction
and observer design process are intimately intertwined, as
simpler models ease estimation design at the expense of
fidelity. Ideally, one seeks to derive a provably stable esti-
mator for the highest fidelity electrochemical battery model
possible. The first wave of studies utilized the “single particle
model” (SPM) for estimator design [11], [12], [14], [15].
The SPM idealizes each electrode as a single spherical
porous particle by neglecting the electrolyte dynamics. This
model is suitable for low C-rates, but degrades at C-rates
above C/2. Recently, researchers have extended the single
particle model to include electrolyte dynamics [13], [16],
although there have been limited estimation studies [17],
[18]. Nonetheless, state estimation designs have emerged
for other electrochemical models that incorporate electrolyte
dynamics. Examples include spectral methods with output
injection [19], residue grouping with Kalman filtering [20],
and composite electrodes with nonlinear filters [21]. Unfor-
tunately, it becomes more difficult to prove estimation error
stability as model complexity increases. The core difficulty is
lack of complete observability from voltage measurements.

B. Single Particle Model (SPM)

To illustrate the control-theoretic challenges of SOC/SOH
estimation, we consider the SPM – the simplest form of
electrochemical model. The SPM idealizes each electrode
as a single aggregate spherical particle. One can derive this
model by assuming the electrolyte Li concentration ce(x, t)
from (4) is constant in space and time. Mathematically, the
model consists of two diffusion PDEs,

∂c±s
∂t

(r, t) = D±s

[
2

r

∂c±s
∂r

(r, t) +
∂2c±s
∂r2

(r, t)

]
, (15)

∂c±s
∂t

(0, t) = 0,
∂c±s
∂t

(R±s , t) =
±I(t)

D±s Fa±AL±
. (16)

The boundary conditions at r = R+
s and r = R−s signify

that flux is proportional to input current I(t). Output voltage
is given by a nonlinear function of the state values at the
boundary c+ss(t), c

−
ss(t) and the input current I(t) as follows

V (t) =
RT

αF
sinh−1

( −I(t)

2a+AL+i+0 (c+ss(t);nLi)

)

−RT
αF

sinh−1
(

I(t)

2a−AL−i−0 (c−ss(t);nLi)

)

+U+(c+ss(t))− U−(c−ss(t)) +RfI(t), (17)

V (t) = h(c−ss, c
+
ss, I; θ), (18)

where the ij0(·) is the exchange current density and cjss(t) =
cjs(R

j
s, t) is the surface concentration for electrode j ∈

{+,−}. The functions U j(·) are the equilibrium potentials
of each electrode material, given the surface concentration.
Mathematically, the functions U j(·) are strictly monotoni-
cally decreasing functions of their input. This fact implies
the inverse of its derivative is always finite, a property that is
critically important for assessing observability. Symbol nLi
represents the total moles of cyclable lithium. Finally, param-
eter vector θ =

[
nLi, (a

+AL+k+)−1, (a−AL−k−)−1, Rf
]T

represents uncertain parameters.
Remark 1 (SOH Metrics): Coincidently, the parameters

nLi and Rf represent capacity and impedance rise,
respectively. Identification of nLi and Rf provides a direct
system-level estimate of SOH.

Combined SOC/SOH Problem: Given measurements
of current I(t), voltage V (t), and the SPM equations,
simultaneously estimate the lithium concentration states
c−s (r, t), c+s (r, t) and parameters θ.

C. Model Properties

Before embarking on an estimation design, we first study
relevant mathematical properties of the SPM. The c+s , c

−
s

subsystems are mutually independent of each other. More-
over, they are governed by linear PDEs. Also note that the
PDE subsystems produce boundary values c+ss(t), c

−
ss(t) that

feed into the nonlinear output function (17). The SPM is
also characterized by the following dynamical properties,
which present notable challenges for state estimation. We
present the following propositions, whose proofs are straight-
forward, non-insightful, and omitted for brevity.

Proposition 1 (Marginal Stability): Each individual sub-
system in (15)-(16) governing states c+s (r, t), c−s (r, t) is
marginally stable. In particular, each subsystem contains one
eigenvalue at the origin, and the remaining eigenvalues lie
on the negative real axis of the complex plane.

Proposition 2 (Conservation of Lithium): The moles of
lithium in the solid phase are conserved [19]. Mathemati-
cally, d

dt (nLi(t)) = 0 where

nLi(t) =
∑

j∈{+,−}

εjsL
jA

4
3π(Rjs)3

∫ Rjs

0

4πr2cjs(r, t)dr (19)

Invertability Analysis: Next, we study invertability of the
output function (17) w.r.t. boundary state variables c±ss(t).
Figure 6(a) provides the open circuit potential (OCP) func-
tions U−(·), U+(·) as functions of the normalized anode
concentration θ± = c±ss/c

±
s,max. The near zero gradient

implies the voltage measurement is weakly sensitive to
perturbations in the surface concentrations c±ss. This is further
confirmed by Fig. 6(b), which depicts the output function’s
partial derivatives w.r.t. c−ss and c+ss at equilibrium conditions,
for currents ranging from -5C to +5C. It is important to note
that h is strictly monotonically decreasing w.r.t. c+ss over a
larger range than h is strictly monotonically increasing w.r.t.
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c−ss. This property is critical, since it demonstrates that volt-
age is generally more sensitive to perturbations in cathode
surface concentration than anode surface concentration. Note
∂h/∂c+ss ≈ 0 for 0.8 ≤ θ+ ≤ 0.9. This region is a “blind
spot” with respect to output inversion.

Nonlinear Parameter Sensitivity Analysis: Since the pa-
rameter vector θ enters nonlinearly in the output function
(18), we must first perform a sensitivity analysis to assess
linear dependence. Define the sensitivity vector S = ∂h/∂θ.
Applying the ranking procedure outlined in [22] to STS
reveals strong linear dependence exists between θ2, θ3, θ4,
where θ4 exhibits the greatest sensitivity magnitude. As a
result, we pursue a parameter identification scheme for the
parameter subset (θ1, θ4). Coincidentally, these two parame-
ters are exactly nLi, Rf , corresponding to capacity fade and
impedance rise. Refer to [14] for complete details.

D. Adaptive PDE Observer Approach

The previous subsection described several fundamental
estimation challenges for the SPM, including marginal sta-
bility, poor output sensitivity to states, and linear dependence
between parameters. An adaptive PDE observer was designed
for this model in [14], which achieves stable estimates by
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č−ss

0 5 10 15 20 25 30 35 40
0

5

10

15

P
D

E
 P

ar
am

s

Measures of SOH

 

 

ε̂

q̂

True Value

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

Time [min]

O
u

tp
u

t 
F

cn
 P

ar
am

s

 

 

n̂Li/nLi

R̂f/Rf

True Value

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

B
u

lk
 S

O
C

Measures of SOC

 

 

SOC−
bu lk
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Fig. 8. Evolution of state and parameter estimates from Adaptive PDE
observer [14] for UDDSx2 charge/discharge cycle. Zero mean Gaussian
noise with a 10 mV variance was added to the voltage measurement. The
EChem model (3)-(14) provides the “measured” plant data.

exploiting output function invertibility and lithium conser-
vation. Figure 7 summarizes this scheme. The algorithm
is composed of an Adaptive PDE backstepping observer
[23], Padé-based parameter identifier for PDE parameters [9],
nonlinear recursive least squares identifier for output function
parameters, and an adaptive output function inversion scheme
[24]. A simulation example is provided in Fig. 8, which
demonstrates SOC and SOH convergence given incorrect
initial estimates. We remark that the fundamental challenges
for estimation are significant, even for the simplest of EChem
models – the SPM.

IV. CONSTRAINED OPTIMAL CONTROL

A. Survey of Optimal Battery Charge/Discharge Literature

A rich body of literature exists on battery charg-
ing/discharging performance. Interestingly, the bulk of re-
search involves experimental studies and non-model based
heuristic charging protocols (see [25] for a survey). Rel-
atively speaking, research on electrochemical model-based



TABLE I
ELECTROCHEMICAL VARIABLES y TO REGULATE WITHIN BOX

CONSTRAINTS, I.E. ymin ≤ y ≤ ymax .

Variable, y Definition Constraint
I(t) Current Power electronics limit
c±s (x, r, t) Li concentration in solid Material

saturation/depletion
∂c±s
∂r

(x, r, t) Li concentration gradient
in solid

Diffusion-induced
stress/strain

ce(x, t) Li concentration in
electrolyte

Material
saturation/depletion

T (t) Temperature High/low temperatures
accelerate aging

ηs(x, t) Side reaction
overpotential

Li-plating, SEI-layer
growth

control is nascent. Existing optimal control studies include
constrained control [20], [26] and open-loop control [27],
[28], [29]. A recent study by the author performs a compre-
hensive assessment of performance improvements enabled
by reference governors and electrochemical models [30].

B. A Reference Governor Approach

Ensuring safe operating constraints is a basic requirement
for batteries. Mathematically, this can be abstracted as a
constrained control problem for which reference governors
provide one effective solution. The problem statement is:
Constrained Control Problem: Given accurate
state/parameter estimates (x̂, θ̂), regulate input current I(t)
such that the EChem constraints in Table I are enforced
pointwise in time (see Fig. 2).

We seek to maintain operation subject to electrochemical
state constraints. This protects the battery against catas-
trophic failure and maintains longevity. A list of relevant
state constraints is provided in Table I. These limits are asso-
ciated with material saturation/depletion, mechanical stress,
extreme temperatures, and harmful side reactions, such as
lithium plating and solid/electrolyte interphase film growth.

A reference governor is an add-on algorithm that guaran-
tees constraint satisfaction pointwise-in-time while tracking
a desired reference input [31], [32]. In our “modified” ref-
erence governor (MRG) implementation, the applied current
I[k] and reference current Ir[k] are related by

I[k + 1] = β[k]Ir[k], β ∈ [0, 1], (20)

where I[k] = I(t) for t ∈ [k∆t, (k + 1)∆t), k ∈ Z. The
goal is to maximize β such that the state stays within an
admissible set O over some future time horizon,

β∗[k] = max {β ∈ [0, 1] : x(t) ∈ O} . (21)

Variable x(t) represents the electrochemical model state at
time t and O is the set of initial conditions that maintain the
state within the constraints listed in Table I, over a future
time horizon τ ∈ [t, t+ Ts] [30].

We evaluate the power and energy capacity benefits of
the MRG versus an industry standard Voltage-Only (VO)
controller on electric vehicle-like charge/discharge cycles.
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Fig. 9. Temperature vs. Voltage operating points for (a) 1.0I, (b) 1.2I, and
(c) 1.4I over US06x3 cycle.

The VO governor is structurally equivalent to the MRG,
except the constraints in Table I are replaced by volt-
age limits of 2.8V and 3.9V. Various automotive-relevant
charge/discharge cycles cases were tested. To explore state
constraint management, reference current was scaled by
factors of ×1.0,×1.2,×1.4 (1.0I, 1.2I, 1.4I). Due to space
constraints, we only provide examples with three concate-
nated US06 drive cycles (US06x3).

Figure 9 depicts the Temperature vs. Voltage operational
points for the MRG vs. VO controllers for the US06x3
1.0I, 1.2I, and 1.4I current profiles. The VO controller upper
voltage limit becomes more constrictive as the current mul-
tiplier increases. The MRG safely exceeds the VO voltage
limits without violating the electrochemical constraints. In
automotive applications, this ultimately means the MRG
recuperates more energy (i.e. from regenerate braking) than
the VO controller. We numerically compared the MRG and
VO across five other automotive drive cycles from [33].
In the most aggressive drive cycle (US06x3) the MRG
achieves 11.03% and 150.61% more discharge and charge
power, respectively, over the VO controller (1.4I case). The
MRG also achieves a 22.99% net energy increase. Across
all six simulated drive cycles, the MRG achieves average
increases in discharge power, charge power, and net energy
of 4.92%, 57.15%, and 10.04%, respectively (1.4I case).
See [30] for complete details. Consequently, we conclude
that electrochemical model based control enables substantial
performance improvements, provided the electrochemical
states and parameters can be accurately estimated.



V. CONCLUSIONS
This paper provides a tutorial on estimation and control

challenges for electrochemical battery models. We first pro-
vide a brief history of the electrochemical battery cell, and
then discuss the fundamental operating principles. Next, we
present concrete statements for the state-of-charge (SOC),
state-of-health (SOH), and charge/discharge control prob-
lems. Mathematically, these are respectively cast as state
estimation, parameter estimation, and constrained control
problems. We discuss combined SOC/SOH estimation and
highlight some solutions and several challenges. Finally, we
discuss constrained control via modified reference governors.

Electrochemical models provide an exceptionally rich ap-
plication for challenging systems and controls problems. The
combined state/parameter estimation problem is particularly
difficult. Ultimately, our objective is to derive provably stable
estimators for increasingly complex electrochemical models.
For example, recent work extends the SPM to include
electrolyte dynamics [13], [18], temperature [16], and multi-
ple material cathodes [21]. Fundamental challenges include
model reduction, observability, identifiability, nonlinearity,
spatio-temporal dynamics, and numerical implementations.
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