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Abstract— We present a novel heuristic first order
method for large-scale mixed-integer programs, more
specifically we focus on mixed-integer quadratically con-
strained quadratic programs. Our method builds on
Lagrangian relaxation techniques and Hopfield Neural
Networks. For illustration, we apply this method to an
economic load dispatch problem and compare with two
convex approximation techniques.

I. INTRODUCTION

This paper addresses the problem of efficient al-
gorithms to solve large-scale mixed-integer quadratic
programs using a novel heuristic method. We begin with
the problem formulation.

A. Problem formulation

Consider the following mixed-integer quadratically
constrained quadratic program (MIQCQP) given by

min f0(x)

s. to: fj(x) ≤ 0 j ∈ J
xi ∈ {0, 1} i ∈ Ib
xi ∈ [0, 1] i ∈ Ic

(1)

where x ∈ Rn is the optimization variable,
J = {1, · · · ,m} (m is the number of constraints), Ib
and Ic are complementary subsets of I = {1, · · · , n} ,
with |Ib| := nb > 0. We consider all the functions to be
quadratic

fj(x) =
1

2
xTPjx+ qTj x+ rj , j ∈ {0} ∪ J

where Pj ∈ Rn×n ∈ Sn(R) (set of symmetric matrices
of size n), qj ∈ Rn and rj ∈ R are given problem
parameters. We denote θ the parameters of the problem

θ = {P0, ..., Pm} ∪ {q0, ..., qm} ∪ {r0, ..., rm}

Non-convexity arises from: (i) Pj for j ∈ {0} ∪ J are
possibly indefinite (i.e. the minimum eigenvalue is strictly
negative), and (ii) the binary constraints.
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Note that xi ∈ {0, 1} is equivalent to the two indefinite
quadratic inequalities{

xi(xi − 1) ≤ 0

−xi(xi − 1) ≤ 0

Similarly, for i ∈ I , xi ∈ [0, 1] can be rewritten as:
xi − 1 ≤ 0 and −xi ≤ 0. All in all, (1) can be recast as

min f0(x)

s. to: fj(x) ≤ 0 j ∈ J̃
(2)

with |J̃ | = m+ 2n and appropriate fj , j > m.

B. The Tractability Problem

MIQCQPs occur across a multitude of applications,
including power systems, transportation, logistics, and
more. For instance, discrete time Hybrid Systems can
be approximated as a mixed logical dynamic systems
by transforming Boolean relations into polyhedral con-
straints using conjunctive normal form and transforming
events into linear mixed integer relations [1]. If the
objective to minimize is quadratic convex, the optimal
control for the Hybrid System can be formulated as a
MIQP (mixed integer quadratic programs) with convex
objective. Other applications consist of Boolean least
squares, two way partitioning problems (e.g. maximum
cut) [2] or 3-satisfiability problem [3]. Unfortunately,
MIQCQPs are NP-hard in general: they contain Mixed-
Integer Linear Programs (MILPs) as a special case. In
fact, finding polynomial times algorithms for this class of
problems is highlighted as one of the Millennium Prize
Problems: P ?

= NP . Our purpose is much more humble,
we only aim at producing heuristic algorithms to find
candidate solutions to MIQCQPs.

Global methods refer to methods that exactly solve (1).
Global methods are often based on the branch-and-bound
framework or branch-and-cut [4]. Nevertheless these
methods are characterized by a complexity that grows
exponentially with n, and are therefore limited as the
problem grows in size. In the present article we focus on
methods for large scale problems, and we will therefore
not consider global methods in our analysis.



C. Literature review

Examples of metaheuristics to solve combinatorial
optimization problems include simulated annealing [5],
tabu search [6], genetic algorithms [7], particle swarm
optimization [8] and more. Refer to [9] for a comprehen-
sive review of these methods. Another approach consists
in approximating (1) with a convex problem. We briefly
present three convex relaxation techniques from which
our method builds upon, or takes inspiration from. These
include: (i) binary relaxation in the convex quadratic
case [10], [11], (ii) the so-called Lagrangian relaxation
technique [12], [3], and (iii) semidefinite relaxation [13],
[14], [3]. We introduce each technique in detail in Section
II. Other convex procedures have also been used, e.g. the
convex-concave approach [15], [16], [3], and alternating
direction method of multipliers (ADMM) [3], [17].

Meanwhile, Hopfield neural networks (HNNs) were
introduced in [18], [19], and were initially used in
machine learning as a way to memorize the state of
data (also known as content addressable memory) [20].
The principal methods for training Hopfield networks
on data use variants of Hebbian rule [21]. A different
but relevant application of HNNs involves using its
structure and dynamics (cf. Section III-A, Eqn. (5) )
to find a candidate solution to an optimization problem
[22], [23], [24]. In this case the weights of the network
are not obtained via training. Instead, they are defined
by the parameters θ of the optimization problem [25].
In fact, we show in Section III-A that the corresponding
method is closely related to projected gradient descent.
HNNs were used for combinatorial programming for
the first time in [22], with application to the traveling
salesman problem. Since then, HNNs have been used in
combinatorial problems such as clustering [26], vertex
cover [27], linear and nonlinear programming [28], and
knapsack problems [29]. We refer the reader to [30],
[31] for a comprehensive review of HNNs applications.
This paper advances our understanding of HNNs to solve
MIQCQPs efficiently by proposing a novel Dual Hopfield
method.

D. Paper Organization

Section II details existing convex approximation
methods. Section III details existing Hopfield methods
and then proposes a novel method that extends to the
broader class of MIQCQP problems using duality. Section
IV applies the proposed dual Hopfield method to an
economic load dispatch problem and compares it with a
semidefinite relaxation method.

II. EXISTING CONVEX APPROXIMATION METHODS

A. Binary relaxation in the convex quadratic setting

If Pj � 0, for j ∈ J , then a natural relaxation of (1) is
to replace, for i ∈ Ib, the binary constraints xi ∈ {0, 1},

by (convex) the convex constraint xi ∈ [0, 1]. The relaxed
problem is a convex quadratic constrained quadratic
program and can be solved efficiently using off the shelf
solvers. The optimal value provides a lower bound to (1).
If xr denotes a solution to this relaxed problem, then
xri ∈ [0, 1] can be interpreted as the probability that the
ith agent is equal to one [10], alternatively xr can be
projected back to {0, 1} as a final step.

B. Lagrangian relaxation

The Lagrangian of (2) is given by

L(x, λ) = f0(x) +
∑
j∈J̃

λjfj(x)

The dual function, g(λ) = minx∈Rn L(x, λ) can be
computed analytically, and the dual problem can then
be cast as a semidefinite program (SDP) [3]. Hence,
this method uses weak duality (see [2]). In general, the
complexity for solving SDPs is typically between O(n5)
and O(n8) [32], hence for n ≥ 102, this method can
become relatively slow.

C. Semidefinite relaxation

Another relaxation for MIQCQPs uses a semidefinite
relaxation (SDR) technique called lifting. A new variable
X = xxT is introduced and (1) is rewritten as

min
1

2
Tr(P0X) + qT0 x+ r0

s. to:
1

2
Tr(PjX) + qTj x+ rj ≤ 0, j ∈ J

Xi,i = xi, i ∈ Ib
xi ∈ [0, 1], i ∈ Ic
X = xxT

(3)

This problem is equivalent to (1). The equality constraint
X = xxT makes this problem non-convex. SDR relax-
ation replaces this intractable constraint by the convex
inequality X � xxT . Using Schur complement

X � xxT ⇐⇒
[
X x
xT 1

]
� 0

Therefore the relaxed version of (3) is an SDP. Generally
speaking, the complexity is similar to that of Lagrangian
relaxation described previously. It is remarkable that SDR
is the biconjugate of problem (1) and the dual of the
Lagrangian relaxed problem, to which there is no duality
gap when Slater’s conditions hold.

D. Metrics for Approximation Methods

Next we describe example metrics for evaluating
the performance of approximation methods, which will
be used in the case study in Section IV. Consider a
“candidate point”, x ∈ Rn, obtained from a heuristic
method that aims at being close to the set of optimal



solutions denoted by X ∗ (non empty by hypothesis).
Finding a feasible point to (1) is in most cases a NP-
hard problem itself. Therefore, we often do not require
a candidate to be feasible. To assess the distance of x
to the feasible set X , we define a constraint violation
function v : x ∈ Rn → v(x) ∈ Rq, q ≥ 1. For instance
[3] propose the maximum constraint violation (q = 1)

v(x) := max
j∈J̃

fj(x)+

where z+ := max(0, z). Another choice could be the
2-dimensional average constraint violation

v(x) :=

 1
m

∑
j∈J fj(x)+

1
nb

∑
i∈Ib d{0,1}(xi)

 ∈ R2

where d{0,1}(z) :=

{
|1− z| if z ≥ 0.5

|z| if z < 0.5
Generally speaking, the choice of v should be tailored
for a particular application. Often, we can use a real-
valued trade-off criterion C(x) = f0(x) + γT v(x) where
γ ∈ Rq is a hyperparameter corresponding to the user’s
preferences.

Definition 1. Given a specific optimization problem, a
choice of v, parameters θ ∼ Dθ, where Dθ denotes the
distribution from which the parameters of the problem
are drawn, we say that heuristic method 1 is on average
better than heuristic method 2 if

Eθ
[
f0(x1)
v(x1)

]
≥ Eθ

[
f0(x2)
v(x2)

]
where ≥ denotes the elementwise comparison operator.
Alternatively, if a trade-off criterion is defined, if

Eθ[C(x1)] ≥ Eθ[C(x2)]

Remark 1. Definition 1 does not define an ordered set
without a trade-off criterion.

Given a candidate solution from a heuristic method,
local methods can be used to improve it. Local methods
can, for instance, be rule based. This framework is
referred to as suggest and improve in [3]. In this paper
we focus exclusively on the suggest step, i.e. finding a
candidate point.

III. DUAL HOPFIELD METHOD

A. Hopfield methods

Consider the following unconstrained MIQP

min
0≤x≤1

f0(x)

s. to: xi ∈ {0, 1}, i ∈ Ib
(4)

The HNN corresponding to (4) involves an autonomous
nonlinear dynamic system [22], [31] given by

ẋH(t) = −∇f0(x(t))
x(t) = σ(xH(t))

x(0) ∈ (0, 1)n
(5)

where x and xH ∈ Rn are respectively referred to as
the state and hidden state of the system. The function
σ : Rn → [0, 1] is defined element-wise as

σ : x ∈ Rn 7→ (σ1(x1), ..., σn(xn)) ∈ Rn

where all functions σi, i ∈ I are surjective, monotonically
increasing, continuous everywhere and differentiable
almost everywhere. In machine learning, these class of
functions are referred to as activation functions (e.g.
piecewise linear, logistic, tanh), a terminology that we
will adopt. In the remainder of the paper, only piecewise
linear activation will be considered, let i ∈ I

σ(xi) =


0, xi <

1
2 −

1
2βi

βi(xi − 1
2 ) +

1
2 ,

1
2 −

1
2βi
≤ xi ≤ 1

2 + 1
2βi

1, xi >
1
2 + 1

2βi

where βi is a hyperparameter idiosyncratic to the i-th
constraint. If βi = 1, then the activation function is the
convex projection on the segment [0, 1]. If β →∞, σi
asymptotically approximates the (non-convex) projection
on {0, 1}, we denote it σi,∞. Figure 1 displays σi for
different choices of βi.

Fig. 1. Piecewise linear activation for β = 1, 5, 100.

We now state and prove a central theorem to the HNN
heuristic,

Theorem 1 (Decreasing objective function). The ob-
jective function f0 decreases along the unique state
trajectory x(t) of the HNN (5).

Proof: Picard-Lindelöf theorem ([33], Ch.3) applies
to (5), and therefore this dynamical system is well-posed.



That is, there exist a unique (time) trajectory for x(t)
with initial condition x0. Consequently, we have

d

dt
f0(x(t)) = −[σ′(xH(t))�∇f0(x(t))]T∇f0(x(t)) ≤ 0

where � denotes the elementwise product.
As a corollary, because the state is restricted in

the compact [0, 1]n, there exist f†0 > −∞ such that
f0(x(t))→ f†0 . We also denote x† ∈ [0, 1]n a point
such that f0(x†) = f†0 and

x† ∈ {x|∀i ∈ I, xi ∈ {0, 1} or ∇f0(x)i = 0}

We refer to the explicit time discretization of HNN as
Hopfield method, method presented in algorithm 1.

Algorithm 1 Hopfield method [discrete time]
Initialize x0 ∈ (0, 1)n

for k = 0, 1, ...
...Step 1, xk+1

H = xkH − αk∇f0(xk)
...Step 2, xk+1 = σ(xk+1

H )
until stopping criterion is met

Remark 2. In algorithm 1. and subsequent ones, we
do not discuss an explicit stopping criterion or choice
of step size αk. A stopping criterion could involve a
given number of iterations, or a condition of the type
‖f0(xk)− f0(xk+1)‖ ≤ ε, ε > 0 given. The step size
choice can be a constant or follow other rules, e.g. as
in [34].

We show that this algorithm is closely related to
projected gradient descent algorithm used in the same
setting as Section II-A, where f0 is a convex and
xi ∈ {0, 1} is relaxed to xi ∈ [0, 1], for i ∈ Ib.

Algorithm 2 Projected gradient descent
Initialize x0 ∈ (0, 1)n

for k = 0, 1, ...
...Step 1, xk+1

H = xk − αk∇f0(xk)
...Step 2, xk+1 = σβ=1(x

k+1
H )

until stopping criterion is met

The main difference between the Hopfield method
(Alg 1.) and projected gradient descent (Alg 2.) is Step 1.
Specifically, the hidden state xH is used as a temporary
variable in Alg 2. and does not have dynamics. The
proof of convergence for projected gradient descent relies
on the 1-Lipschitz property of convex projections. In
Algorithm 2 a choice βi > 1 could therefore compromise
convergence. If we seek to approximate the projection
on {0, 1}, then we can use the Hopfield method.

B. Limitations of traditional uses of Hopfield methods

Traditionally Hopfield methods have been used for
programs with a quadratic objective, linear equality
constraints and binary constraints [22], [23], [24]

min
x

f0(x)

s. to: Ax = b

xi ∈ {0, 1}, i ∈ I
(6)

where A ∈ Rm×n and b ∈ Rm. In the literature, the
linear equality constraints are relaxed and included as a
penalty term. This is referred to as penalty approach

min
x

f0(x) +
ρ

2
‖Ax− b‖22

s. to: xi ∈ {0, 1}, i ∈ I
(7)

where ρ > 0 is a hyperparameter tuned by the practitioner.
A variant of what we call Hopfield method (cf. Alg 1 in
Section III-A) is then applied to (7).

The main drawback of this heuristic is that the penalty
approach does not ensure that a finite ρ exists such that
problems (6) and (7) yield equivalent solutions, even in
the strictly convex case with binary relaxation, i.e. P0 � 0
and x ∈ [0, 1]n. For example, in the penalty approach
presented in [35] (Section 3.1.1), the penalty is taken
asymptotically to infinity. Increasing ρ in an unbounded
fashion creates numerical instability and generally slows
down convergence. To tune ρ, trial and error approaches
such as the Sequential Unconstrained Maximization
Technique (SUMT) [36] have been proposed. A variety of
penalty approaches have been used for Hopfield methods.
For example, in [37], one hyperparameter per scalar linear
equality ρj > 0, for j ∈ J needs to be tuned. In [38]
the penalty is scaled by a matrix, via a technique called
the “subspace approach” and only one hyperparameter is
needed. Nevertheless, these methods never entirely solve
the aforementioned issues.

C. Lagrangian relaxation

Our method uses Lagrangian relaxation, similar to
Section II-B, but without including the integer and binary
constraints in the Lagrangian

L(x, λ) = f0(x) +
∑
j∈J

λjfj(x)

The dual function is then given by

g(λ) = min
0≤x≤1

L(x, λ)

s. to: xi ∈ {0, 1}, i ∈ Ib
(8)

Given λ, we denote by x?(λ) = argminx L(x, λ) an
optimal solution to (8) and we denote by X its feasible
set. Slater’s condition does not hold, and therefore a zero
duality gap is not guaranteed (weak duality). Nevertheless
the following bounds hold



g(λ?) = max
λ≥0

g(λ) ≤ f∗0 ≤ f0(x?(λ?))

where f∗0 is the optimal value of the primal problem (1)
and λ? ∈ argmaxλ≥0 g(λ). Because L(x, λ) is linear
in λ, the dual function g(λ) is concave. Namely, g(λ)
is the pointwise minimum of linear functions, and is
therefore concave in λ. This guarantees the existence of
a supergradient set ∂g(λ) for any λ ≥ 0. Unfortunately,
Danskin’s Theorem hypotheses do not hold. Nevertheless,
we can have access to one element of the supergradient
set of g at λ as follows. Given any λ ≥ 0, and λ̃ ≥ 0

g(λ̃) = min
x∈X
L(x, λ̃)

= min
x∈X
L(x, λ) +

∑
j∈J

(λ̃− λ)fj(x)

≥ g(λ) +
∑
j∈J

(λ̃− λ)fj(x?(λ))

Hence,
∑
j∈J fj(x

?(λ)) ∈ ∂g(λ) and the dual ascent
with step size γk > 0 (Algorithm 3) can be applied to
iteratively compute λ?.

Algorithm 3 Dual gradient ascent
Initialize λ0 ≥ 0
for k = 0, 1, ...
...Step 1, x?(λk) ∈ argminx∈X L(x, λk)
...Step 2, λk+1 = λk + γk

∑
j∈J fj(x

?(λk))
until stopping criterion is met

Convergence speed can be improved via acceleration
methods introduced by Nesterov [39]. They introduce
momentum into the iterations by using information from
the gradient at consecutive iterations. An accelerated
method for dual gradient ascent would involve the
following update at Step 2 of Algorithm 3

λk+1 = λk+
k − 1

k + 2
(λk − λk−1) + γk

∑
j∈J

fj(x
∗(λk))

where we highlight in grey the difference with classical
dual gradient ascent. In our particular setting there is
no proof of convergence for Nesterov accelerated ascent
since g is generally not smooth and not differentiable
as in [40] or simple as in [41]. In our Dual Hopfield
heuristic, we will approximate

∑
j∈J fj(x

?(λk)) by∑
j∈J fj(x

†(λk)) – the objective value to which Hopfield
method corresponding to the optimization problem (8)
converges to.

D. Dual ascent via Hopfield method

The dual ascent via Hopfield (and its accelerated
counterpart in grey) is detailed in algorithm 4:

Accessing the value of the dual function g(λ) with
λ ≥ 0 corresponds to an optimization problem similar

Algorithm 4 (Accelerated) Dual Hopfield Method
Initialize λ0 ≥ 0
for k = 0, 1, ...
...Step 1, Hopfield method
....Initialize x0 ∈ (0, 1)n

.... for k = 0, ...

....... xk+1
H = xkH − αk∇xL(xk, λk)

....... xk+1 = σ(xk+1
H )

.... until stopping criterion is met

....x†(λk) = xk

...Step 2, dual ascent

....λk+1 = λk+k−1
k+2 (λ

k − λk−1) + γk
∑
j∈J fj(x

†(λk))
until stopping criterion is met
λ† = λk

x†(λ†) = xk

to (4). Hopfield dual ascent involves approximating the
dual function and its minimizer x∗(λ∗) with x†(λ†) –
one of the key idea of this paper.

The structure of this algorithm is similar to classical
dual ascent. Hence, depending on the structure of
matrices Pj , j ∈ J (e.g. separability), in algorithm 4,
the computation at Step 1 can be distributed among
agents, i ∈ I . Due to its similarity to dual ascent, it
is also possible to produce versions of our method that
relates directly to the method of multipliers (MM) by
introducing the augmented Lagrangian Lρ

Lρ(x, λ) := L(x, λ) +
ρ

2
‖Ax− b‖22

where Ax = b collects all the equality constraints
of problem (1) (i.e. {j ∈ J : Pj = 0}). The MM
version of Algorithm 4 simply consists in replacing L
by Lρ. Finally, using the same augmented Lagrangian,
an ADMM version of our algorithm can be built.
These features could potentially be added to provide
convergence robustness as explained in [17].

IV. CASE STUDY: ECONOMIC LOAD DISPATCH

Hopfield methods using the penalty approach (cf.
Section III-B) have been used to solve economic load
dispatch problem in [42], [43], [44]. In our case study
we include start-up and shut-down costs, which results
in a non-convex quadratic equality constraint to test the
proposed dual Hopfield method.

A. Problem formulation

Consider a closed electricity system with n generators.
At an initial time t = 0, a given generator i is either
‘on’ (x0i = 1) or ‘off’ (x0i = 0). The vector x0 ∈ {0, 1}n
collects all these initial on/off states. Similarly y0 ∈ Rn+
is a vector gathering all the generator power output
magnitudes at t = 0. For the next time step (t = 1), the
dispatcher simultaneously decides (i) which generators



to turn ‘on’ or ‘off’ and (ii) a power level for each
generator that will be in the ‘on’ state. For generator
i, we denote the ‘on’ decision by xi,◦ ∈ {0, 1} with
xi,◦ = 1 corresponding to a start-up request. Similarly,
for generator i, the ‘off’ decision is denoted xi, ∈ {0, 1}n.
Vector y ∈ Rn is the power level decision vector. The
on/off state x ∈ {0, 1}n at t = 1 is given by,

x = x◦ − x + x0 (9)

Moreover, we consider that it is not possible for the
economic dispatcher to turn on a generator that was
already on or to turn off a generator that was already
off. This translates to,

xT◦ x
0 = 0

xT (1− x0) = 0
(10)

These two conditions imply that a generator cannot be
simultaneously turned on and off (i.e. xTx◦ = 0).

We additionally assume that each generator i in the
‘on’ state has power output limits. The sum off all the
power outputs (i.e. electricity supply) must be equal to
demand d ∈ R+ at t = 1. Moreover, only generators that
are on can output power. These constraints are given by

y
i
≤ yi ≤ yi (11)

xT y = d (12)

Each generator has a marginal cost of production ci ∈
R+ as well as a switching costs c◦,i (start-up cost) and
c,i ∈ R+ (shut-down cost). The objective function for
the economic dispatcher is assumed linear

f0(y, x◦, x) := cT y + cT◦ x◦ + cTx

In summary, the economic dispatch problem is given
by the nonlinear mixed integer problem:

min
y∈Rn

+,x◦,x∈{0,1}n
f0(y, x◦, x) (13)

s. to: (9), (10), (11), (12)

Without the constraint (12) this problem would be a
MILP. A straightforward approximation of this problem
consists in solving the following linear problem (LP)

min
y∈Rn

cT y

s. to: yT 1 = d, y ≤ y ≤ y
(14)

and then computing x◦, x as a post-process step (LPp
method). Naturally, with LPp the ‘on’ and ‘off’ switching
process is not optimized. Nevertheless, by construction,
LPp method remarkably achieves to find a feasible point
to the original problem (13). Hence, it is always possible
to find a feasible solution in polynomial time to problem
(13) (provided the LP (14) is feasible).

An alternative approximation method is SDR. A
semidefinite relaxation of (13) consists in solving the
convex problem (15) derived in the Appendix.

B. Results

The problem parameters θ are generated from indepen-
dent uniform distributions. We use MATLAB to code the
proposed dual Hopfield method and use the CVX toolbox
[45] to solve the SDR problem and the linear program
(14). Interested readers may refer to [46] for the code
and the choice of parameters for the uniform distribution
Dθ. We define the electricity demand constraint violation
vD(x) :=

1
d |x

T y− d| and the binary constraint violation

vB(x) :=
1

2n

(
‖x◦ − σ∞(x◦)‖1 + ‖x − σ∞(x)‖1

)
Finally, we define the trade-off criterion

C(x) := f0(x) + γvB(x)

with γ = 1.5 ·106, a choice that we will justify hereafter.
We run 100 simulations (i.e. draw randomly 100 times
θ ∼ Dθ). We then compute the empirical means. Results
are summarized in the following table,

Criteria unit DH ADH SDR LPp

f0 106 $ 1.331 1.37 1.156 1.614

vD % 0.96 0.98 60 0

vB % 0 0.055 0.001 0

C 106 $ 1.346 1.384 2.056 1.614

Acronyms DH and ADH refer respectively to the dual
Hopfield method and its accelerated counterpart. Using
paired sample t-tests with 95% confidence, all differences
seen in the empirical mean results are significant, i.e.
null hypothesis can be rejected, with the exception of vD
between DH and ADH. Note that the binary constraint
violations are small for each method. This is why we
do not include it in the trade-off criterion. The value
of γ corresponds to the magnitude of the average total
cost for electricity. Using this trade-off criterion, the
dual Hopfield method is the best performing method (cf.
Definition 1). Most notably it performs 50% better than
SDR and almost 20% better than LPp. The accelerated
dual ascent slightly under-performs (less than 3% off).
However, ADH exhibits better convergence properties as
shown in Fig. 2.

V. CONCLUSION

This paper introduces a novel heuristic first order
method, the dual Hopfield method, for large-scale MIQC-
QPs. We have shown how the Hopfield method is
closely related to gradient descent, where the hidden
state has its own dynamics. In turn, the Hopfield method



Fig. 2. Juxtaposition of the 100 convergence profiles of the dual
Hopfield method (blue) and its accelerated counterpart (red)

allows one to approximate the binary projection while
guaranteeing convergence and a decreasing objective
function value at each iteration. In order to adapt the
Hopfield method to the MIQCQP setting, we used weak
duality and approximated the dual function using the
Hopfield method. This approach allows one to avoid
the drawbacks of the penalty approach previously used
in the literature, while also extending the heuristic to a
larger class of problems. Contrary to SDR, our method
is well suited to large scale problems and is amenable
to distributed optimization techniques.

Finally, we applied the dual Hopfield method to an
economic dispatch problem with start-up and shut-down
costs. We demonstrated that dual Hopfield methods
yield higher performing solutions than SDR or LP
approximations.

APPENDIX

The SDR of problem (13) reads

min
Z,x◦,x,y,z

cT y + cT◦ x◦ + cTx

s. to: x◦, x ∈ [0, 1]n, y ≤ y ≤ y
xT◦ x

0 = 0, xT (1− x0) = 0

Z � 0,

[
Z z
zT 1

]
� 0, z =

x◦x
y


∀i ∈ {1, ..., 2n}, Zi,i = z(i)

Tr(PZ) + qT z = d

(15)

where, P = 1
2

0 0 I
0 0 −I
I −I 0

 and q =

 0
0
x0


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