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Abstract— Unlike its Ordinary Differential Equation (ODE)
counterpart, fault diagnosis of Partial Differential Equations
(PDE) has received limited attention in existing literature. The
main difficulty in PDE fault diagnosis arises from the spatio-
temporal evolution of the faults, as opposed to temporal-only
fault dynamics in ODE systems. In this work, we develop a
fault diagnosis scheme for one-dimensional wave equations. A
key aspect of this fault diagnosis scheme is to distinguish the
effect of uncertainties from faults. The scheme consists of a
PDE observer whose output error is treated as a fault indicating
residual signal. Furthermore, a threshold on the residual signal
is utilized to infer fault occurrence. The convergence properties
of the PDE observer and residual signal are analyzed via
Lyapunov stability theory. The threshold is designed based on
the uncertain residual dynamics and the upper bound of the
uncertainties. Simulation studies are performed to illustrate the
effectiveness of the proposed fault diagnosis scheme.

I. INTRODUCTION

Wave equations are typically used in science and engi-
neering to model phenomena such as sound, light, pres-
sure, water waves, and have extensive applications in fluid
dynamics, electromagnetics and acoustics [1]. A rich body
of literature exists on control problems for wave equations
[2], [3], [4], [5], [6], [7]. Estimation problems have also
received significant attention in [8], [9], [10], [11], [12].
Unlike control and estimation problems, fault diagnosis of
wave equations has not received its due attention. Namely,
fault diagnosis can be critically important for maintaining
safety in wave-type systems/processes. For example, a fault
diagnosis scheme would be able to mitigate the possibility of
oil spill by significantly improving pipeline protection [13]
and blackouts via power systems monitoring [14].

Generally speaking, fault diagnosis of PDEs has received
significantly less attention than ODEs. The typical approach
for PDE fault diagnosis is early lumping, where the design
is done on an ODE approximation of the original PDE
[15] [16] [17]. Following this early lumping approach, a
Kalman filtering based scheme is proposed in [18] for fault
diagnosis of wave PDEs. However, such finite dimensional
approximations sometimes neglect the higher order but im-
portant modes of the system, which in turn may lead to
control/observation spillover [19]. Furthermore, faults may
cause significant changes in the original PDE model, further
decreasing the accuracy of the approximated model. Apart
from early lumping approaches, some PDE fault diagnosis

1S. Dey is with the Department of Electrical Engi-
neering, University of Colorado Denver, CO 80204, USA.
satadru.dey@ucdenver.edu.

2S. J. Moura is with the Energy, Controls and Applications Lab (eCAL)
in the Department of Civil and Environmental Engineering, University of
California, Berkeley, CA 94720, USA. smoura@berkeley.edu.

schemes utilize operator theory to design infinite dimensional
observers [20] [21]. Similar schemes have been designed
for wave equations in [22]. Although these schemes over-
come many issues of early lumping, an operator theory-
based design leads to high computational complexity in
implementation and consequently has translated to very few
engineering applications.

In this work, we propose a fault diagnosis scheme for
uncertain wave PDEs that utilizes a PDE backstepping trans-
formation in conjunction with Lyapunov stability analysis
[23]. Specifically, the proposed scheme does not resort to
any finite dimensional approximations or operator theory
in its design, unlike the aforementioned approaches. In our
problem setting, we assume the presence of an in-domain dis-
tributed uncertainty along with boundary state measurement.
The scheme consists of a boundary error injection-based PDE
observer. The boundary error is treated as a residual signal
which acts as a fault indicator. Furthermore, we design a
constant threshold based on the observer error dynamics and
uncertainty bound. The residual signal is evaluated against
the threshold to infer fault occurrence. This threshold-based
technique provides robustness to the uncertainty, which is
an important feature of the proposed scheme. The rest of
the paper is structured as follows. Section II describes the
problem formulation. Section III details the algorithm design.
Section IV illustrates the algorithm with simulation studies
and Section V concludes the work.

Throughout the paper, we have used the following no-

tation: ‖u(x, t)‖ =
√∫ 1

0
u2(x, t)dx, ut = ∂u

∂t , utt =
∂2u
∂t2 , ux = ∂u

∂x , uxx = ∂2u
∂x2 . For a, b, λ ∈ R with λ > 0,

the following inequalities hold:

ab ≤ λ

2
a2 +

1

2λ
b2, ab ≥ −λ

2
a2 − 1

2λ
b2. (1)

The Cauchy-Schwarz inequality is given by the following∫ 1

0

f1(x, t)f2(x, t)dx ≤ ‖f1‖ ‖f2‖ . (2)

II. PROBLEM FORMULATION

Consider a class of wave equations represented by the
following PDE:

utt(x, t) = uxx(x, t) + ∆(x, t) + ψ(x, t), (3)

with the boundary and initial conditions

ux(0, t) = −Kut(0, t), ux(1, t) = Q(t), u(x, 0) = u0(x),
(4)



Fig. 1. Fault diagnosis scheme.

where t ∈ [0,∞) represents time and x ∈ [0, 1] is the spatial
coordinate. Source term ψ(x, t) represents an unknown spa-
tially distributed uncertainty, ∆(x, t) is an unknown spatially
distributed fault, K ∈ R+ is a known positive constant, and
Q(t) ∈ R is a known boundary input signal.

Assumption 1. The following boundary measurements are
available: u(1, t) and ut(1, t). Furthermore, the uncertainty
ψ(x, t) and the fault ∆(x, t) are bounded in the sense of
spatial L2 norm: ‖ψ(x, t)‖ ≤ ψ, ‖∆(x, t)‖ ≤ ∆.

The goal is to detect the occurrence of the fault ∆(x, t) in
the presence of the uncertainty ψ(x, t). To achieve this goal,
we propose the diagnostic scheme depicted in Fig. 1. The
scheme works in a cascaded manner: First, a residual signal
ζ(t) is generated by an output-injection based observer. Next,
the residual signal ζ(t) is compared against a threshold Z.
Finally, we use the following logic to detect the occurrence
of the fault ∆(x, t): ζ(t) > Z → fault occurred, ζ(t) ≤
Z → no fault occurred. In the following section, we
detail the design of the observer and the threshold.

III. DESIGN AND ANALYSIS OF THE
DIAGNOSTIC SCHEME

We design the following output injection-based observer
to generate the residual signal ζ(t):

ûtt(x, t) = ûxx(x, t) +K1ũ(1, t) +K2ũt(1, t), (5)
ûx(0, t) = −Kût(0, t) +K3ũ(1, t) +K4ũt(1, t), (6)
ûx(1, t) = Q(t) +K5ũ(1, t) +K6ũt(1, t), (7)

ζ(t) = ũ(1, t), (8)

with the initial condition

û(x, 0) = û0(x), (9)

where ũ(1, t) = u(1, t)−û(1, t), and Ki ∈ R, i ∈ {1, 2, .., 6}
are the observer gains to be designed. Subtracting (5)-(7)
from (3)-(4) yields the observer error dynamics:

ũtt(x, t) = ũxx(x, t) + ∆(x, t) + ψ(x, t)

−K1ũ(1, t)−K2ũt(1, t), (10)
ũx(0, t) = −Kũt(0, t)−K3ũ(1, t)−K4ũt(1, t), (11)

ũx(1, t) = −K5ũ(1, t)−K6ũt(1, t). (12)

Next, we use the following backstepping transformation
ũ(x, t) 7→ v(x, t)

ũ(x, t) = v(x, t) + P

∫ 1

x

vt(y, t)dy, (13)

which transforms the error dynamics (10)-(12) into the
following target error dynamics

vtt(x, t) = vxx(x, t) + g(x, t) + h(x, t), (14)
vx(0, t) = c1vt(0, t) + g2(t) + h2(t), (15)
vx(1, t) = −c2v(1, t). (16)

where P is a transformation constant to be determined, and
c1, c2 ∈ R+ are design parameters. Note that a constant
transformation gain P is sufficient in this case, instead of
a gain kernel [9]. The terms g(x, t) and h(x, t) are the
transformed fault and uncertainty in the v-domain, given by

∆(x, t) = g(x, t) + P

∫ 1

x

gt(y, t)dy, (17)

ψ(x, t) = h(x, t) + P

∫ 1

x

ht(y, t)dy. (18)

Furthermore, the terms g2(t) and h2(t) are defined as follows

g2(t) =
KP

KP − 1

∫ 1

0

g(y, t)dy, (19)

h2(t) =
KP

KP − 1

∫ 1

0

h(y, t)dy. (20)

Next, we find the conditions on P and Ki, i ∈ {1, 2, .., 6}
for which the transformation (13) exists.

Conditions on P and Ki: Differentiating (13) twice
with respect to t and considering vxt(1, t) = −c2vt(1, t) =
−c2ũt(1, t), we have

ũtt(x, t) = vtt(x, t) + Pvxt(1, t)− Pvxt(x, t)

+ P

∫ 1

x

gt(y, t)dy + P

∫ 1

x

ht(y, t)dy. (21)

Differentiating (13) twice with respect to x, we have

ũxx(x, t) = vxx(x, t)− Pvxt(x, t). (22)

Next, subtracting (21) from (22) and comparing both sides,
we get

K1 = Pc2, K2 = 0. (23)

Differentiating (13) once with respect to x, we have

ũx(x, t) = vx(x, t)− Pvt(x, t). (24)

Now, substituting x = 1 in (24), and considering (16) and
vt(1, t) = ũ(1, t) we have

ũx(1, t) = −c2ũ(1, t)− Pũt(1, t). (25)

Comparing (25) with (7), we get

K5 = c2, K6 = P. (26)



From the transformation (13), we also get

ũx(0, t) = (c1 − P )vt(0, t) + g2(t) + h2(t). (27)

and

ũt(0, t) = vt(0, t) + Pvx(1, t)− Pvx(0, t)

+ P

∫ 1

0

g(y, t)dy + +P

∫ 1

0

h(y, t)dy. (28)

Now, from (27) and (28), we can get

ũx(0, t) +Kũt(0, t) = (c1 − P )vt(0, t) + g2(t) + h2(t)

+Kvt(0, t) +KPvx(1, t)−KPvx(0, t)

+KP

∫ 1

0

g(y, t)dy +KP

∫ 1

0

h(y, t)dy, (29)

which can be further simplified as

ũx(0, t) +Kũt(0, t) = (c1 − P +K −KPc1)vt(0, t)

−KPc2ũ(1, t). (30)

Comparing (30) with (11), we obtain

K3 = KPc2, K4 = 0, P =
c1 +K

1 +Kc1
. (31)

Finally, the transformation constant and the observer gains
are summarized as

P =
c1 +K

1 +Kc1
, K1 = Pc2, K2 = 0, (32)

K3 = KPc2, K4 = 0, K5 = c2, K6 = P. (33)

Remark 1. The fault ∆(x, t) and the uncertainty ψ(x, t)
go through the same transformation as the error variable
ũ(x, t) (as evident from (17)-(18)). Due to Assumption 1 and
invertibility of the transformation, the fault and uncertainties
are also bounded in the v-domain as:

‖g‖ ≤ g, ‖h‖ ≤ h, |g2| ≤ g2, |h2| ≤ h2, (34)

Theorem 1. Consider the target error dynamics (14)-(16)
and the bounds in (34). If

(i) Assumption 1 holds, and
(ii) c1 > 0, c2 > 1, and

(iii) c1 satisfies the condition (−c1 + ε+ εc21 + |2εc1−1|2 ) < 0
with ε ∈ (0, 12 ) being a small positive number

then the following are true:
(i) in the presence of no uncertainty and no fault, i.e.

g(x, t) = 0 and h(x, t) = 0 (equivalently, ψ(x, t) = 0
and ∆(x, t) = 0), the residual signal ζ(t) defined in (8)
will achieve exponential convergence to zero.

(ii) in the presence of uncertainty and/or fault, i.e. g(x, t) 6=
0 and/or h(x, t) 6= 0 (equivalently, ψ(x, t) 6= 0 and/or
∆(x, t) 6= 0), the residual signal ζ(t) will be upper
bounded as t→∞, by the following bound:

|ζ(t)| ≤ Z =

√√√√√ 2

c2

√√√√β +

√
β
2

+ 4αγ

2α
. (35)

where α = ε
4 ,β = g + h and γ =

(
ε+ |2εc1−1|

2

)
(g2 +

h2)2.

Proof: Consider the Lyapunov functional candidate

W (t) =
c2
2
v2(1, t) +

1

2

∫ 1

0

v2x(x, t)dx+
1

2

∫ 1

0

v2t (x, t)dx

+ ε

∫ 1

0

(x− 2)vx(x, t)vt(x, t)dx. (36)

where ε > 0 is a small positive number. Next, we prove the
positive definiteness of W (t).
Positive Definiteness of W (t): Considering the term inside
the integral of the fourth term on the right hand side of (36)
and applying second inequality in (1), we have

(x− 2)vxvt ≥ −
λ

2
(x− 2)2v2x −

1

2λ
v2t (37)

≥ −2λv2x −
1

2λ
v2t (38)

= −v2x − v2t (for λ =
1

2
). (39)

Using (39), the lower bound of (36) can be written as

W (t) ≥ c2
2
v2(1, t)+

(1

2
−ε
)(∫ 1

0

v2x(x, t)dx+

∫ 1

0

v2t (x, t)dx
)

(40)
Hence W (t) is a positive definite Lyapunov functional for
ε < 1

2 .
Negative Definiteness of Ẇ (t): Next, we explore the con-
ditions on the negative definiteness of Ẇ (t) which can be
written as

Ẇ (t) = c2v(1)vt(1) +

∫ 1

0

vxvxtdx+

∫ 1

0

vtvttdx

+ ε

∫ 1

0

(x− 2)vxtvtdx+ ε

∫ 1

0

(x− 2)vxvxxdx

+ ε

∫ 1

0

(x− 2)vx(g + h)dx. (41)

Consider the third term on the right hand side of (41).
Applying integration by parts and utilizing inequality (2),
the upper bound of this term can be written as∫ 1

0

vtvttdx =

∫ 1

0

vtvxxdx+

∫ 1

0

vt(g + h)dx.

≤ −c2vt(1)v(1)− c1vt(0)2 − vt(0)(g2 + h2)

−
∫ 1

0

vxvxtdx+ ‖vt‖ ‖g + h‖ (42)

Next, consider the fourth term on the right hand side of (41).
Applying integration by parts, we can write

ε

∫ 1

0

(x− 2)vxtvtdx

= −εvt(1)2+2εvt(0)2−ε
∫ 1

0

(x− 2)vxtvtdx−ε
∫ 1

0

v2t dx.

(43)



From (43), we can write

ε

∫ 1

0

(x− 2)vxtvtdx = − ε
2
vt(1)2 + εvt(0)2 − ε

2

∫ 1

0

v2t dx.

(44)
Next, consider the fifth term on the right hand side of (41).
Applying integration by parts, we can write

ε

∫ 1

0

(x− 2)vxvxxdx = −εvx(1)2 + 2εvx(0)2

− ε
∫ 1

0

(x− 2)vxxvxdx− ε
∫ 1

0

v2xdx. (45)

From (45), we have

ε

∫ 1

0

(x− 2)vxvxxdx = − ε
2
vx(1)2 + εvx(0)2

− ε

2

∫ 1

0

v2xdx. (46)

Applying the boundary conditions (15)-(16), we can re-write
(46) as

ε

∫ 1

0

(x− 2)vxvxxdx = − ε
2
c22v(1)2 + εc21vt(0)2

+ ε(g2 + h2)2 + 2εc1vt(0)(g2 + h2)− ε

2

∫ 1

0

v2xdx. (47)

Considering (42), (44) and (47), we can write the upper
bound of Ẇ (t) as:

Ẇ (t) ≤
(
−c1+ε+εc21

)
vt(0)2+

(
2εc1−1

)
vt(0)(g2+h2)

+ ‖vt‖ ‖g + h‖ − ε

2
vt(1)2 − ε

2
‖vt‖2

− ε

2
c22v(1)2 + ε(g2 + h2)2 − ε

2
‖vx‖2 + 2ε ‖vx‖ ‖g + h‖

(48)

Applying the inequality ab ≤ |a| |b| on (48), we can further
write

Ẇ (t) ≤
(
− c1 + ε+ εc21

)
vt(0)2

+ |2εc1 − 1| |vt(0)| |g2 + h2|+ ‖vt‖ ‖g + h‖ − ε

2
vt(1)2

− ε

2
‖vt‖2 −

ε

2
c22v(1)2 + ε(g2 + h2)2

− ε

2
‖vx‖2 + 2ε ‖vx‖ ‖g + h‖ (49)

Using the first inequality in (1) with λ = 1, we can write

|vt(0)| |(g2 + h2)| ≤ 1

2
|vt(0)|2 +

1

2
|(g2 + h2)|2 (50)

Utilizing (50), we can re-write (49) as

Ẇ (t) ≤ − ε
2
c22v(1)2 − ε

2
‖vx‖2 −

ε

2
‖vt‖2

+
(
− c1 + ε+ εc21 +

|2εc1 − 1|
2

)
|vt(0)|2

+ ‖vt‖ ‖g + h‖

+
(
ε+
|2εc1 − 1|

2

)
(g2 + h2)2 + 2ε ‖vx‖ ‖g + h‖ (51)

For a small ε, we have
(
− c1 + ε + εc21 + |2εc1−1|

2

)
< 0.

Hence, (51) can be re-written as

Ẇ (t) ≤W1 +W2 +W3, (52)

where W1 = − ε
2
c22v(1)2 − ε

2
‖vx‖2 −

ε

2
‖vt‖2 , (53)

W2 = ‖vt‖ ‖g + h‖+ 2ε ‖vx‖ ‖g + h‖ , (54)

W3 =
(
ε+
|2εc1 − 1|

2

)
(g2 + h2)2, (55)

Now, applying first inequality in (1) with λ = 1
2 , we can

write:
(x− 2)vxvt ≤ v2x + v2t (56)

and hence

− ε
4

∫ 1

0

(x− 2)vxvtdx ≥ −
ε

4

∫ 1

0

v2xdx−
ε

4

∫ 1

0

v2t dx (57)

First, we will find the upper bound of W1. Considering (57)
and choosing c2 > 1, we can upper bound W1 in (53) as

W1 = − ε
2
c22v(1)2 − ε

2
‖vx‖2 −

ε

2
‖vt‖2

≤ − ε
4
c2v(1)2 − ε

4
‖vx‖2 −

ε

4
‖vt‖2 −

ε

4

∫ 1

0

(x− 2)vxvtdx

≤ − ε
8
c2v(1)2 − ε

8
‖vx‖2 −

ε

8
‖vt‖2 −

ε

4

∫ 1

0

(x− 2)vxvtdx

= − ε
4
W (t) (58)

Next, we will find the upper bound of W2.

W2 = ‖vt‖ ‖g + h‖+ 2ε ‖vx‖ ‖g + h‖
≤ max{‖vt‖ , 2ε ‖vx‖} ‖g + h‖ (59)

If max{‖vt‖ , 2ε ‖vx‖} = ‖vt‖, then we can write

W2 ≤ ‖vt‖ ‖g + h‖ ≤
√
W ‖g + h‖ (60)

as ‖vt‖ ≤
√
W . Using similar argument, in case

of max{‖vt‖ , 2ε ‖vx‖} = 2ε ‖vx‖, we have W2 ≤√
W ‖g + h‖. Hence, in either case, we can write

W2 ≤
√
W ‖g + h‖ (61)

Finally, using (58) and (61), we can re-write (52) as

Ẇ ≤ −αW + β
√
W + γ (62)

where α = ε
4 > 0,β = ‖g + h‖ > 0 and γ = W3 > 0. Next,

consider the following two cases:
Case 1: When there is no fault nor uncertainty: For
no fault and no uncertainty, we have g, h = 0 and hence,
g2, h2 = 0, which makes β, γ = 0. Under this condition, the
solution to the differential inequality can be written as:

W (t) ≤ e−αtW (0). (63)

Consider the term W (0) = c2
2 v

2(1, 0) + m1 + m2 + m3,
where m1 = 1

2

∫ 1

0
v2x(x, 0)dx,m2 = 1

2

∫ 1

0
v2t (x, 0)dx,m3 =

ε
∫ 1

0
(x− 2)vx(x, 0)vt(x, 0)dx are finite constants (as the

initial conditions are assumed to be finite). We can always
find a finite constant D for which the following is true:



W (0) ≤ Dv2(1, 0). Considering this aforementioned argu-
ment and the fact that c2

2 v
2(1, t) ≤W (t), we can write

v2(1, t) ≤Me−αtv2(1, 0) =⇒ v(1, t) ≤
√
Me−

α
2 tv(1, 0).

(64)
where M = 2D

c2
. Hence, we can conclude the exponential

convergence of v(1, t) → 0 as t → ∞ in the absence of
fault and uncertainty.
Case 2: When there is fault and/or uncertainty: Under
this condition, we have β, γ 6= 0. We can re-write (62) as

Ẇ ≤ −αW + β
√
W + γ (65)

with β = g + h and γ =
(
ε + |2εc1−1|

2

)
(g2 + h2)2. Hence,

negative definiteness of Ẇ will only be guaranteed under the
following condition

αW − β
√
W − γ > 0 (66)

which is equivalent to W >

√
β+
√
β
2
+4αγ

2α . Hence, we can
conclude that

lim
t→∞

W (t) ≤

√√√√β +

√
β
2

+ 4αγ

2α
(67)

=⇒ lim
t→∞

ζ(t) = v(1, t) ≤ Z =

√√√√√ 2

c2

√√√√β +

√
β
2

+ 4αγ

2α

(68)

Remark 2. The convergence of the observer estimation error
ṽ(x, t) can be analyzed in terms of the norm

(
v2(1, t) +∫ 1

0
v2x(x, t)dx +

∫ 1

0
v2t (x, t)dx

) 1
2 , following the steps given

in [9].

Remark 3. The bound Z in Theorem 1 is the upper bound
of the residual signal ζ(t) under fault and uncertainty. In
the presence of uncertainty but no fault,i.e. g(x, t) = 0 and
h(x, t) 6= 0, the upper bound of ζ(t) reduces to

|ζ(t)| ≤ Z =

√√√√√ 2

c2

√√√√β1 +

√
β
2

1 + 4αγ1

2α
, (69)

where α = ε
4 ,β1 = h and γ1 =

(
ε + |2εc1−1|

2

)
h
2

2. We use
this upper bound Z as a constant threshold on the residual
ζ(t) with the following fault detection logic: ζ(t) > Z →
fault occurred, ζ(t) ≤ Z → no fault occurred.

IV. SIMULATION STUDIES

In this section, we present simulation studies to illustrate
the performance of the proposed scheme. We have chosen
the following parameter and input for our open-loop plant:
K = 300 and Q(t) = 100sin(ωt) with ω = 0.003. The
PDE is implemented using the finite difference method with
time-step δT = 0.001s and spatial discretization step δx =
0.01. The distributed state response u(x, t) under nominal
conditions, that is, no uncertainty nor fault is shown in
Fig. 2. The PDE observer and the residual are initialized

Fig. 2. Distributed state response of the open-loop plant under nominal
condition (without any fault or any uncertainty).

with different initial conditions than the plant. Next, the
uncertainty ψ(x, t) = K1uxx + K2 with K1 = 0.1 and
K2 = 10 is added to the plant dynamics. The choice of ψ
is motivated by the potential uncertainty in the wave speed
and some additive disturbances. Accordingly, the threshold
(ζ(t)) was chosen based on Remark 3 with ε = 0.005, c1 =
1.2, c2 = 1.5. The evolution of the residual under uncertainty
(but no fault) is shown in Fig. 3. As expected, the residual
ζ(t) does not converge to zero but remains bounded within
the threshold – indicating no fault. Finally, a fault g(x, t) =
50(1 − e−0.003(t−10))sin(x) (see Fig. 4) was injected at
t = 10s in the uncertain plant. The evolution of the residual
ζ(t) under the uncertainty and the fault is shown in Fig. 5.
As expected, 1.8 sec after the fault injection, the residual
ζ(t) crosses the threshold Z indicating a fault occurrence.

Fig. 3. Residual evolution under uncertain but fault-less case. The residual
remains bounded within the threshold as there is no fault.



Fig. 4. Distributed fault g(x, t) injected to the plant at t = 10 sec.

Fig. 5. Residual evolution under uncertainty and fault. The fault is injected
at t = 10 sec. The residual indicates the fault occurrence by crossing the
threshold at t = 11.8 sec.

V. CONCLUSIONS

In this paper, we design a robust fault diagnosis scheme for
wave equations with boundary measurements. The scheme
consists of a boundary output injection-based backstepping
PDE observer. The output error of the PDE observer is
treated as fault indicating residual signal. We have analyzed
the convergence of the PDE observer and the residual signal
via Lyapunov stability theory. We have proved that the
residual signal will remain bounded in the presence of fault
and/or uncertainty. Furthermore, we have derived a threshold
with which the residual signal is compared to infer fault
occurrence. Essentially, the threshold provides robustness by
separating the effect of uncertainties from faults. We have
performed simulation studies to illustrate the performance
of the scheme.
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