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Abstract:

This paper investigates a Cyber-Physical & Human System (CPHS) comprised of a deterministic
dynamical system plant model and a human actuator model. Namely, human decisions are
stochastic inputs to the plant model. We examine a framework where human decisions cannot
be directly controlled, but can be influenced via incentive control signals. Specifically, we use the
framework of discrete choice models (DCMs) to capture human decision making, and then design
optimal controllers for these human actuated dynamical systems. Existing literature on CPHS
often treats human inputs as stochastic and exogenous inputs, and then formulates a disturbance
rejection problem. Instead of treating human decision-making as an uncontrollable exogenous
input, we directly incorporate human decision making into the modeling framework with DCMs.
This paper thus adds two original contributions. (i) We develop a generalized human-actuated
system framework based on DCM that predicts the probability of human decisions, conditioned
on controllable incentives. (ii) We show that existing optimization schemes, such as Sequential
Quadratic Programming (SQP) and Dynamic Programming (DP), can be applied to control the
proposed human-actuated system. We conclude this paper by demonstrating the framework on

a reference tracking problem and an inventory control problem.
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1. INTRODUCTION

Cyber-physical systems (CPS) are engineered systems that
integrate automatic control, network communication, sen-
sors, and computation in applications such as smart grids
and smart cities (see Cocchia (2014); Karnouskos (2011)).
In CPS, human input can be a crucial component, but
plays different roles in different contexts. From the control
designers’ perspective, human behavior is often regarded
as a random disturbance, yielding a stochastic system that
we seek to stabilize in some sense (see Pentland and Liu
(1999)). Human inputs are also sometimes regarded as a
correction mechanism designed to compensate errors in
human-incorporated monitoring systems (see Mukhopad-
hyay (2015)). In practice, human beings are not necessarily
irrational decision makers that are best modeled as simple
stochastic disturbances. On the other hand, humans are
imperfect decision makers that can be approximately rep-
resented by deterministic mathematical models. Instead,
we consider humans as independent, intelligent agents who
act to maximize their idiosyncratic utility functions. Their
actions are ultimately influenced by both internal and
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external factors, e.g. price incentives and weather. Devel-
oping a mathematical framework to account for behavior
from independent, intelligent agents in a control system is
a technically challenging problem that Munir et al. (2013)
argues should be studied more thoroughly. This paper
addresses this challenge.

Different approaches for modeling human behavior have
been proposed in the past, but this modeling remains
a difficult task in CPHS. In automotive control, human
behavior is often modeled and predicted using a prob-
abilistic model (e.g. Markov Chains), and are regarded
as random system inputs that are not subject to control
(see Pentland and Liu (1999)). In economics and social
sciences, discrete choice models (DCMs) have been studied
to formalize the human decision making process under a
finite set of alternatives and the corresponding retributions
(see McFadden and Train (2000)).

In our previous study (Bae et al. (2018)), we modeled a dy-
namical system with human actuators based on the state-
space representation and a discrete choice model. We then
proposed a convex optimization scheme that determines
the optimal price incentives, which induce certain human
behavior. The convex optimization approach however has



limitations in the scope of practical applications as the
proposed scheme is limited to human behavior models
with only a few alternatives. Additionally, a convexity
constraint in (Bae et al. (2018)) significantly restricts the
solution domain of the optimization problem, and thus
yields overly conservative solutions. Furthermore, the price
incentive determined by the optimization problem is not
alternative specific, i.e. the price incentive is calculated
after collectively considering all alternatives in retrospect.

In this paper, we propose a more generalized model of
human-in-the-loop systems and control schemes that cir-
cumvent the aforementioned limitations, and are applica-
ble to a wider range of problems. The main contributions
of this paper are twofold. (i) We first propose a general-
ized model of the human-in-the-loop system with multiple
alternatives that can be controlled by various methods.
(ii) We then describe Sequential Quadratic Programming
(SQP) and Dynamic Programming (DP) approaches for
control, which determine the optimal incentive signals that
induce human actions that are preferred by the system
operator.

The paper is organized in the following manner. Section
2 describes the CPHS modeling and Section 3 and 4
demonstrate the proposed framework on reference tracking
and inventory control problems, respectively. Section 5
discusses potential extensions to the proposed framework.
We conclude with discussions of the modeling and control
framework in Section 6.

2. SYSTEM MODEL

Figure 1 illustrates the CPHS framework, which consists of
three main components: (i) the human actuator, (ii) plant,
and (iii) controller. A human actuator produces a random
decision Sy, at time step k, based on a discrete choice model
(DCM). Decision Sy, is then sent as an input to the plant.
A controller produces two control signals: a plant control
signal uy, and an incentive control signal z; that influences
the human’s choices. The ultimate objective is to synthe-
size a controller that optimally manages the closed-loop
system. We mathematically formalize the human behavior
model and incorporate it into the plant’s system dynamics.
Specifically, we use a parametric discrete choice model
for human behavior and incorporate it into the general
state space-based dynamical system where existing control
theoretic algorithms can be applied. The corresponding
control methodology is discussed in the next section. We
limit ourselves to linear system dynamics, i.e. linear state
evolution equation, for a more intuitive presentation. The
presented framework can be extended to nonlinear system
dynamics, and is discussed in Section 5.

2.1 Human Behavior Modeling

Human behavior can be modeled using either parametric
or nonparametric probabilistic models. We use parametric
models here to quantitatively evaluate the impact of a
specific parameter associated with a controlled variable
zk, e.g. price incentives. The actuator model also takes
exogenous input variable wy, which are not controlled, e.g.
weather. We assume the human makes decisions among a
finite set of actions, and chooses one action at a time, i.e.
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Fig. 1. Block diagram of the human-actuated system.

the action space for Sy, is finite. We then consider the dis-
crete choice model with multinomial logistic regression as
an empirical behavior model (see Ben-Akiva and Lerman
(1985)).

In the discrete choice model, each choice, also called an
“alternative” in the econometrics literature, has a specific
utility function. One alternative is chosen when its utility
is greater than all others. For the j-th alternative, j €
{1,2,---,J}, the utility function is

Uj = fi (zj,w;) = B} zj + 7w+ Boj + 65, (1)
where z; € R"= is a vector of controllable inputs; w; €
R™ is a vector of uncontrollable inputs for alternative j;
B; € R"= and v; € R™ are parameter vectors ! for the
controllable inputs and uncontrollable inputs, respectively;
Bjo is the “alternative specific” constant; and €; accounts
for unspecified errors. Note that U; need not be positive
definite. In fact, with the choice of probability distribution
for €; given below, having the same utility for all alterna-
tives, i.e. U; = U; ¥ i # j, corresponds to all alternatives
being equally probable.

Denote by [Sk]; a random binary variable, {0,1}, that
indicates human selection of alternative j, i.e. [Sk]; = 1
if alternative j is chosen and [Si]; = 0 otherwise. The
random errors €; induce a probability distribution on Sk,
which is characterized by a probability mass function
(PMF) corresponding to the selection of each alternative.
We assume that the errors €; are i.i.d and follow the
Extreme Value distribution, which is generally known as
the multinomial logit model in econometrics. Under these
assumptions, the probability of choosing alternative j at
time step k is

eVi
Pr([Sk]] = 1) =Pr ﬂ(U] > Uz) = =/
i#j >im €V
where V; = BJ-sz + 'ijwj + Bo; is the utility of alternative
J without errors ¢;.

(2)

2.2 Human Behavior Incorporation into System Dynamics

The aforementioned behavior model describes probabilis-
tic human decisions on the plant. We consider a dynamical
system where the actuator is mathematically represented
by the human behavior model in (2) to quantitatively
evaluate the effect of human inputs on the plant. Human
decisions are ultimately random inputs to the plant, char-
acterized by a probability mass function that is modulated
by a control input uy. Formally, the probability of choosing

1 Parameters can be general or specific over alternatives



alternative j is a function of z = {z1,29,...,2s} and
w = {wy,wa,...,ws}:
e‘/j(zjij) 3
(z,w) = ————.
g]( ) Z;]:l Vi (zws) (3)

We define human actuated system to be a system that
evolves according to both direct controlled inputs uj and
random human inputs Si. For k € {0,...,N — 1}, J =
{1,...,J}, (N,J) € N* x N* 2 the linear time-varying
human actuated system, with a single human actuator, is

Tp1 = ApZk + Burur + Bsk Sk, (4)
where Sy, € {0,1}7, [Sk]; = 1 if alternative j is chosen and

0 otherwise, and
oIS =1 (5)
jeT

The state is z € R™, A € R™™™ is the system matrix,
B € R™*™ ig the direct input matrix, and Bg, € R™*7.
We denote by u, € R™ and S, € R the direct input
and the random human input to the system, respectively.
Equation (5) indicates that the system accepts only one
decision from the human actuator, and that Bgy evaluates
the system impact of only one action at a given time. Then,
the probability of choosing alternative j at time step k can
be written

Pr([Skl; =1) = gj(zi,wp) Vji=1,...,J. (6)
Claim 1. The model can be extended to account for M >
1 human actuators, each with multiple alternatives, by
simply extending the input matrix Bgy and Sy appropri-
ately. For every additional human actuator, Bgj increases
in size by J columns and Sy increases by J rows, i.e. we
append the J number of alternatives of each additional
human actuator to Si. More generally, if the m-th human
actuator has .J,, number of alternatives, Bg;, will have

2%21 J,n, columns and Sj will have Z%Zl Jn elements.
With this formulation, the system impact induced by M
human actions is the aggregate system impact over M
human actuators.

Incorporating the human actuated system into existing
feedback control mechanisms is, unfortunately, mathemat-
ically difficult due to its probabilistic nature. Human input
Sk is a binary random vector with a distribution that
is modulated by incentive control z. We consider con-
trolling the mean dynamics. By considering the expected
value of the state at each time step k, each indicator
function [Sy]; is replaced by the probability of the j-th
human action. The human-actuated mean dynamics is a
deterministic nonlinear system where the expected system
input g(zx, wy) includes probabilities of human actions as
a function of the incentive control z; and the exogenous
variable wy. This system is formulated as

Tpq1 = ApZr + Burur + Bskg(zk, wi), (7)

where 7, = Elzy], g(z,wr) = [E[[Skld] -+ E[[Sels]]",

and for every j € {1,...,J},

eVir([zxls:[wrl;)

E[[Sk];] = g; - :
[[9]3] = 9z wr) ST Vil )

(®)

which is equivalent to Pr([Sk]; = 1).

2 Nt denotes strictly positive integers

Claim 2. Other parametric discrete choice probability
models can fit this modeling framework by simply replac-
ing the probability of every j-th alternative Pr ([Sy]; = 1)
appropriately.

3. REFERENCE TRACKING PROBLEM

In this section, we apply the CPHS modeling framework
to solve a reference tracking problem. We consider a se-
quential decision making problem from the perspective
of a systems engineer. The objective of the controller is
to have the plant state follow a reference trajectory %t
Practical applications include modulating food prices to
follow a desirable agricultural output trajectory, modulat-
ing electricity prices to follow renewable generation, or a
human and robot symbiotically operating a machine. The
engineer must induce human behavior in a manner that
minimizes the plant state’s deviation from the reference
trajectory. At every time step, the controller must produce
two signals: (i) a direct control to steer the plant’s state
towards the reference trajectory; and (ii) an incentive to
induce a desired human input that minimizes the plant
state’s deviation from the reference trajectory.

8.1 Formulation of Optimization Problem

The objective is to design a controller that minimizes the
deviation of the plant’s state trajectory from the reference
trajectory while simultaneously balancing the state devi-
ation cost and the control effort. For the time-invariant
human actuated system f(Z, uk, 2k, wr) = ATk + Byug +
Bsg(zk, wi), k € {0, ..., N — 1}, the optimization problem
is formulated as

N-1
minimizez, u, -, F = [(ack — ajzef)TQk(fck — ;U;ff)
k=0
+ (uk — i) T R (ug — ui)
+ (26 — 217 T Rag (2 — 2°)
+ (@n — 2X) QN (TN — 2K (9)
subject to: Tg = Zinit, (10)
Tpy1 = [(Zg, up, 25, W), (11)
2 > 0, (12)

where Qr, Rur, R.r are weight matrices for the errors
in the mean state, direct control effort, and incentive
control effort at time step k, respectively. Signals xfff,
uiet and 2if are reference state trajectories, reference
direct control, and reference incentive control, respectively.
The final weight matrix is Qy, Ty is a final mean state,
and a’sl}\‘if is a final reference state. The first, second, and
third terms in the objective function (9) indicate the error
penalties of the mean state, direct control effort, and the
incentive control effort at time step k, respectively, and
the last term evaluates the error penalty of the mean state
at the final step. The initial condition Zin;x is given in
(10). The equality constraint (11) incorporates the human
actuated system model into the optimization problem
and the inequality constraint (12) ensures nonnegative

incentives.



3.2 Solving Optimization Problem with SQP

This optimization problem is non-convex because the plant
dynamics (11) are nonlinear with respect to the incentive
control z. Due to the non-affine nonlinearity in the control
signal zp, feedback linearization methods, such as those
described in Khalil (1996), may not apply. We utilize a
Sequential Quadratic Programming (SQP) approach 3
(see Nocedal and Wright (2006)). SQP iteratively finds
sub-optimal control polices for nonlinearly constrained op-
timization problems by solving quadratic approximations
to the original problem at every iteration.

Linearization

SQP essentially replaces the nonlinear constraint (11) with
a linear approximation. Using Taylor’s theorem, we can
approximate the system as?

Th1 = Akik + Buiiy + ézkgka (13)

where Zp = T — xzef, Up = Up, — uff, 2y = 2L — z,‘ff, and

~ . T

Ar = Vz fi (x};ef, uffa ZIEEfa wk) (14)
~ T
Buk = Vu fk (a:i;Cf7 ul}’:;Cfa ZII;Cf7 wk) (15)
~ T
B, =V. fr (xfff, ufcef, z,rff, wk) . (16)

Note that Ak = A and Buk = B, since fk(ik,uk,zk,wk)
is linear with respect to Ty and wuy. Denote by B;C)m the

m-th row of B,y for m =1,...,n. Then,
Brerexp{ Vier (2571, [wi]1) } ref 1 T
(X7, exp{Via([z}e!]s.[wels )})21/) mlE# ks )
B;—k,m =
ﬁjkeXP{VkJ([Zlef]Jv[wk]J)}
(X7, exp (Vi (=T fwels )})Qw’“ m{#", W, J)
(17)

where for j =1,...,J, the function )y, is defined

Urm (2w, )

J
E : zk m

i=1

[sz mli) exp{Vir (25, [we]s)}. (18)

Reformulation of Optimization Problem

To apply the SQP framework to the aforementioned opti-
mization problem, we first rewrite the optimization prob-
lem with respect to stacked variables v and v"®f

3 One drawback of SQP is that it requires the objective function to
be twice differentiable, and the Hessian of the Lagrangian must be
positive definite. These requirements limit some applications.

4 The derivation takes only one vector of controlled incentive zj €
R”, but can be easily extended to multiple incentive controls by
extending the dimension of zj, ie. zp € R7*S where s > 1 is
the number of incentive controls. This results in s — 1 additional
columns to sz, which corresponds to the partial derivatives of
Ji (T, ug, 2k, wg) with respect to each additional incentive control.

minimize, (v — 0™ T H (v — v*ef) (19)
subject to:
xlnlt { }
A{v}mo + B, {U}uo + BS{U}ZO {v}i’l -0
A{U}jN—l + BU{U}UN—I + BS{U}ZN—I - {U}iN
(20)
{v}zgs s {vtey 1] 20, (21)
where
v = [Zo, U0, 20, -y TN—1, UN—1, ZN—1, TN, (22)
Umf [‘r(r)efv UBEfv Z(Sefv . Eg\elf 1» u?\?f 1» z?\?f 1» j?\?ﬂ? (23)
H - dlag{QO, Ru07 Ran seey
Qn-1,Ryn-1), Ron-1), N}, (24)

and {v}(,) denotes the elements of the stacked variable
v that correspond to (x). We then take a second-order
approximation of the Lagrangian function £ of (19)-
(21) with respect to an optimal solution #(*) obtained at
iteration 7. We also linearize the equality constraints (20)

with respect to (V. We eventually formulate the SQP
optimization problem

minimize, FO 4 vF( )Tp + pTV3U£(Z (25)
subject to:
(diag{ [A B, Bua]}n=g)'p
xll’llt - {U 1
A{0D}z0 4+ Bu{oD}, +Bs{v<”} — {00},
- : =0,
(AGOha, + BTN
+BS{@(i)}ZN71 - {@(Z)}ZEN)
(26)
Ve p + (@) > 0, (27)

where p is the SQP dec1510n variable, and Bj is defined
n (16). Gradient Ve(6(®)) has a value of 1 in the place
of elements that correspond to the incentive control zj. It
is a convex quadratic program with linear constraints and
thus we can obtain p* using canonical convex optimization
methods (see Boyd and Vandenberghe (2004)).

Update algorithm

Once we obtain p* from the aforementioned SQP, the
optimal control 9(9) at iteration i is updated according
to

D = 5@ 4 oD p*, (28)
Then, the algorithm iterates until a set of convergence cri-
teria are satisfied. SQP inherits the convergence rate of the
quasi-Newton method, and convergence can be guaranteed
by an appropriate choice of /(") (see, e.g. backtracking line-
search method Nocedal and Yuan (1998); Li and Todorov
(2004)) assuming appropriate regularity conditions hold
and unlikely edge cases (e.g. infeasibility of the problem)
do not arise.

3.3 Simulation

We illustrate a simple instance of the reference tracking
problem. We consider a third order system with



01 1 -1 1 =505
A=|1011|,B,=|1|,Bs= —505], (29)
1 0 05 1 -505

Note the open-loop system is unstable, yet controllable,
and each alternative, when chosen, sends a corresponding
input to the system. Namely, the human’s choice either
(i) adds negative input (—5); (ii) adds zero input; or (iii)
adds positive input (+5). The DCM parameters are set
to Bjor = 1V j,k so that the human is equally likely
to choose each alternative with zero incentives and zero
exogenous factors. Similarly, 8;, = 1V j,k so that the
human is equally sensitive to all incentives, for choosing
each alternative. We also assume for simplicity that the
exogenous variables do not influence the human decision
process, i.e. wi = 0. We consider a scenario where the first
state must follow a series of step functions. We consider
reference control signals of zero, i.e. ul*t = 2i¢f = 0, for
simplicity. The error penalty is set to Q = diag{5,0,0},
which is higher than the control effort costs set to Ry = 1
and R,; = Isyx3. We apply SQP® to find the optimal
direct control uy and incentive control zy for tracking the
reference trajectory.

Figure 2 shows the first state Z;j, direct control wuy,
and incentive control z; trajectories. The SQP-derived
control signals are successful in tracking the desired state
trajectory. The third and fourth subplots in Figure 2
illustrate how the probability of choosing each alternative
varies with the incentive control signal. We highlight two
interesting observations from this simple example. First,
consider the steady-state behaviors from about k € [2,4]
and k € [5.5,7.5]. During these periods, uy is essentially
zero, yet the incentives for non-zero human actuation
([2k]1, [2k]3) are non-zero. Recall that the plant is open-
loop unstable, and therefore control effort is required to
maintain a constant value for Z;. In this case, the optimal
strategy is to leverage human actuation z, instead of
direct control uj to stabilize the plant around constant
%1, values. Second, the control effort cost with incentive
control (349.1) is lower than that without incentive control
(472.13). In this simple example, the cost savings increase
as the role of the human input to the plant increases. This
finding suggests that incentive control has strong potential
for cost savings in practical CPHS control problems, where
human decisions significantly impact the plant’s dynamics.

4. INVENTORY CONTROL PROBLEM

Next, we apply the CPHS modeling framework to solve
an inventory control problem. We consider a sequential
decision making problem from the perspective of a store
manager, who is selling J distinct items from their store’s
inventory. The store manager must make two decisions at
every time step: (i) how many of each item to order from
their supplier to restore their inventory, and (ii) how much
price discount they should apply to each item to encourage
sales. The store manager must take into account the type
and quantity of items that will be sold over the time
horizon of interest, and set appropriate price discounts to
maximize their expected net revenue. We assume orders
from the supplier arrive immediately. This application fits
perfectly into the proposed framework. Specifically, the

5 We use Matlab SQP fmincon.
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Fig. 2. Simulated reference tracking results solved via SQP,
for an open-loop unstable plant model. In the third
plot, [zx]1 is an incentive associated to the negative
input, [zx]2 for the zero input, and [z;]; for the
positive input.

inventory dynamics represent the plant dynamics, orders
from the supplier represent the direct control, and price
discounts represent the human incentive.

4.1 Human Actuated System Modeling

For simplicity, we consider just one item type and have
each alternative corresponding to the number of items
purchased over a time period, i.e., the set of alternatives
is {0,1,...,J — 1}. Given a total of J alternatives, the
utility function of alternative j over the time period k €
{0,...,N — 1} is defined as:

Vik([zkli: [wel;) = Birlzrli + yelwrl; + Boje, — (30)
with the incentive parameter §;i, incentive control [zj];,
exogenous variable parameter <., exogenous variable
[wg];, and alternative specific constant Sjo;. The system
dynamics can be written as
(31)
where x}, is the stock level of the item, uy is the number of
items ordered from supplier, Sj € {FO, 1}/ is the vector of

]

indicators, and Bg = [0, 1, ..., J—1] ' . The mean dynamics
follow the development in Section 2.2.

Ti+1 = Tk + up — BsSk,

4.2 Formulation of Optimization problem

The objective is to minimize the overall net cost (i.e.
maximize net revenue) by finding a control policy for
uy (orders from supplier) and z; (price discount). The
store manager sets different price discounts based on the
quantity of items purchased. The optimal control problem
can then be written as



N-1
minimize,, ., E [cuuk—TBsg(mek)‘f‘
k=0

J
> ledilzrli95 (e, wi)] (32)
j=1
subject to: Tpy1 = Tp + up — Bsg(zk, wk), (33)
0 S jk S i‘max (34)
0 < ug < Umax (35)
0 < 2z < Zmaxs (36)

where ¢, is the cost-per-unit from the supplier, ¢, is the
cost-per-incentive from the store manager, and r is the
revenue-per-unit from customers. The first term in (32) is
the cost of restocking inventory and the second and third
terms indicate the expected revenue from customers and
the expected price incentives to expend, respectively. The
stock level, the number of items ordered from the supplier,
and the price incentive are upper bounded by Zmax, Umax,
and Zmax, respectively. Again, the key challenge is that
(33) is nonlinear with respect to zj.

4.8 Solving Optimization Problem with DP

The second derivative of the objective function (32) is
not positive definite with respect to {u, z}, and thus SQP
would not be a proper fit to solve this problem. Instead, we
apply dynamic programming (DP) ¢ to numerically obtain
the optimal control policy. Let Ji(Z)) denote the minimum
net cost from time step k to IV, given that the stock level
is Ty at time step k. The Bellman equation is written as
Ji(Zr) = min {cqur, — rBsg(zi, wi)
Uk, 2k
J
+ ) leslilznligi (zho wi) + Jepa (Brg1) ), (37)
j=1

where Zp11 = T +ur —Bsg(zk, wy) for k € {0,...,N—1}.
The terminal cost is Jy(Zx) = 0. In other words, the
revenue/cost of any remaining stock at the terminal time
step is zero.

4.4 Simulation

We simulate a simple instance of the above case study, with
the number of alternatives set to J = 3 and the number
of choice situations of customers set to N = 30. Under
this setting, a total of 30 customers enter the store and
each customer either (i) does not purchase anything; (ii)
buys one item; or (iii) buys two items. We set the initial
stock level to Ty = 5, cost-per-unit to ¢, = 10($), cost-per-
incentive to ¢, = 1($), and revenue-per-unit to r = 20(8$).
The DCM parameters are set to So;, = {1,0.5,0.3} so that
customers are more likely to buy less items when they
do not have a price discount, 5 = {0,0.5,0.3} so that
customers have less sensitivity to price incentives when
buying two items, and < = 0.5 so that customers are
equally sensitive to an exogenous factor as they are to price
incentives. We further assume that the exogenous variables

6 DP numerically computes the optimal control inputs via Bellman’s
principle of optimality, without requiring linearization or conditions
on the Lagrangian (see Bellman (2013)). However, it also suffers from
exponential computational complexity, limiting its use to systems
with relatively few states and controls.
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Fig. 3. A simulation result for an inventory control prob-
lem. In the third plot, [zx]1 is the incentive associated
with buying zero items, [z;]2 for buying one item, and
[21]5 for buying two items.

[wg]; are sampled from the standard normal distribution,
fixed, and known a priori. Using DP, we compute an
optimal control policy [ug, zx] = 7k (Zk) for the supplier
order and sales discount.

Figure 3 presents a simulation result of the aforementioned
decision problem. Note the stock Zy, is depleted by the ter-
minal time step, since remaining stock represents missed
revenue. The discount for selling zero items [zx]1 is zero,
since no revenue can be recovered from this action. The
discount for selling two items [z;]s is often non-zero, to
incentivize sales. The fifth plot in the figure indicates that
the expected cumulative net revenue is higher with optimal
price incentives compared to that without incentives. The
increase in the expected cumulative net revenue is further
explored via Monte Carlo simulation, shown in Figure 4.
The Monte Carlo simulation indicates that the expected
net revenue increases significantly (+$154.63) as a conse-
quence of using price incentives. It is also shown that the
standard deviation of the net revenue with the incentives is
lower ($76.38) than that without the incentives ($107.58).
Future work should validate these results on behavioral
models parameterized on real-world data, and with real
exogenous variables.

5. EXTENSIONS AND LIMITATIONS

The proposed system modeling framework can be ex-
tended to dynamical systems that are nonlinear in the
states, without loss of generality. In this case, the in-
corporated system of mean dynamics is generalized as
Tpr1 = f(Zg, uk, 2k, wg), k € {0,...,N — 1}, with state
mean I, direct control ux, and incentive control z;. Then
optimal solutions are found by SQP or DP, as described
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Fig. 4. Monte Carlo simulation results for over 150 ran-
domized scenarios. In each scenario, human choices
are sampled from probabilistic distributions generated
by the DCM with multinomial logit regression. The
net revenue with price incentive control is calculated
as the total profit minus the total price incentive and
restocking cost.

in Section 3 and Section 4. In addition, the framework
with multinomial logistic (ML) regression can be further
generalized by mixed multinomial logistic (MML) regres-
sion (see Bhat (2001)), which addresses partially observed
behaviors, i.e. DCM parameters are random variables.

One limitation of the framework is that increasing the
dimension of the incentive control zj is followed by a linear
increase in the total number of alternatives within the
system. Nonetheless, resolving the curse of dimensionality
is an open problem, and approximation methods described
by Fodor (2002) can be incorporated. Another limitation
is that the SQP and DP-based control strategies discussed
in this paper are based upon the deterministic mean dy-
namics. Consequently, they fail to capture heterogeneous
individual behavior, and emergent dynamics. However,
the control strategies in this paper can be extended to
account for stochastic dynamics, via stochastic dynamic
programming (see Bertsekas (1995)).

6. CONCLUSION

This paper provides a formalized mathematical modeling
and control framework for human-actuated systems, in
the field of cyber-physical & human systems (CPHS). A
human-actuated system quantitatively evaluates the im-
pact of human behaviors on system dynamics. Human be-
haviors are random, and the probabilities associated with
specified decisions are assessed by Discrete Choice Models
(DCMs) developed in behavioral economics McFadden and
Train (2000). We mathematically incorporate the human-
actuated system into a nonlinear optimal control problem,
solved via Sequential Quadratic Programming (SQP) and

Dynamic Programming (DP). Finally, we applied the pro-
posed modeling and control framework on two problems:
(i) A reference tracking problem where human inputs help
the system follow a reference state trajectory; (i) an in-
ventory control problem where the objective is to find an
optimal control policy for sales price discounts to maximize
net revenue. A simple empirical validation is performed for
the inventory control problem using Monte Carlo simula-
tion. Future work includes developing an active learning
algorithm for identifying the human behavioral model pa-
rameters as observations are gathered.
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