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ABSTRACT 

This paper examines the problem of optimally splitting driver 
power demand among the different actuators (i.e., the engine and 
electric machines) in a plug-in hybrid electric vehicle (PHEV).  
Existing studies focus mostly on optimizing PHEV power 
management for fuel economy, subject to charge sustenance 
constraints, over individual drive cycles.  This paper adds three 
original contributions to this literature.  First, it uses stochastic 
dynamic programming to optimize PHEV power management 
over a distribution of drive cycles, rather than a single cycle.  
Second, it explicitly trades off fuel and electricity usage in a 
PHEV, thereby systematically exploring the potential benefits of 
controlled charge depletion over aggressive charge depletion 
followed by charge sustenance.  Finally, it examines the impact of 
variations in relative fuel-to-electricity pricing on optimal PHEV 
power management.  The paper focuses on a single-mode power-
split PHEV configuration for mid-size sedans, but its approach is 
extendible to other configurations and sizes as well.   

1.  INTRODUCTION 
This paper examines plug-in hybrid electric vehicles 

(PHEVs), i.e., automobiles that can extract propulsive power from 
chemical fuels or stored electricity, and can obtain the latter by 
plugging into the electric grid.  The paper’s goal is to develop 
power management algorithms that optimize the way a PHEV 
splits its overall power demand among its various – and often 
redundant – actuators.  Such optimal power management may help 
PHEVs attain desirable fuel economy and emission levels with 
minimal performance and drivability penalties [1,2].  Furthermore, 

the optimal “blending” of fuel and electricity usage in a PHEV 
may also provide significant economic benefits to vehicle owners, 
especially for certain fuel-to-electricity price ratios [3].   

The literature provides a number of approaches to hybrid 
vehicle power management, many equally applicable to both plug-
in and conventional (i.e., non plug-in) hybrids.  These approaches 
all share a common goal, namely, to meet overall vehicle power 
demand while optimizing a metric such as fuel/electricity 
consumption, emissions, or some careful combination thereof.  
For example, the equivalent fuel consumption minimization 
approach [4-6] uses models of electric powertrain performance to 
mathematically convert electricity consumption to an equivalent 
amount of fuel, and then makes real-time power split decisions to 
minimize net fuel consumption.  The manner in which most 
approaches optimize vehicle performance is either by identifying a 
power management trajectory, or by establishing a power 
management rule base.  Trajectory power management algorithms 
require knowledge of future power demand and use this 
information to specify the future power output of each actuator.  
Such optimization can be performed offline for drive cycles 
known a priori using deterministic dynamic programming (DDP) 
[7-10], and can also be performed online using optimal model 
predictive control [11,12].  Rule-based approaches, in comparison, 
constrain the power split within a hybrid vehicle to depend only 
on the vehicle’s current state and input variables (e.g., 
vehicle/engine speed, battery charge, power demand, etc.) through 
some map, or rule base [13-19].  One then tailors this rule base to 
ensure that each actuator in the powertrain operates as close to 



optimally as possible.  These maps can be constructed from 
engineering expertise and insight, or using more formal methods 
such as optimization [17] or fuzzy logic [18-19].  Stochastic 
dynamic programming (SDP) methods are particularly appealing 
in this context, despite their well-recognized computational 
complexity [20], because of their ability to optimize a power split 
map for a probabilistic distribution of many drive cycles, rather 
than a single cycle [21-25].   

The above survey briefly examines the hybrid power 
management literature for both plug-in and conventional hybrid 
electric vehicles.  Within the specific context of PHEVs, power 
management research has generally focused on fuel economy 
improvement, subject to constraints on battery state of charge, 
using either the rule-based [16,17] or DDP approach [9,10].  This 
paper extends this research by adding three important original 
contributions to the PHEV power management literature.  First, it 
uses SDP to optimize PHEV power management over a 
probability distribution of drive cycles.  Second, it explicitly 
accounts for the interplay between fuel and electricity costs in 
PHEV power management.  This makes it possible, for the first 
time, to fully explore the potential benefits of controlled charge 
depletion over aggressive charge depletion followed by charge 
sustenance.  Finally, the paper presents what the authors believe to 
be the first study on the impact of variable electricity and 
petroleum purchase prices on optimal PHEV power management.  
The above contributions are made specifically for a single-mode 
power-split PHEV configuration, although the paper’s approach is 
extendible to other configurations as well.   

The remainder of this paper is organized as follows:  Section 
2 introduces the vehicle configuration, problem definition, and 
vehicle model used in this work.  Section 3 then describes the 
numerical optimization method adopted in this work.  Section 4 
discusses the results of this optimization, and Section 5 highlights 
the paper’s key conclusions.  

2.  PROBLEM FORMULATION 
Figure 1 portrays the main components and configuration of 

the powertrain architecture considered in this paper, often called 
the single-mode power split, “series/parallel”, or “combined”.  
This architecture combines internal combustion engine power with 
power from two electric motor/generators – identified as M/G1 
and M/G2 – through a planetary gear set.  The planetary gear set 
creates both series and parallel paths for power flow to the wheels.  
The parallel flow paths (blue arrows) include a path from the 
engine to the wheels and a path from the battery, through the 
motors, to the wheels.  The series flow path, on the other hand, 
takes power from the engine to the battery first, then back through 
the electrical system to the wheels (red arrows).  This redundancy 
of power flow paths, together with battery storage capacity, 
increases the degree to which one can optimize powertrain control 
for performance and efficiency while meeting overall vehicle 
power demand. 

  

 
FIGURE 1. SINGLE MODE POWER-SPLIT HYBRID 

ARCHITECTURE (ADAPTED FROM [26]).  
 

The above power split hybrid vehicle architecture can be used 
for a variety of vehicle sizes and needs.  This paper focuses on a 
midsize sedan power split PHEV whose key component sizes are 
listed in Table 1.  This PHEV is quite similar in configuration, 
dynamics, and design to the 2002 Toyota Prius, but with roughly 
twice the battery capacity.  Specifically, we assume that the PHEV 
has 80 modules of Ni-MH batteries instead of 38 in the 2002 
Prius.  This choice of battery size and type is partly motivated by 
the relative ease with which one can convert the above 
conventional hybrid vehicle into an experimental PHEV – by 
simply adding Ni-MH battery energy capacity.  A subsequent 
paper builds on this paper’s results by examining the influence of 
battery sizing on the optimal control laws studied herein [27].  
Furthermore, the impact of battery type (e.g., Lithium-ion vs. Ni-
MH, etc.) on PHEV performance and efficiency is the subject of 
ongoing research that also builds on the methods and results of 
this paper.   

Given the above vehicle, powertrain, and battery choices, this 
paper examines the following power management problem:  
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In this discrete-time stochastic optimal control problem, k 
represents an arbitrary discrete time instant, and the sampling time 
is 1 second.  This sampling time is consistent with the paper’s 
focus on supervisory, rather than servo-, control.  The 
optimization objective in this control problem consists of the 
instantaneous combined cost of PHEV fuel and electricity 
consumption, g(x(k),u(k)), accumulated over time, discounted by a 



TABLE 1. POWERTRAIN MODEL SPECIFICATIONS 

Vehicle 
EPA Classification Midsize sedan 

Base Curb Weight 1400 kg 

Engine 

Type Gasoline Inline 4-cylinder 

Displacement 1.5 L 

Max. Power 43 kW @ 4000 RPM 

Max. Torque 102 N-m @ 4000 RPM 

Motor/ 
Generators 

Type Permanent Magnet AC 

M/G1 Max. Power 15 kW @ 3000-5500 RPM 

M/G2 Max. Power 33 kW @ 1040-5600 RPM 

Battery  
Pack 

Cell Chemistry Nickel Metal Hydride 

Nominal Voltage 1.2 V per cell 

Nominal Capacity 6.0 A-h per cell 

No. of Cells 480 

Pack Energy Capacity  3.7 kWh 

 
constant factor γ, and averaged over the stochastic distribution of 
instantaneous power demand, Pdem.  In optimizing this objective, 
we impose three important constraints, namely, (i) the PHEV 
powertrain’s dynamics, represented by f(x(k),u(k)), (ii) the set of 
admissible PHEV states, X, and (iii) the set of admissible control 
inputs, U.  The remainder of this section presents these 
optimization objectives and constraints in more detail.  
Specifically, Sections 2.1-2.4 present, respectively, the PHEV 
model, f(x(k),u(k)), the optimization functional g(x(k),u(k)), the 
state and control constraint sets, X and U, and the Markov chain-
based drive cycle model used for computing the expected PHEV 
optimization cost.  

2.1 PHEV Model 
To model the dynamics of a PHEV, we first identify the 

PHEV’s inputs, outputs, and state variables.  Towards this goal, 
Figure 2 presents a conceptual map of the key interactions 
between the PHEV examined in this paper, its human driver, and 
its supervisory power management algorithm.  This conceptual 
map adopts the fairly common tradition in hybrid power 
management research of interpreting the driver’s accelerator and 
brake pedal positions as a power signal, Pdem, demanded at the 
wheels (e.g., [22-24]).  The supervisory power management 
algorithm attempts to meet this power demand by adjusting three 
control input signals: engine torque Te, M/G1 torque TM/G1, and 
M/G2 torque TM/G2.  Engine startup and shutdown can also be 
treated as a control input, but this paper assumes, for simplicity, 
that the PHEV engine idles when power is not demanded.  This 
leaves the important issue of engine startup/shutdown, and its 
complex impact on PHEV warmup and emissions, as open topics 
for ongoing research.  In summary, therefore, the PHEV plant has 
three control inputs, namely, the three engine/motor/generator 
torques.   

 

FIGURE 2. PHEV MODEL COMPONENTS AND CONTROL 
SIGNAL FLOW. 

The above control inputs affect the PHEV plant by affecting 
its state variables.  In this paper, we closely follow some of the 
existing hybrid vehicle power management research by choosing 
engine crankshaft speed, ωe, longitudinal vehicle velocity, v, and 
battery state of charge, SOC, as the three PHEV state variables.  
We use a Markov memory variable to represent the stochastic 
distribution of driver power demand, as explained in Section 2.4.   

To model the dynamics governing the PHEV state variables, 
we begin by expressing the total road load, Froad, acting on the 
PHEV as follows [23]:  

 = + +road roll drag dampF F F F , (3) 

In this equation, Froll is a rolling resistance term given by: 

 rollF mgµ= , (4) 

where g, m, and µ represent the acceleration of gravity, mass of 
the PHEV, and a rolling resistance coefficient (assumed constant), 
respectively.  Furthermore, Fdrag is an aerodynamic drag force 
given by:  

 20.5drag fr dF A C vρ= , (5) 

where ρ, Afr and Cd represent the density of air, the PHEV’s 
effective frontal area, and the PHEV’s effective aerodynamic drag 
coefficient, respectively.  Finally, Fdamp is a wheel/axle bearing 
friction term given by:  

 w
damp

tire

b v
F

r
= , (6) 

where bw is the bearing’s damping coefficient and rtire is an 
effective PHEV tire radius.  Note that this expression for wheel 



damping, as well as other derivations below, assumes a direct 
proportionality between wheel angular velocity and vehicle speed, 
where the proportionality constant is related to the tire radius and 
final drive ratio.  This assumption effectively neglects tire slip for 
simplicity, thereby eliminating the need for using two separate 
state variables to represent wheel and vehicle speeds.  

Road loads from Eq. (3) act on the PHEV powertrain through 
the planetary gear set sketched in Fig. 3.  This planetary gear set 
can be conceptually and mathematically treated as an ideal “lever” 
connecting the engine, two motor/generators, and vehicle wheels 
(through the final drive), as shown in Fig. 3.  Using this lever 
diagram in conjunction with Euler’s equations of motion, one can 
relate the road load in Eq. (3) to angular velocities in the PHEV 
powertrain as follows [23]:  
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In this equation, R and S denote the numbers of teeth on the 
planetary gear set’s ring and sun, respectively.  The angular 
velocities of the engine and two motor/generators are denoted by 
ωe, ωM/G1, and ωM/G2, respectively.  Furthermore, Te and Ie denote 
the engine’s brake torque and inertia, and TM/G1 and IM/G1 denote 
the torque and inertia of the first motor/generator, respectively.  
The force F represents an internal reaction force between the 
planetary gear set’s sun and planets.  Finally, the terms I ’

M/G2 and 
T’

M/G2 are effective inertia and torque terms given by: 
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where IM/G2 and Iw are the rotational inertias of the second 
motor/generator and wheel, K is the final drive gear ratio, and 
TM/G2 is the torque produced by the second motor/generator.   

The point-mass model in Eq. (7,8) provides a complete 
description of how the state variables ωe and v (which is directly 
proportional to ωM/G2) evolve with time for given control input 
trajectories. This description is provided in differential algebraic 
equation (DAE) form, with the force F and velocity ωM/G1 acting 
as dependent state variables.  Simple algebraic manipulations, 
omitted herein, can be used in conjunction with time discretization 
to convert this DAE description to the explicit form in Eq. (2).   

ring M /G2 ring M /G2T T ω ω= =

carrier e carrier eT T ω ω= =

sun M/ G1 sun M/ G1T T ω ω= =
 

FIGURE 3. PLANETARY GEAR SET & LEVER DIAGRAM. 

To complete the derivation of the PHEV plant model, we 
assume – for simplicity – that the PHEV’s battery can be idealized 
as an open-circuit voltage, Voc, in series with some internal 
resistance, Rbatt.  We allow both Voc and Rbatt to depend on battery 
state-of-charge, SOC, through a predefined map (adapted from 
[28,29]).  Furthermore, we define SOC as the ratio of charge 
stored in the battery to some known maximum charge capacity,   
Qbatt.  This furnishes the following relationship between the rate of 
change of SOC and the current, Ibatt, generated by the battery:  

 
batt battSOC I Q= −ɺ  (9) 

To obtain an expression for the current, Ibatt, we note that the 
instantaneous power delivered by the battery to the two 
motor/generators, Pbatt, is related to Ibatt through the following 
power balance:  

 2
batt oc batt batt battP V I R I= −  (10) 

Solving Eq. (9,10) for the rate of change of SOC gives:  
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Finally, relating the power Pbatt to the torques, speeds, and 
efficiencies of the two motor/generators gives:   
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Combining Eq. (11-13) with maps from [28], which relate the 
efficiencies of the electric motor/generators to their torques and 
speeds, provides a complete description of the battery SOC 
dynamics as a function of PHEV states and inputs.  Discretizing 
this description and combining it with an explicit discretized form 



of Eq. (7,8) furnishes a complete model of the PHEV plant 
dynamics, i.e., f(x(k),u(k)) in Eq. (2).  This model mostly 
replicates existing hybrid powertrain models in the literature (e.g., 
[23]), but we use it in conjunction with the novel objective 
function in Section 2.2 to examine PHEV power management.  

2.2 Objective Function 
The optimization objective, J, in Eq. (1) aggregates the 

expected combined cost of PHEV fuel and electricity consumption 
over a stochastic distribution of trips, and discounts this cost 
exponentially through the factor γ.  This discount factor, if 
restricted to the interval [0,1), ensures that the cumulative 
optimization objective remains finite over infinite time horizons.  
This paper follows Lin [22] in setting γ to 0.95, leaving the 
question of how different values of γ affect optimal PHEV power 
management open for future research.   

To explicitly trade off fuel and electricity consumption in 
PHEVs, we define the instantaneous cost functional, namely, 
g(x(k),u(k)) in Eq. (1), as follows: 

 ( ) 1
, fuel fuel elec elec

grid

g x u W Pβα α
η

= +               (14) 

The first term in this cost functional quantifies PHEV fuel 
consumption, while the second term quantifies electricity 
consumption, and the coefficient β makes it possible to carefully 
study tradeoffs between the two.  Specifically, Wfuel represents the 
fuel consumption rate in grams per time step, where we use the 
engine map in [28] to convert engine torque and speed to fuel 
consumption.  The constant parameter αfuel then converts this rate 
to an energy consumption rate, in megajoules (MJ) per time step.  
Similarly,  Pelec represents the instantaneous rate of change of the 
battery’s internal energy, i.e.,  

 elec oc battP V Q SOC= −
i

              (15) 

The constant parameter αelec converts Pelec to MJ per time step.  
Dividing this change in stored battery energy by a constant 
charging efficiency ηgrid = 0.98 (which corresponds to a full 
recharge in six hours) furnishes an estimate of the amount of 
energy needed from the grid to replenish the battery.  Note that 
Pelec is positive when the PHEV uses stored battery energy and 
negative during regeneration.  Hence, there exists a reward for 
regeneration that offsets the need to consume grid electricity.  The 
magnitude of this reward depends on the parameter β, which 
represents the relative price of gasoline per MJ to the price of grid 
electricity per MJ.  We refer to this parameter as the “energy price 
ratio,” and use it to examine the tradeoffs between fuel 
consumption and electricity consumption in PHEVs.  Specifically, 
we begin this paper’s power management optimization studies by 
setting a price ratio of β = 0.8, consistent with the average energy 

prices in 2006, namely $2.64 USD per gallon of gasoline and 
$0.089 USD per kWh of electricity [30].  We then vary this ratio 
to examine the influence of different relative fuel-to-electricity 
prices on optimal power management, as shown in Section 4.3.  

2.3 Constraints 
In optimizing PHEV power management, we seek controllers 

capable of keeping the state vector x within simple bounds 
expressed as a constraint set X in Eq. (16).  These bounds ensure 
that the engine neither exceeds its maximum allowable speed nor 
falls to speeds where noise, vibrations, and harshness (NVH) 
become excessive [26].  They also constrain battery state of 
charge to remain between two limits denoted as SOCmin = 0.25 
and SOCmax = 0.9.  Constraining SOC in such a way helps to 
protect against capacity and power fade due to over-charging or 
excessive discharging [10,16,17]. However, the precise impact of 
the depths and rates of PHEV battery charging/discharging on 
battery health is still under investigation.  Finally, we also impose 
limits on the speeds of the motor/generators to protect them from 
damage.  As explained in Section 3.2, when solving the optimal 
PHEV power management problem numerically, we use penalty 
functions to implement all of these state constraints as “soft” 
constraints. 
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In addition to constraining the PHEV state variables, we also 
implement two types of control input constraints as part of power 
management optimization: a drivability constraint and control 
input bounds.  The drivability constraint, given by Eq. (17), 
ensures that driver power demand is met by equating it to the sum 
of the three engine/motor/generator power outputs:  

 / 1 / 2dem e M G M GP P P P= + +  (17) 

Since the power output of each PHEV actuator equals its torque 
multiplied by its angular velocity, which depends directly on the 
PHEV’s states, this constraint reduces the number of independent 
control inputs from three to two.  The choice of which two torque 
commands to make independent is arbitrary, but we select engine 
torque and M/G1 torque to match existing work [23].  Hence, the 
vector of independent control inputs becomes: 

 [ ]/ 1

T

e M Gu T T=  (18) 

As with the state variables, we constrain the two elements of this 
vector to take values within an admissible control set denoted by 
U(x) in Eq. (19).  This control set limits the rate of battery 
charging and discharging to minimize battery damage, and also 
limits the engine and motor/generator torque to safe and attainable 



values.  We refer to control policies that map states to control 
inputs within this set as “admissible” policies [20].  
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2.4 Drive Cycle Modeling 
The drive cycle model is a stochastic component to the plant 

model which predicts the distribution of future power demands 
using a discrete-time Markov chain [31].  Specifically, the model 
defines a probability of reaching a certain power demand in the 
next time step, given the power demand and vehicle speed in the 
current time step [22].  To acquire a numerical realization of this 
model, we define a state space for the Markov chain by selecting a 
finite number of power demand and vehicle speed samples.  Then 
we form an array of conditional transition probabilities according 
to:  

 ( ) ( ) ( )( ), , Pr 1 | ,i j m dem demp P k i P k j v k m= + = = =  (20) 

where i,j  index power demand and m indexes vehicle speed.  To 
estimate these transition probabilities, one needs observation data 
for both power demand and vehicle speed.  We obtain these 
observations from a number of drive cycle profiles.  The profiles 
provide histories of vehicle speed versus time, and we invert the 
PHEV dynamics to extract corresponding power demand histories.  
This results in the following equation for power demand, solely in 
terms of vehicle velocity and vehicle parameters: 

 3 21

2dem fr d w tire

dv
P m v A C v mgv b v r

dt
ρ µ= + + +  (21) 

In this work, we used federal drive cycles (FTP-72, US06, 
HWFET) and real-world micro trips (WVUCITY, WVUSUB, 
WVUINTER) in the ADVISOR database [28] to compute the 
observation data.  We then derived the transition probabilities in 
Eq. (20) from this data using maximum likelihood estimation [32]. 

3.  STOCHASTIC DYNAMIC PROGRAMMING 
This section presents the stochastic dynamic programming 

approach used for solving the optimal power management 
problem posed in Section 2.  The approach begins with a uniform 
discretization of the admissible state and control input sets, X and 
U(x).  This discretization makes the optimal power management 
problem amenable to computer calculations, but generally 
produces suboptimal results.  We use the symbols X and U(x) to 
refer to both the continuous and discrete-valued state and control 
input sets for ease of reading.  Given the discrete-valued sets, we 
apply a modified policy iteration algorithm [20] to compute the 
optimal power management cost function and policy.  This 
algorithm consists of two successive steps, namely, policy 

evaluation and policy improvement, repeated iteratively until 
convergence.  For each possible PHEV state, the policy iteration 
step approximates the corresponding “cost-to-go”, J, which may 
be intuitively interpreted as the expected cost function value 
averaged over a stochastic distribution of drive cycles starting at 
that state.  The policy improvement step then approximates the 
optimal control policy, u*, corresponding to each possible PHEV 
state.  This process iterates, as shown in Fig. 4, until convergence.  
Sections 3.1 and 3.2 present the policy iteration and policy 
improvement steps in further detail. 

3.1 Policy Evaluation 
The policy evaluation step computes the cost-to-go for each 

state vector value, x, given a control policy, u(x).  This 
computation is performed recursively as shown in Eq. (22):  

 ( ) ( ) ( )( )1 , ,E γ+  = + ∀ ∈ 
dem

n n
P

J x g x u J f x u x X (22) 

The index n in the above recurrence relation represents an 
iteration number, and the recurrence relation is evaluated 
iteratively for all state vector values in the discretized set of 
admissible states, X.  In general, the cost-to-go values within the 
expectation operator must be interpolated because f(x,u) will not 
always generate values in the discrete-valued state set X.  
Although the true cost-to-go for a given control policy must satisfy 
Jn = Jn+1, we iterate Eq. (22) a finite number of times before 
executing the policy improvement step (next section).  This 
truncated policy evaluation approach, used in combination with 
the policy improvement step below,  converges to the optimal 
control policy regardless of the maximum number of iterations 
[20]. 

3.2 Policy Improvement 
Bellman’s principle of optimality indicates that the optimal 

control policy for the stochastic dynamic programming problem in 
Eq. (1,2) is also the control policy that minimizes the cost-to-go 
function J(x) in Eq. (22).  Thus, to find this control policy u*, we 
minimize cost-to-go with respect to this policy for each state 
vector value x, given the cost-to-go function J(x).  Mathematically, 
this minimization is represented by: 
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Equation (23) imposes the state and control input set constraints 
from Eq. (2) in the form of a quadratic penalty term, gcons(x).  This 
penalty term consists of sixteen penalty functions summed 
together, each corresponding to one of the inequalities given in 
Eq. (16) and Eq. (19).  Each penalty function equals the excursion 
from the corresponding constraint boundary, normalized with 
respect to the feasible range of operation, squared, and multiplied 
by a coefficient five orders of magnitude greater than the energy 



consumption weights.  For example, the penalty function for 
minimum engine speed takes the form:  
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After both policy evaluation and policy improvement are 
completed, the optimal control policy is passed back into the 
policy evaluation step and the entire procedure is repeated 
iteratively.  The process terminates when the infinity norm of the 
difference between two consecutive steps is less than 1%, for both 
the cost and control functions. 

 

FIGURE 4: MODIFIED POLICY ITERATION FLOWCHART. 

4.  RESULTS AND DISCUSSION 
This section analyzes the properties of the proposed PHEV power 
management approach by comparing its performance against a 
baseline control policy, inspired by previous research [1,16,17].  
Specifically, it is fairly common in PHEV power management 
research to examine algorithms that initially operate in a charge 
depletion mode, then switch to charge sustenance once some 
minimal battery state of charge is reached [1,16,17].  The charge 
depletion mode typically utilizes stored battery energy to meet as 
much of the driver power demand as possible (engine power may 
be needed when demand exceeds the power capabilities of the 
motor/generators), thereby depleting battery charge rapidly.  The 
charge sustenance mode then uses engine power to regulate 
battery state of charge once it reaches some predefined minimum.  
This charge depletion, charge sustenance (CDCS) approach 
implicitly assumes that fuel consumption dominates operating 
costs relative to electricity consumption from the battery.  We 
implement CDCS in this paper by setting αelec in Eq. (14) to zero 
and rely on the minimum SOC constraint in Eq. (16) to enforce 
charge sustenance behavior once battery charge is depleted.   We 
refer to power management strategies that are the result of setting 
all coefficients in Eq. (14) to nonzero values as blended, since a 
weighted sum of both electricity and fuel is utilized to construct 
the power split map. 

In the remainder of this section, we first analyze the 
performance of the blended and CDCS strategies by focusing on 
two FTP-72 drive cycles simulated back-to-back.  Second, we 
examine the difference between these two control strategies in 
more depth by exploring how they manage engine speed and 
torque.  Finally, we investigate the impact of varying fuel and 
electricity purchase prices on the optimal blended and CDCS 
control laws. 

4.1 Performance 
To illustrate the potential performance improvements of a 

blending strategy over a CDCS strategy, consider their responses 
for two FTP-72 drive cycles simulated back-to-back, as shown in 
Fig. 5 and 6.  The total cost of energy for this trip is 6.4% less for 
the blended strategy relative to CDCS, and fuel consumption is 
reduced by 8.2%.  Blending accomplishes this by utilizing the 
engine more during the charge depletion phase, thereby assisting 
the battery to meet total power demand more often than CDCS.  
Although in the blended case the engine operates at higher loads, 
therefore consuming more fuel, the engine efficiency is greater 
and, as demonstrated in Fig. 6, battery charge depletes more 
slowly.  As a result, blending and CDCS incur nearly the same 
total energy costs through the depletion phase (Fig. 5), and the 
advantage of blending in terms of overall cost arises from its 
delayed entry into charge sustenance. 
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FIGURE 5. ENERGY CONSUMPTION COSTS, 2X FTP-72.  
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FIGURE 6. SOC RESPONSE, 2X FTP-72. 

The benefit of delayed entry into charge sustenance is evident 
from previous research in the literature in which the PHEV drive 
cycle and total trip length were assumed to be known a priori 
(e.g., [9,16]).  For example, in [9] deterministic dynamic 



programming furnished blending strategies that reached minimum 
SOC exactly when the PHEV trip terminated, thereby never 
allowing the PHEV to enter the charge sustenance mode.  This 
result agrees with our current findings, namely, that the primary 
benefit of blending strategies results from their ability to delay or 
eliminate the need for charge sustenance. However, the approach 
in [9] requires knowledge of trip length a priori. Since SDP 
explicitly takes into account a probability distribution of drive 
cycle behavior, our identified strategy is optimal in the average 
sense.  

Performance improvements of blending over CDCS are 
uniform across all the drive cycles shown in Table 2, where the 
drive cycle lengths are selected to ensure that the vehicle reaches 
charge sustenance before the trip terminates.  If the vehicle 
reaches its destination before entering charge sustenance phase, 
however, the total energy consumption costs are nearly identical 
for blending and CDCS (as demonstrated in Fig. 5).  Therefore the 
blending strategy proposed herein has no significant energy 
consumption cost penalty for early trip termination.  Note that 
some of the largest improvements are observed for drive cycles 
that were not used to estimate the Markov state transition 
probability matrix. 

TABLE 2. BLENDED PERFORMANCE               
IMPROVEMENT OVER CDCS 

Drive Cycle Fuel Economy km/USD MJ/km 

2xFTP-72 8.2% 6.4% 5.4% 

US06 3.2% 2.8% 3.2% 

4xSC03 11.8% 8.8% 7.7% 

HWFET 8.7% 4.9% 4.9% 

LA92 11.0% 6.7% 5.9% 

4.2 Engine Control 
A significant benefit of the power-split architecture is the fact 

that it decouples the engine crankshaft from the road, and allows 
the electric machines to move engine speed where fuel efficiency 
is maximized [26].  This optimal operating line is identified by the 
black dashed line in Fig. 7 and 8.  As shown in Fig. 7, the blending 
strategy initially operates the engine at fairly low speeds and high 
torques, close to the optimal fuel efficiency operating line.  This 
occurs even when power demand can be met by the electric 
motors alone.  The excess engine power goes towards regenerating 
battery charge, which the blended cost function in Eq. (14) 
rewards.  Moreover, the electric machines are not generally 
saturated and are thus free to maintain low engine speeds and high 
efficiencies.  In contrast, the CDCS strategy causes the engine to 
remain at very low brake torque levels during depletion, where 
fuel consumption is low but so is engine efficiency (Fig. 8).  
Moreover, significant power is requested from the engine only 

when the electric machines saturate and cannot meet driver power 
demand by themselves.  This limits the control authority of the 
electric machines when driver power demand is large, thereby 
reducing their ability to move engine speed to the optimal 
operating line.  These observations explain how the blending 
strategy utilizes the engine and electric motors more efficiently, 
thereby delaying the charge sustenance phase and improving 
overall PHEV operating costs. 
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 FIGURE 7. BLENDED OPERATING POINTS                         
ON BSFC MAP, 2X FTP-72.  
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 FIGURE 8. CDCS OPERATING POINTS                                
ON BSFC MAP, 2X FTP-72. 

4.3 Energy Price Ratio 
An important feature of the proposed power management 

algorithm is its dependence on the energy price ratio, β, which 
varies temporally (e.g., by year) and spatially (e.g., by geographic 
region).  To investigate the nature of this dependence, we obtained 



the history of energy price ratios since 1973 [30], shown in Fig. 9.  
The value of β has clearly changed significantly over the past 35 
years due to shifts in both oil and electricity prices.  This 
motivates the need to understand how this parameter impacts 
optimal PHEV power management.  
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FIGURE 9. HISTORIC ENERGY PRICE RATIO DATA. 

Consider the SOC depletion responses shown in Fig. 10 for 
controllers synthesized with energy price ratios in the set 
β∈{0.4,0.6,0.8,1.0,1.2} and for a CDCS strategy, which by 
definition does not depend on β.  Several conclusions can be 
drawn from this parametric study.  First, as β approaches infinity 
(i.e. fuel becomes infinitely more expensive than grid electric 
energy), the optimal blending strategy converges to a CDCS 
strategy.  This is consistent with the fact that the CDCS strategy 
implicitly assumes the cost of fuel is infinitely more than the cost 
of electricity.  Secondly, for sufficiently low β (i.e. electricity 
becomes more expensive than fuel), the optimal blending strategy 
generates electric energy. The implicit assumption leading to this 
result is that the driver is able to sell energy back to the grid when 
the vehicle is plugged in.  Although electricity prices are unlikely 
to be this high in general, real-time pricing could motivate using 
the vehicle as a distributed power generator during periods of peak 
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FIGURE 10. SOC RESPONSES FOR BLENDED WITH 
VARYING β AND CDCS, 2X FTP-72. 

demand when conventional generation is scarce [33].  This 
suggests that, with the appropriate exchange of information, a 
vehicle could be configured to modify its control policy in real 
time to reflect grid conditions.  Hence, our proposed controller is 
extendible toward vehicle-to-grid infrastructures.  

5.  CONCLUSIONS 
This paper demonstrates the use of stochastic dynamic 

programming for optimal PHEV power management.  It derives 
an optimal power management strategy that rations battery charge 
by blending engine and battery power in a manner that improves 
engine efficiency and reduces total charge sustenance time. This 
strategy explicitly takes into account a probability distribution of 
drive cycles and variable energy price ratios.  This formulation 
guarantees a solution that is optimal in the average sense, without 
requiring drive cycle knowledge a priori.  Moreover, we have 
shown that energy price ratios can significantly influence the 
characteristics of the optimal control policy.  Indeed, it may be 
useful to equip production PHEVs with a range of control laws 
corresponding to the range of price ratios that could be 
experienced over the life of the vehicle. 
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