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ABSTRACT

This paper examines the problem of optimally spdjttiriver
power demand among the different actuators (he.ehgine and
electric machines) in a plug-in hybrid electric &b (PHEV).
Existing studies focus mostly on optimizing PHEMWvero
management for fuel economy, subject to chargecsaste
constraints, over individual drive cycles. Thigpaadds three
original contributions to this literature. Firstt uses stochastic
dynamic programming to optimize PHEV power managgme
over a distribution of drive cycles, rather thansigle cycle.
Second, it explicitly trades off fuel and electsicusage in a
PHEV, thereby systematically exploring the potdrtenefits of
controlled charge depletion over aggressive chatggletion
followed by charge sustenance. Finally, it examife impact of
variations in relative fuel-to-electricity pricingn optimal PHEV
power management. The paper focuses on a singlie-pmwer-
split PHEV configuration for mid-size sedans, lsitipproach is
extendible to other configurations and sizes as.wel

1. INTRODUCTION
This paper examines plug-in hybrid electric velscle

(PHEVSs), i.e., automobiles that can extract prapelgower from
chemical fuels or stored electricity, and can obtae latter by
plugging into the electric grid. The paper’s g@ato develop
power management algorithms that optimize the wiH&V
splits its overall power demand among its variousnd often
redundant — actuators. Such optimal power managenay help
PHEVs attain desirable fuel economy and emissigal$ewith
minimal performance and drivability penalties [1,Eurthermore,
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the optimal “blending” of fuel and electricity usag a PHEV
may also provide significant economic benefitsehigle owners,
especially for certain fuel-to-electricity priceios [3].

The literature provides a number of approachesyhwidh
vehicle power management, many equally applicalieth plug-
in and conventional (i.e., non plug-in) hybridsheBe approaches
all share a common goal, namely, to meet overdliclke power
demand while optimizing a metric such as fuel/eleity
consumption, emissions, or some careful combinati@neof.
For example, the equivalent fuel consumption mination
approach [4-6] uses models of electric powertraifiggmance to
mathematically convert electricity consumption toegjuivalent
amount of fuel, and then makes real-time powet dpliisions to
minimize net fuel consumption. The manner in whiobst
approaches optimize vehicle performance is eithatdntifying a
power managementrajectory, or by establishing a power
managementule base Trajectory power management algorithms
require knowledge of future power demand and usds th
information to specify the future power output etk actuator.
Such optimization can be performed offline for drigycles
knowna priori using deterministic dynamic programming (DDP)
[7-10], and can also be performed online usingroaitimodel
predictive control [11,12]. Rule-based approacimesymparison,
constrain the power split within a hybrid vehiotedepend only
on the vehicle’s current state and input variablesg.,
vehicle/engine speed, battery charge, power deretmiithrough
some map, omule basg13-19]. One then tailors this rule base to
ensure that each actuator in the powertrain opeegeclose to



optimally as possible. These maps can be constutbm

engineering expertise and insight, or using morm& methods
such as optimization [17] or fuzzy logic [18-19]Stochastic
dynamic programming (SDP) methods are particukplyealing
in this context, despite their well-recognized caomapional

complexity [20], because of their ability to optizaia power split
map for a probabilistic distribution of many driegcles, rather
than a single cycle [21-25].

The above survey briefly examines the hybrid power
management literature for both plug-in and conweati hybrid
electric vehicles. Within the specific contextRIfIEVS, power
management research has generally focused on doabomy
improvement, subject to constraints on batteryestditcharge,
using either the rule-based [16,17] or DDP appr¢@c0]. This
paper extends this research by adding three impootaginal
contributions to the PHEV power management litematirirst, it

uses SDP to optimize PHEV power management over a

probability distribution of drive cycles. Second,explicitly
accounts for the interplay between fuel and eleityricosts in
PHEV power management. This makes it possiblethfeffirst
time, to fully explore the potential benefits ofntmlled charge
depletion over aggressive charge depletion followgdharge
sustenance. Finally, the paper presents whatthera believe to
be the first study on the impact of variable eleityr and
petroleum purchase prices on optimal PHEV poweragament.
The above contributions are made specifically feingle-mode
power-split PHEV configuration, although the papapproach is
extendible to other configurations as well.

The remainder of this paper is organized as follo8action
2 introduces the vehicle configuration, problemirddén, and
vehicle model used in this work. Section 3 thercdes the
numerical optimization method adopted in this woBection 4
discusses the results of this optimization, andi&eé highlights
the paper’s key conclusions.

2. PROBLEM FORMULATION

Figure 1 portrays the main components and configuraf
the powertrain architecture considered in this pagféen called
the single-modegpower split “series/parallel”, or “combined”.
This architecture combines internal combustionmagower with
power from two electric motor/generators — ideatfias M/G1
and M/G2 — through a planetary gear set. The pdaygear set
creates both series and parallel paths for powertt the wheels.
The parallel flow paths (blue arrows) include ahptbom the
engine to the wheels and a path from the battargugh the
motors, to the wheels. The series flow path, @endther hand,
takes power from the engine to the battery fitgtntback through
the electrical system to the wheels (red arrows)s redundancy
of power flow paths, together with battery storaggpacity,
increases the degree to which one can optimize @ivecontrol
for performance and efficiency while meeting oveeradhicle
power demand.
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FIGURE 1. SINGLE MODE POWER-SPLIT HYBRID
ARCHITECTURE (ADAPTED FROM [26]).

The above power split hybrid vehicle architectiae loe used
for a variety of vehicle sizes and needs. Thisspépcuses on a
midsize sedan power split PHEV whose key composieat are
listed in Table 1. This PHEV is quite similar inndiguration,
dynamics, and design to the 2002 Toyota Priuswithtroughly
twice the battery capacity. Specifically, we asstinat the PHEV
has 80 modules of Ni-MH batteries instead of 3&hi&a 2002
Prius. This choice of battery size and type isglpanotivated by
the relative ease with which one can convert thevab
conventional hybrid vehicle into an experimentalERH- by
simply adding Ni-MH battery energy capacity. A sefuent
paper builds on this paper’s results by examintiegnfluence of
battery sizing on the optimal control laws studrestein [27].
Furthermore, the impact of battery type (e.qg.,iuitfrion vs. Ni-
MH, etc.) on PHEV performance and efficiency is shbject of
ongoing research that also builds on the methodsesults of
this paper.

Given the above vehicle, powertrain, and batteojads, this
paper examines the following power management probl

Minimize: = lim E [fykg(x( K, u @)} 1)
(D)= 1. o §)

Subject to: X[ X (2)
uu

In this discrete-time stochastic optimal contrololgem, k
represents an arbitrary discrete time instantftamdampling time

is 1 second. This sampling time is consistent with paper’s
focus on supervisory rather than servo-, control. The
optimization objective in this control problem cats of the
instantaneous combined cost of PHEV fuel and edstytr
consumptiong(x(k),u(k)), accumulated over time, discounted by a



TABLE 1. POWERTRAIN MODEL SPECIFICATIONS

) EPA Classification Midsize sedan
Vehicle .
Base Curb Weight 1400 kg
Type Gasoline Inline 4-cylinder
) Displacement 15L
Engine
Max. Power 43 kW @ 4000 RPM
Max. Torque 102 N-m @ 4000 RPM
Type Permanent Magnet AC
Motor/ =51 Max. Power 15 KW @ 3008500 RPM
Generators
M/G2 Max. Power 33 kW @ 1040-5600 RPM
Cell Chemistry Nickel Metal Hydride
Nominal Voltage 1.2V per cell
Battery Nominal Capacit 6.0 A-h per cell
Pack pacty - D
No. of Cells 480
Pack Energy Capacity 3.7 kWh

constant factoy, and averaged over the stochastic distribution of
instantaneous power demamy.,, In optimizing this objective,
we impose three important constraints, namelyth@ PHEV
powertrain’s dynamics, representedfpyk),u(k)), (ii) the set of
admissible PHEYV stateX, and (iii)the set of admissible control
inputs, U. The remainder of this section presents these
optimization objectives and constraints in more adet
Specifically, Sections 2.1-2.4 present, respegtjvisle PHEV
model, f(x(k),u(k)), the optimization functiona(x(k),u(k)), the
state and control constraint se{sandU, and the Markov chain-
based drive cycle model used for computing the eteuePHEV
optimization cost.

2.1 PHEV Model

To model the dynamics of a PHEV, we first identifye
PHEV’s inputs, outputs, and state variables. Tdwahis goal,
Figure 2 presents a conceptual map of the key aatens
between the PHEV examined in this paper, its hudniaer, and
its supervisory power management algorithm. Thisceptual
map adopts the fairly common tradition in hybrid weo
management research of interpreting the drivercglacator and
brake pedal positions as a power sigiRgl,, demanded at the
wheels (e.g., [22-24]). The supervisory power nganmaent
algorithm attempts to meet this power demand bysditig three
control input signals: engine torqig M/G1 torqueTy,g1, and
M/G2 torqueTyc2. Engine startup and shutdown can also be
treated as a control input, but this paper assufbesimplicity,
that the PHEV engine idles when power is not deradndr his
leaves the important issue of engine startup/shwidand its
complex impact on PHEV warmup and emissions, an tqyacs
for ongoing research. In summary, therefore, HEY plant has
three control inputs, namely, the three engine/migémerator
torques.
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FIGURE 2. PHEV MODEL COMPONENTS AND CONTROL
SIGNAL FLOW.

The above control inputs affect the PHEV plant tigaing
its state variables. In this paper, we closeljofelsome of the
existing hybrid vehicle power management reseayathbosing
engine crankshaft speed,, longitudinal vehicle velocity, and
battery state of charg80OG as the three PHEV state variables.
We use a Markov memory variable to represent tbehsistic
distribution of driver power demand, as explaine&eéction 2.4.

To model the dynamics governing the PHEV stateatdes,
we begin by expressing the total road loBd,q, acting on the
PHEV as follows [23]:

Froad = I:rcall + Fdrag + I:da\mp’ (3)
In this equationk,, is a rolling resistance term given by:
I:roll = :umg ' (4)

whereg, m, andy represent the acceleration of gravity, mass of
the PHEV, and a rolling resistance coefficient (assd constant),
respectively. Furthermorég.g is an aerodynamic drag force
given by:

F

drag = 0'5pAferV2’ (5)
where p, A, and C4 represent the density of air, the PHEV's
effective frontal area, and the PHEV's effectiveoalgnamic drag
coefficient, respectively. Finallfsq.mpiS a wheel/axle bearing

friction term given by:

_byv
amp — !
rtire

F, (6)

where by, is the bearing’s damping coefficient angk is an
effective PHEV tire radius. Note that this expressor wheel



damping, as well as other derivations below, assuandirect
proportionality between wheel angular velocity aabicle speed,
where the proportionality constant is related wttte radius and
final drive ratio. This assumption effectively tegs tire slip for
simplicity, thereby eliminating the need for usitvgp separate
state variables to represent wheel and vehicledspee

Road loads from Eq. (3) act on the PHEV powertitaiough
the planetary gear set sketched in Fig. 3. Tlisqthry gear set
can be conceptually and mathematically treated ateal “lever”
connecting the engine, two motor/generators, ahétiewheels
(through the final drive), as shown in Fig. 3. dgithis lever
diagram in conjunction with Euler’s equations oftion, one can
relate the road load in Eq. (3) to angular velesiin the PHEV
powertrain as follows [23]:

I 0 0 R+S|| @ T,

0 e 0 S || Giie - Twiet (7)

0 0 The R || e T2
-(R+s) S R 0 F 0

In this equationR and S denote the numbers of teeth on the
planetary gear set’s ring and sun, respectiveljne &ngular
velocities of the engine and two motor/generatoesd@noted by
w, Wyc, andayc, respectively. Furthermor&, andl, denote
the engine’s brake torque and inertia, ap@; andly,c; denote
the torque and inertia of the first motor/generatespectively.
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FIGURE 3. PLANETARY GEAR SET & LEVER DIAGRAM.

To complete the derivation of the PHEV plant mode,
assume — for simplicity — that the PHEV'’s batteay be idealized
as an open-circuit voltagéd/,, in series with some internal
resistanceR,.. We allow both/,. andRy,: to depend on battery
state-of-chargeSOG through a predefined map (adapted from
[28,29]). Furthermore, we defifrBOC as the ratio of charge
stored in the battery to some known maximum chagegecity,
Qpar- This furnishes the following relationship betwdlee rate of
change o5OCand the current,,,, generated by the battery:

SOC=- Lan/ Qa 9)

To obtain an expression for the currépt,, we note that the

The forceF represents an internal reaction force between the instantaneous power delivered by the battery to the

planetary gear set's sun and planets. Finallytatrasl y,g, and
T w2 are effective inertia and torque terms given by:

tire

Twrc2 = Twicz ~ Foadlie! K

road " tire

Il'\/I/GZZIM/GZ+(Iw+mr2 )/KZ )

where lyg2 and |, are the rotational inertias of the second
motor/generator and whed, is the final drive gear ratio, and
Twic2 IS the torque produced by the second motor/gemerat

The point-mass model in Eqg. (7,8) provides a coteple
description of how the state variablgsandv (which is directly
proportional toacz) evolve with time for given control input
trajectories. This description is provided in diéfstial algebraic
equation (DAE) form, with the fordeé and velocitya,c: acting
as dependent state variables. Simple algebraigépoiations,
omitted herein, can be used in conjunction witletdiscretization
to convert this DAE description to the explicitioin Eq. (2).

motor/generatorsPy,y, is related td,.y through the following
power balance:

_ 2
R)an =V, Ibatt_ Rbattl batl (10)

oc

Solving Eq. (9,10) for the rate of changeS®@Cgives:

SOC: _Voc R Vozc -4 Bjatt Roan

2Qban Rban

Finally, relating the poweP,.: to the torques, speeds, and
efficiencies of the two motor/generators gives:

(11)

[— kM 1 kf\/|
Rat = Twa WyyeiMer T Twez Dvic2Tyics (12)
where g = L T@>0g0 ={M/GLM /G2 (13)
1, T@<0

Combining Eq. (11-13) with maps from [28], whickete the
efficiencies of the electric motor/generators teitiorques and
speeds, provides a complete description of theetya8OC
dynamics as a function of PHEV states and inpDiiscretizing
this description and combining it with an expldigcretized form



of Eqg. (7,8) furnishes a complete model of the PHESNt

dynamics, i.e.,f(x(k),u(k)) in Eg. (2). This model mostly
replicates existing hybrid powertrain models inlttezature (e.g.,
[23]), but we use it in conjunction with the nowebjective

function in Section 2.2 to examine PHEV power mamagnt.

2.2 Objective Function

The optimization objective], in Eq. (1) aggregates the
expected combined cost of PHEV fuel and electriamtysumption
over a stochastic distribution of trips, and disusuthis cost
exponentially through the factog This discount factor, if
restricted to the interval [0,1), ensures that thenulative
optimization objective remains finite over infiniiene horizons.
This paper follows Lin [22] in setting’to 0.95, leaving the
question of how different values géffect optimal PHEV power
management open for future research.

To explicitly trade off fuel and electricity consption in
PHEVs, we define the instantaneous cost functionainely,
g(x(K),u(k)) in Eq. (1), as follows:

g(x U) = Ba g Wie +a 1 (14)

fuel elec ele
grid

The first term in this cost functional quantifieHPV fuel
consumption, while the second term quantifies alEtt
consumption, and the coefficietmakes it possible to carefully
study tradeoffs between the two. Specifically, represents the
fuel consumption rate in grams per time step, wheraise the
engine map in [28] to convert engine torque andedpe fuel
consumption. The constant parametgy then converts this rate
to an energy consumption rate, in megajoules (Md}ime step.

Similarly, Pgecrepresents the instantaneous rate of change of theinput bounds.

battery’s internal energy, i.e.,

P

elec —

-V, Qpa SOC (15)
The constant parametet. convertsPg. to MJ per time step.
Dividing this change in stored battery energy bygamstant
charging efficiencyryiq = 0.98 (which corresponds to a full
recharge in six hours) furnishes an estimate ofatmeunt of
energy needed from the grid to replenish the battélote that
Peec IS positive when the PHEV uses stored battery gnang
negative during regeneration. Hence, there erisesward for
regeneration that offsets the need to consumestgadricity. The
magnitude of this reward depends on the param@tevhich
represents the relative price of gasoline per Midggrice of grid
electricity per MJ. We refer to this parametethes‘energy price
ratio,” and use it to examine the tradeoffs betwdaal
consumption and electricity consumption in PHESpecifically,
we begin this paper’s power management optimizatiodies by

prices in 2006, namely $2.64 USD per gallon of §ascand
$0.089 USD per kWh of electricity [30]. We themryéhis ratio
to examine the influence of different relative ftelelectricity
prices on optimal power management, as shown itideet.3.

2.3 Constraints

In optimizing PHEV power management, we seek ciateo
capable of keeping the state vectowithin simple bounds
expressed as a constraint Xeh Eq. (16). These bounds ensure
that the engine neither exceeds its maximum alléevsiieed nor
falls to speeds where noise, vibrations, and hashiiNVH)
become excessive [26]. They also constrain battéate of
chargeto remain between two limits denoted $68G,;, = 0.25
and SOG, . = 0.9. ConstrainingOCin such a way helps to
protect against capacity and power fade due to-clvarging or
excessive discharging [10,16,17]. However, theipesmpact of
the depths and rates of PHEV battery charging/digghg on
battery health is still under investigation. Fipalve also impose
limits on the speeds of the motor/generators ttegtahem from
damage. As explained in Section 3.2, when soltliegoptimal
PHEV power management problem numerically, we esealty
functions to implement all of these state constsaas “soft”
constraints.

),

‘e,min

X: % /G1,min s wM /GlS wM /G1,max

- a“\/l /G2,min = a’M 1G2 = wM /G 2,max
SOG, < SO& SOg,

<w<w

gmax

In addition to constraining the PHEYV state variabige also
implement two types of control input constraintpag of power
management optimization: a drivability constraintdacontrol
The drivability constraint, given By. (17),
ensures that driver power demand is met by equatiaghe sum
of the three engine/motor/generator power outputs:

P

dem = Pe+ PNV a + PNV @ (17)
Since the power output of each PHEV actuator edtsaterque
multiplied by its angular velocity, which dependeedtly on the
PHEV's states, this constraint reduces the numtiadependent
control inputs from three to two. The choice ofethtwo torque
commands to make independent is arbitrary, butelezsengine
torque and M/G1 torque to match existing work [2BEnce, the
vector of independent control inputs becomes:
T

u=[T, Ty al (18)
As with the state variables, we constrain the tiements of this
vector to take values within an admissible corgatldenoted by
U(X) in Eg. (19). This control set limits the rate lodttery
charging and discharging to minimize battery damage also

setting a price ratio g8 = 0.8, consistent with the average energy limits the engine and motor/generator torque te aafl attainable



values. We refer to control policies that mapestab control
inputs within this set as “admissible” policies [20

Te,min < Te < Temax(we)

. TM/Gl,min = TM /Gls TM /Gl,max(wM ,GJ)

U(x)={u: (19)

TM /G2,min < TM 1G2 < TM /GZ,max(wM G

I?:hg,lim (Soq < lE?atts IEi)islim ( Sog:

2.4 Drive Cycle Modeling

The drive cycle model is a stochastic componetitéglant
model which predicts the distribution of future powdemands
using a discrete-time Markov chain [31]. Specificahe model
defines a probability of reaching a certain powemend in the
next time step, given the power demand and vebméed in the
current time step [22]. To acquire a numericalization of this
model, we define a state space for the Markov dmaselecting a
finite number of power demand and vehicle speegbzsn Then
we form an array of conditional transition probétas according
to:

Bim = PH{Ren(k+ D= i1P{ W= M K= 1) (20)

wherei,j index power demand amd indexes vehicle speed. To

estimate these transition probabilities, one nebdsrvation data
for both power demand and vehicle speed. We olitase

observations from a number of drive cycle profil@fe profiles

provide histories of vehicle speed versus time,wadnvert the

PHEYV dynamics to extract corresponding power derhésidries.

This results in the following equation for powenund, solely in

terms of vehicle velocity and vehicle parameters:

F)dem = m% V+%p A!r Cd \?"‘,U mg‘d— Q %// tire (21)

In this work, we used federal drive cycles (FTP-W306,
HWFET) and real-world micro trips (WVUCITY, WVUSUB,
WVUINTER) in the ADVISOR database [28] to compulet
observation data. We then derived the transitiobabilities in
Eq. (20) from this data using maximum likelihootireation [32].

3. STOCHASTIC DYNAMIC PROGRAMMING

This section presents the stochastic dynamic pnogiiag
approach used for solving the optimal power managgm
problem posed in Section 2. The approach begitisaniniform
discretization of the admissible state and cortmlit setsX and
U(x). This discretization makes the optimal power aggment
problem amenable to computer calculations, but gdige
produces suboptimal results. We use the sym¥alsdU(x) to
refer to both the continuous and discrete-valuatéstnd control
input sets for ease of reading. Given the diserateed sets, we
apply a modified policy iteration algorithm [20] tmmpute the
optimal power management cost function and policyhis
algorithm consists of two successive steps, nangdjicy

evaluation and policy improvement, repeated iteedyi until
convergence. For each possible PHEYV state, theyhtération
step approximates the corresponding “cost-to-goWhich may
be intuitively interpreted as the expected costcfiom value
averaged over a stochastic distribution of driveley starting at
that state. The policy improvement step then apprates the
optimal control policyu’, corresponding to each possible PHEV
state. This process iterates, as shown in Fignté,convergence.
Sections 3.1 and 3.2 present the policy iteratiod policy
improvement steps in further detail.

3.1 Policy Evaluation

The policy evaluation step computes the cost-tfeg@ach
state vector valuex, given a control policy,u(x). This
computation is performed recursively as shown in(£3):

3 () =a(x 9+ E[ya( f(x9)] 0x > @2

The indexn in the aboverecurrence relationrepresents an
iteration number, and the recurrence relation islwated
iteratively for all state vector values in the detzed set of
admissible stateX. In general, the cost-to-go values within the
expectation operator must be interpolated bect{xgg will not
always generate values in the discrete-valued stateX.
Although the true cost-to-go for a given contrdi@omust satisfy
Jn = Jn+1, We iterate Eq. (22) a finite number of times lefo
executing the policy improvement step (next segtiof his
truncated policy evaluation approach, used in coatimn with
the policy improvement step below, converges t dptimal
control policy regardless of the maximum numbert@fations
[20].

3.2 Policy Improvement

Bellman’s principle of optimality indicates thatettoptimal
control policy for the stochastic dynamic programgiproblem in
Eq. (1,2) is also the control policy that minimizbe cost-to-go
functionJ(x) in Eq. (22). Thus, to find this control poliay, we
minimize cost-to-go with respect to this policy feach state
vector value, given the cost-to-go functiafx). Mathematically,
this minimization is represented by:

u'(x)=arg min{ o(x Y+ E[y A 3]+ gl 3} Og (23

uuU (x)

Equation (23) imposes the state and control inputenstraints
from Eq. (2) in the form of a quadratic penaltyrtieg.,.{X). This
penalty term consists of sixteen penalty functiesnmed
together, each corresponding to one of the inetipgigiven in
Eq. (16) and Eq. (19). Each penalty function esjtla excursion
from the corresponding constraint boundary, norrealiwith
respect to the feasible range of operation, squaretimultiplied
by a coefficient five orders of magnitude greatemtthe energy



consumption weights. For example, the penalty tiancfor
minimum engine speed takes the form:

) .

2

Oeonsea (x) =0 congopn, min{o,a)""m"‘_w"‘} (24)
e,max e,min
After both policy evaluation and policy improvemeate
completed, the optimal control policy is passedkbito the
policy evaluation step and the entire procedureeigeated
iteratively. The process terminates when the ityfinorm of the
difference between two consecutive steps is less 1o, for both
the cost and control functions.

J(x) Policy

ux) ==
Policy N
Improvement

| Evaluation

FIGURE 4: MODIFIED POLICY ITERATION FLOWCHART.

4. RESULTS AND DISCUSSION

This section analyzes the properties of the prap&$¢EV power
management approach by comparing its performanamstea

baseline control policy, inspired by previous reshd1,16,17].

Specifically, it is fairly common in PHEV power nagement
research to examine algorithms that initially opetia acharge

depletionmode, then switch teharge sustenancence some
minimal battery state of charge is reached [1,1]6,The charge
depletion mode typically utilizes stored battergigy to meet as
much of the driver power demand as possible (ergimesr may
be needed when demand exceeds the power capabilftie

motor/generators), thereby depleting battery cheagally. The

charge sustenance mode then uses engine poweguate
battery state of charge once it reaches some pnedahinimum.

This charge depletion, charge sustenan@@DCS) approach
implicitly assumes that fuel consumption dominatggrating

costs relative to electricity consumption from tettery. We

implement CDCS in this paper by settimg..in Eq. (14) to zero
and rely on the minimum SOC constraint in Eq. (tb6g¢nforce

charge sustenance behavior once battery chargplstdd. We
refer to power management strategies that aresthitiof setting
all coefficients in Eq. (14) to nonzero valueséended since a
weighted sum of both electricity and fuel is uglizto construct
the power split map.

In the remainder of this section, we first analythe
performance of the blended and CDCS strategiesdysfng on
two FTP-72 drive cycles simulated back-to-back.cddel, we
examine the difference between these two contrategies in
more depth by exploring how they manage engine cspae
torque. Finally, we investigate the impact of wagyfuel and
electricity purchase prices on the optimal blended CDCS
control laws.

4.1 Performance

To illustrate the potential performance improverseoit a
blending strategy over a CDCS strategy, considsr tesponses
for two FTP-72 drive cycles simulated back-to-bakshown in
Fig. 5 and 6. The total cost of energy for thig it 6.4% less for
the blended strategy relative to CDCS, and fuebomption is
reduced by 8.2%. Blending accomplishes this blzirg the
engine more during the charge depletion phaseslblyeassisting
the battery to meet total power demand more oftan CDCS.
Although in the blended case the engine operateigla¢r loads,
therefore consuming more fuel, the engine effigjeiscgreater
and, as demonstrated in Fig. 6, battery chargeetiEplmore
slowly. As a result, blending and CDCS incur ng#ne same
total energy costs through the depletion phase &igand the
advantage of blending in terms of overall costesifom its
delayed entry into charge sustenance.
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The benefit of delayed entry into charge sustensreddent
from previous research in the literature in whioh PHEV drive
cycle and total trip length were assumed to be knavpriori
(e.g., [9,16]). For example, in [9] deterministitynamic



programming furnished blending strategies thatredoninimum
SOC exactly when the PHEV trip terminated, thereleyer

allowing the PHEV to enter the charge sustenancagemd his

result agrees with our current findings, namelgt the primary
benefit of blending strategies results from theitiey to delay or

eliminate the need for charge sustenance. Howtheegpproach
in [9] requires knowledge of trip length priori. Since SDP
explicitly takes into account a probability distition of drive

cycle behavior, our identified strategy is optirimathe average
sense.

Performance improvements of blending over CDCS are

uniform across all the drive cycles shown in Tahlevhere the
drive cycle lengths are selected to ensure thatghile reaches
charge sustenance before the trip terminates. hdf vehicle
reaches its destination before entering chargeisaste phase,
however, the total energy consumption costs argynieientical
for blending and CDCS (as demonstrated in FigTherefore the
blending strategy proposed herein has no signifiearergy
consumption cost penalty for early trip terminatioNote that
some of the largest improvements are observedrioe dycles
that were not used to estimate the Markov statasitian
probability matrix.

TABLE 2. BLENDED PERFORMANCE
IMPROVEMENT OVER CDCS

Drive Cycle Fuel Economy km/USD  MJ/km
2xFTP-72 8.2% 6.4% 5.4%
US06 3.2% 2.8% 3.2%
4xSCO03 11.8% 8.8% 7.7%
HWFET 8.7% 4.9% 4.9%
LA92 11.0% 6.7% 5.9%

4.2 Engine Control

A significant benefit of the power-split architexgus the fact
that it decouples the engine crankshaft from tlaelyand allows
the electric machines to move engine speed whetefiiciency
is maximized [26]. This optimal operating linadentified by the
black dashed line in Fig. 7 and 8. As shown in Fighe blending
strategy initially operates the engine at fairlylspeeds and high
torques, close to the optimal fuel efficiency opiagaline. This
occurs even when power demand can be met by thtriele
motors alone. The excess engine power goes tovegeserating
battery charge, which the blended cost functiorEm (14)
rewards. Moreover, the electric machines are rasterplly
saturated and are thus free to maintain low ergpeeds and high
efficiencies. In contrast, the CDCS strategy catise engine to
remain at very low brake torque levels during dépe where
fuel consumption is low but so is engine efficien&yg. 8).
Moreover, significant power is requested from thgiee only

when the electric machines saturate and cannotdniget power
demand by themselves. This limits the control aut of the
electric machines when driver power demand is |atigereby
reducing their ability to move engine speed to tpimal
operating line. These observations explain howhieading
strategy utilizes the engine and electric motorsemadficiently,
thereby delaying the charge sustenance phase gmubvimg
overall PHEV operating costs.
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4.3 Energy Price Ratio
An important feature of the proposed power manageme
algorithm is its dependence on the energy pride,r&t which
varies temporally (e.g., by year) and spatiallg.(&y geographic
region). To investigate the nature of this depandewe obtained



the history of energy price ratios since 1973 [3@hwn in Fig. 9.

The value of8 has clearly changed significantly over the past 35

years due to shifts in both oil and electricityces. This
motivates the need to understand how this paramefgacts
optimal PHEV power management.
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FIGURE 9. HISTORIC ENERGY PRICE RATIO DATA.

Consider the SOC depletion responses shown in Fgfor
controllers synthesized with energy price ratios the set
[40.4,0.6,0.8,1.0,1.2} and for a CDCS strategy, Whioy
definition does not depend gf Several conclusions can be
drawn from this parametric study. First,&approaches infinity
(i.e. fuel becomes infinitely more expensive thaid gelectric
energy), the optimal blending strategy converges t6DCS
strategy. This is consistent with the fact that @DCS strategy
implicitly assumes the cost of fuel is infinitelyone than the cost
of electricity Secondly, for sufficiently lows (i.e. electricity
becomes more expensive than fuel), the optimabligrstrategy
generate®lectric energy. The implicit assumption leadioghis
result is that the driver is able to sell energgiia the grid when
the vehicle is plugged in. Although electricityqas are unlikely
to be this high in general, real-time pricing comidtivate using
the vehicle as a distributed power generator dyrangpds of peak
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FIGURE 10. SOC RESPONSES FOR BLENDED WITH
VARYING SAND CDCS, 2X FTP-72.

demand when conventional generation is scarce [3Bhis
suggests that, with the appropriate exchange ofrnmdtion, a
vehicle could be configured to modify its contrallipy in real
time to reflect grid conditions. Hence, our progasontroller is
extendible toward vehicle-to-grid infrastructures.

5. CONCLUSIONS

This paper demonstrates the use of stochastic dgnam
programming for optimal PHEV power managementdeltves
an optimal power management strategy that ratiatiety charge
by blending engine and battery power in a manregrithproves
engine efficiency and reduces total charge sustentime. This
strategy explicitly takes into account a probapititstribution of
drive cycles and variable energy price ratios. sTthrmulation
guarantees a solution that is optimal in the awesggse, without
requiring drive cycle knowledga priori. Moreover, we have
shown that energy price ratios can significantlffuence the
characteristics of the optimal control policy. éedi, it may be
useful to equip production PHEVs with a range aftoal laws
corresponding to the range of price ratios thatldobe
experienced over the life of the vehicle.
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