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ABSTRACT

This paper investigates power management algorithms that
optimally manage lithium-ion battery pack health, in terms
of anode-side film growth, for plug-in hybrid electric vehicles
(PHEVs). Specifically, we integrate a reduced electrochemical
model of solid electrolyte interface (SEI) film formation into
a stochastic dynamic programming formulation of the PHEV
power management problem. This makes it possible to optimally
trade off energy consumption cost versus battery health. A care-
ful analysis of the resulting Pareto-optimal set of power manage-
ment solutions provides two important insights into the tradeoffs
between battery health and energy consumption cost in PHEVS.
First, optimal power management solutions that minimize energy
consumption cost tend to ration battery charge, while the solu-
tions that minimize battery health degradation tend to deplete
charge aggressively. Second, solutions that balance the needs
for minimum energy cost and maximum battery health tend to ag-
gressively deplete battery charge at high states of charge (SOCs),
then blend engine and battery power at lower SOCs. These re-
sults provide insight into the fundamental tradeoffs between bat-
tery health and energy cost in PHEV power management.

1 INTRODUCTION

This paper investigates supervisory control algorithms that
manage the tradeoff between battery pack health and energy con-
sumption cost in plug-in hybrid electric vehicles (PHEVs). This
study leverages both stochastic control theory and reduced elec-
trochemical battery models to achieve its goal. Such health-
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conscious power management algorithms have the potential to
increase the useful life and long-term energy capacity of battery
packs. This is critically important for large-scale battery energy
storage systems - ranging from PHEVs to stationary grid-scale
storage - where replacement cost and cycle life are inhibiting
factors. This paper’s overall goal is therefore to design power
management algorithms that manage battery health degradation,
in the specific context of PHEVs, in some optimal sense. We
pursue this goal specifically for a power-split hybrid configura-
tion with a battery pack consisting of lithium-ion cells. Man-
aging degradation is particularly challenging because the asso-
ciated mechanisms are typically simulated using computation-
ally intensive electrochemistry-based models that may not be di-
rectly conducive to control design. This fact is underscored in the
context of the present work, which leverages dynamic program-
ming techniques and the associated “curse of dimensionality”.
Moreover, PHEV power management is, by itself, a non-trivial
problem that requires the solution of an optimal control problem
with multiple inputs, stochastic dynamics, state and control con-
straints. Therefore we extend our previous research on PHEV
power management [1] and lithium-ion battery health degrada-
tion simulation and model reduction [2] to solve the present prob-
lem. The resulting control algorithms tradeoff energy consump-
tion cost with battery life by combining, for the first time, dy-
namic PHEV models, stochastic drive cycle models, and reduced
electrochemical battery degradation models.

Three general categories of research provide the founda-
tion for battery-health conscious hybrid vehicle power manage-
ment. First, there exists a large body of literature on model-
ing degradation in lithium-ion batteries, including phenomena



such as solid electrolyte interface (SEI) film formation, carbon
dissolution, electrolyte degradation, and electrode structural dis-
tortion. An excellent review by Aurbach surveys these various
mechanisms in depth [3]. We leverage a model particularly well-
suited for model reduction and control applications that accounts
for lithium diffusion dynamics, intercalation kinetics, and elec-
trochemical potentials developed by Doyle, Fuller, and New-
man [4,5]. Ramadass et al. [6] added a degradation component
to this model by including an irreversible solvent reduction re-
action at the anode-side solid/electrolyte interface that generates
a resistive film which consumes cyclable lithium. This mecha-
nism has been identified as one of the chief contributors to capac-
ity and power fade, whose effect is also representative of other
mechanisms. The second relevant body of research considers the
general HEV power management problem. A broad spectrum
of optimal control techniques have been developed to solve the
power management problem. Examples include equivalent con-
sumption minimization strategy [7], model predictive control [8],
deterministic dynamic programming [9, 10], and stochastic dy-
namic programming [1, 11]. These strategies are optimized for
objectives such as fuel consumption [7-11], emissions [12], driv-
ability [13], and/or combined fuel/electricity consumption [1].
Our focus is to apply stochastic dynamic programming with the
objective of minimizing anode-side film growth, using a reduced
form version of a degrading electrochemical battery model. Sev-
eral more recent studies have considered the HEV power man-
agement problem for extending battery life. These studies focus
on depth of discharge control [14,15], power electronics manage-
ment [16], and temperature management [17]. To date, however,
no studies have applied models that explicitly account for spe-
cific electrochemical degradation mechanisms in the context of
an optimal control framework, to the authors’ knowledge.

The main goal of this paper is to extend and connect the
above research on battery health management and PHEV power
management by adding three important and original contribu-
tions. First, we directly model daily vehicle trip lengths using
a Markov chain with a terminal state, identified from real-world
survey data. Second, we formulate a multi-objective optimal
control problem that seeks to manage power flow in a power-split
PHEYV to minimize both health degradation and energy consump-
tion cost. Third, we analyze the interplay between energy con-
sumption cost and battery health degradation to understand the
fundamental tradeoffs. The results of this research provide useful
insight into health-conscious power management of lithium-ion
battery storage systems.

The outline of this paper is as follows: Section 2 describes
the model development, including the PHEV model, stochastic
drive cycle model, and anode-side film growth model. Section 3
concisely summarizes the optimal control problem formulation.
Section 4 presents and discusses the main results, including a
tradeoff analysis of battery health and energy consumption cost.
Finally, Section 5 summarizes the paper’s main contributions and
conclusions.
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Figure 1. PHEV POWERTRAIN SYSTEM MODEL. THE SUPERVI-
SORY CONTROLLER DETERMINES THE OPTIMAL ENGINE, M/G1,
M/G2 TORQUE INPUTS AS A FUNCTION OF PHEV STATES TO MINI-
MIZE ENERGY CONSUMPTION AND BATTERY FILM GROWTH.

Table 1. GENERAL PHEV MODEL PARAMETERS

EPA Classification =~ Midsize Sedan
Vehicle HEV Configuration — Power-split
Base Curb Weight 1471 kg
Type Gasoline Inline 4-cylinder
i Displacement 151
Engine
Max Power 57 kW @ 4500 RPM
Max Torque 110 N-m @ 4500 RPM
Type Permanent Magnet AC
Mot \ 161 Max P 30 kKW @ 3000-5500 RPM
Generators ax Fower )
M/G2 Max Power 35 kW @ 1040-5600 RPM
Cell Chemistry LiFePOy4
Battery Energy Capacity 5 kWh for pack
Pack Charge Capacity 2.3 Ah per cell

Number of Cells 660

2 MODEL DEVELOPMENT

The PHEV modeled in this paper has a power-split config-
uration based upon THS-II [18], with a lithium-ion battery pack
enlarged to a SkWh energy capacity for plug-in operation [19].
General parameters for the vehicle are provided in Table 1. A
schematic of the PHEV system, the supervisory controller, and



the relevant signals are given in Fig. 1. The state variables in-
clude engine speed, vehicle speed, battery state-of-charge (SOC)
and acceleration. Acceleration is governed by a Markov chain
which captures drive cycle dynamics, described in Section 2.2.
We design this Markov chain to explicitly account for real-world
daily trip length distributions - which is relevant for PHEVs that
will potentially recharge overnight. In addition, we also include
a battery health degradation model based upon an electrochemi-
cal anode-side film formation mechanism. In the following sub-
sections we present descriptions and the governing equations for
these models.

2.1 PHEV Model

2.1.1 Mechanical Subsystem The planetary gearset
is at the heart of the power-split configuration. This three-
port device couples the engine, motor/generator 1 (M/G1), and
motor/generator 2 (M/G2) crankshafts. The dynamic-algebraic
equations that describe this device are governed by Euler’s law
and a kinematic constraint relating component speeds [20]:

I, 0 0 R+S @, T,

0 Iy 0 =S Oy/c1 | | Tmycr )
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0 0y —R Wy/G2 e
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The terms 11/\/1 G2 and TA’,I /G Are effective inertia and torques

Lyjca = lujca + (o + mRz,, ) /K2 2
TA/d/GZ = TM/G2 + Froathire/K 3)
Froad = 0.5pCaA sv? + tonmg )

where F,,, includes viscous aerodynamic drag and rolling fric-
tion forces.

Through algebraic matrix manipulations one may analyti-
cally solve for the state variables without explicitly determining
the gear force F or inverting the matrix on the LHS of (1). This
process results in two degrees of freedom, since there exist three
ordinary differential equations and one algebraic constraint.

The control inputs include engine torque 7, and M/Gl1
torque Tjs/G1. The engine is allowed to shut off by considering
an “engine off” torque input command, which causes the engine
speed to drop to zero within the span of one supervisory control
time step (in this case 1 second). When positive torque is com-
manded from the engine while it is in the shutoff state, the engine
is brought back to idle speed within one supervisory control time
step. During both engine-on and engine-off modes, and transi-
tions in between, the equations in (1)-(4) must be respected. For
example, ®, = 0 when the engine remains off. When the engine
is commanded to turn on, then ®, must equal the appropriate
value such that it reaches idle speed in the next simulation time
step. M/G2 torque Ty /> is determined by the states and control

inputs since @y /> is proportional to the acceleration state a ac-
cording to /G2 = ak /Ryire. Further details on the modeling of
engine startup and shutdown will be reported in [21].

2.1.2 Electric Subsystem The battery pack is mod-
eled by an equivalent circuit, which includes an open circuit
voltage in series with an internal resistance. The parameters of
this model have been identified experimentally on a custom-built
hardware-in-the-loop setup, for commercial Li-ion cells contain-
ing LiFePOy4 cathode chemistries [22]. Both M/G1 and M/G2 in-
terface with the battery pack, as shown in Fig. 1. These devices
are modeled by power efficiency maps supplied by the Power-
train System Analysis Toolkit (PSAT) [23]. The electrical pow-
ertrain also consists of power electronics. However, their dynam-
ics are ignored since they exceed the 1Hz bandwidth typically
considered in power management studies. Hence, the governing
equations for the electric subsystem are given by:

SOC _ Voe — V VOZC - 4PbattRbatl (5)

2QbattR batt

k K
Poasr = TM/mwM/cm]&”/g} +TM/020)M/0271A7/$ (6)

_13 Tlml>0 .
ki = for i={M/G1,M/G2 7
, {17 ey for i={m/GLM/G2Y ()

To calculate the current I and voltage V,.;; across each cell,
one must know the battery pack configuration. That is, how many
cells are arranged in series to produce the desired pack voltage,
and how many parallel strings exist to achieve the desired energy
capacity. Here we assume the use of 2.3 Ah 26650 format cells
(to be consistent with our experimental batteries) arranged with
ng = 110 in series, and n,, = 6 parallel strings.

1 = SOC - Qpart /np ®)
Veett = (Vac _IRbart)/ns 9

Each cell is assumed to be identical or properly balanced through
appropriate charge equalization schemes [24]. The current
through each cell is used to calculate the anode-side film growth
rate discussed in Section 2.3. The voltage calculation is used to
ensure each cell does not exceed safe operating limits - which we
implement mathematically as constraints in the problem formu-
lation in Section 3.

2.2 Drive Cycle Model

An important new contribution we apply toward plug-in
HEV power management is to model drive cycles with a first-
order Markov chain containing a terminal state. Namely, the
terminal state can represent “vehicle off”” which signifies when
the drive cycle terminates and no more cost accrues. This al-
lows us to model distributions of drive cycle length directly.
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Figure 2. TRIP LENGTH DISTRIBUTION FOR 2009 NHTS DATA AND
THE IDENTIFIED MARKOV CHAIN.

As demonstrated by O’Keefe and Markel [10], drive cycle
length is critically important for plug-in HEV power manage-
ment. They demonstrate that the optimal strategy rations battery
charge through blending engine and battery power such that SOC
reaches the minimum level exactly when the trip terminates, if
the drive cycle is known a priori. This is in contrast to HEV
power management, where battery SOC is typically sustained
around a fixed value. This modeling approach is not new, and
has been applied in the context of HEV power management [13].
Yet, its utility is particularly well suited for plug-in applications.
Mathematically, the Markov chain is given by

Pijm = Pr(ai11 = jlax =i,vie = m) (10)
Pitm = Pr(agy1 = tlag =i,y = 0) (11)
1= Pr(ak+1 :t|ak=t,vk=O) (12)

which maps acceleration-velocity pairs to a probability distribu-
tion over acceleration in the next time step (10)-(11). These tran-
sition probabilities are identified from certification cycles and
real-world micro-trip data [1]. When acceleration reaches the
terminal state ¢, it remains in that state with probability one (12).

Figure 2 demonstrates the distribution of trip length for the
Markov chain, in which the transition probabilities pj,, in (11)
have been identified from the 2009 National Household Travel
Survey (NHTS) database [25]. Specifically, the probability of
transition to “vehicle off” is zero unless the vehicle is completely
stopped (vx = 0) and has zero or small negative acceleration.
Without adding distance as a state variable, it is difficult to per-
fectly match the Markov chain and NHTS data. Nevertheless
this approach integrates a reasonably accurate representation of
real-world trip lengths without adding an exponential increase in
computational complexity - a key benefit.

In the main results presented in Section 4 we evaluate each
controller across a library of 1,000 drive cycles generated from
the Markov chain. This process enables us to quantify the perfor-
mance metrics across a distribution of drive cycle characteristics,
rather than single certification cycles such as FTP-72.
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Figure 3. STRUCTURE OF THE ELECTROCHEMICAL LITHIUM-ION
BATTERY CELL MODEL.

2.3 Anode-side Film Growth Model of Battery Aging

In this paper a function mapping cell state of charge
(SOC) and current to film growth rate is extracted from an
electrochemistry-based Li-ion battery cell model developed in
[6]. This model simulates phenomena such as lithium ion diffu-
sion and intercalation to determine the potential and concentra-
tion gradients in the solid and electrolyte sections of the anode,
cathode, and separator. A schematic of the cell model is pro-
vided in Fig. 3, where Ramadass ef al. argue that a resistive film
builds up on the anode solid/electrolyte interface [6]. The exact
chemical side reaction depends on the chemistry of the electrode
and electrolyte. Equations (13)-(18), developed by Ramadass et
al. argue that a simple and general method for modeling capacity
loss is to assume an irreversible solvent reduction reaction of the
following form

S+Lit+e —P (13)

where S denotes the solvent species and P is the product.

As a result of this irreversible side reaction, the products
form a film at the solid/electrolyte interface, which has a time
and spatially varying thickness & iy, (x,) across the anode. This
irreversibly formed film combines with the solid electrolyte in-
terphase (SEI) resistance Rsg; to compose the total resistance at
the solid/electrolyte interface as follows

S film (x,1)

Ryiim(x,t) = Rsgr +
Kp

(14)

where Kp, denotes the conductivity of the film, x is the spatial
coordinate, and ¢ is time. The state equation corresponding to the
growth of film thickness, due to the unwanted solvent reduction
described in (13), is given by

99 fiim (x,1) Mp

ot - a,ppF

Js(x,1) (15)



In (15), Mp, a,, pp, and F represent the product’s molecular
weight, specific surface area, mass density, and Faraday’s con-
stant, respectively. The term J; denotes the local volumetric cur-
rent density for the side reaction, which is governed by Butler-
Volmer kinetics. If the solvent reduction reaction is irreversible
and the variation of Li-ion concentration in the electrolyte is
small, then we may approximate J; by the Tafel equation [26].

( —0.5F

‘]S()C,t) = *iO,Aqane RgaxTnS(Xrt)) (16)

In (16), ios, R, and T respectively denote the exchange current
density for the side reaction, universal gas constant, and cell tem-
perature. The term 1 represents the side reaction overpotential,
which drives the solvent reduction reaction in (13). The overpo-
tential is calculated according to

Jror (x,1)

n

ns(x7t) = ¢1 (x,t) _¢2(x7t) - Us,ref - Rfilm(xvt) (17)

The variables ¢; and ¢, represent solid and electrolyte potentials,
respectively. The symbol Uy .y denotes the equilibrium potential
of the solvent reduction reaction, which we assume to be con-
stant. The total intercalation current J;, represents the flow of
charge exchanged with the anode-side electrolyte. Specifically,
the total intercalation current J;,, is given by the sum of current
between the solid and electrolyte (J;), and the solvent reduction
reaction and electrolyte (J;), that is

Jror =J1 +J;s (18)

Equations (14)-(18) encompass the film growth subsystem
of the Li-ion battery cell model, adopted from [6]. This subsys-
tem connects to the remainder of the battery model through the
total intercalation current J;,; and potentials ¢; and ¢,. Since
these variables vary with respect to space (across the electrodes
and separator) and time, they are determined by solving coupled
partial differential-algebraic equations representing the concen-
tration and potential distributions in the solid and electrolyte of
the anode, cathode, and separator (see [4, 5] for details). Al-
though this model captures complex physical phenomena such
as coupled diffusion, intercalation, and film growth processes,
its complexity makes control design for health management diffi-
cult. Therefore, the present research seeks to use the high fidelity
model to generate simpler models for the purposes of control de-
sign. In the following, the anode-side film growth degradation
dynamics will be approximated by a nonlinear static function,
which enables optimal control design. Later work validates the
control designs on the full electrochemical model.

To acquire insight on the relationship between battery cell
SOC, current, and film growth rate, consider an ideal fresh cell,
that is &y;u(x,0) = 0. Suppose all the intercalation currents,
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Figure 4. STATIC APPROXIMATION OF FILM GROWTH RATE VS.
CELL CURRENT AND SOC UTILIZED FOR PHEV POWER MANAGE-
MENT CONTROL SYNTHESIS.

overpotentials, and concentration profiles are constant with re-
spect to space and correspond to zero initial applied current.
Starting from these initial conditions, we simulate the electro-
chemical battery cell model for different initial SOC and applied
current levels and measure the instantaneous film growth rate.
From this data we produce a static relationship mapping cell
SOC and applied current to the spatially averaged film growth

rate Oijn, shown in Fig. 4. The map indicates that film growth
rate increases with cell SOC. The film growth rate also increases
as the discharge current becomes increasingly negative, i.e. for
increasing charge current. Finally, film grows when zero current
is applied, indicating that aging occurs even when the cells are
not in use - a fact previously reported in the literature [27] and
commonly seen in practice.

3 OPTIMAL CONTROL PROBLEM FORMULATION

The control objective is to synthesize a static function map-
ping the PHEV state variables to the engine and M/G1 torque
inputs such that both energy consumption cost (i.e. fuel and grid
electricity) and battery health degradation in terms of anode-side
film growth are minimized. We formulate this as a shortest-path!
stochastic dynamic programming problem.

min: J8 = limE i ¢ (o, ug) 19
N=e iZ0

subject to:  xgq1 = f(ok, ug, wi) 20)

x€X 2D

u € U(x) (22)

The shortest-path term [28] is used for Markov decision processes that con-
tain a terminal state in the Markov chain, such as our drive cycle model.



where J¢ is the cost for a given control policy g and c(xy,u)
is a function that maps the state and control vectors to an in-
stantaneous cost. The system dynamics summarized in discrete-
time by (20) are provided in Section 2, with a one-second time
step. This optimization is subject to sets of state and control con-
straints, X and U (x) respectively, described in detail in Section
3.2. Our objective is to solve for the optimal control policy g*
which satisfies.

g" = arg inf J¢ (23)
8cG

where G denotes the set of all feasible control policies.

3.1 Objective Function

The minimization of both energy consumption cost and bat-
tery health is, generally speaking, a multi-objective optimal con-
trol problem. For simplicity, we combine both objectives into a
scalar objective with linear weighting o, given mathematically
by

C(Xk» “k) = O+ Cenergy (xka uk) + (1 - OC) * Cfilm (xka Mk) 24
where the individual objective functions are given by

Ve O SOC
Cenergy (xk7 uk) = Bafuelwfuel + Qelec ()cia-;t (25)
8ri

¢ fitm (X, ux) = S iim(1,50C) (26)

Equation (25) represents the instantaneous energy consumption
cost in USD, which includes both fuel and grid charging costs -
weighted according to the energy price ratio B (see [1] for more
details). Throughout this paper, we use = 0.8, consistent with
the average energy prices in June 2010, namely $2.73 USD per
gallon of gasoline [29] and $0.094 USD per kWh of electricity
[30]. Equation (26) represents the instantaneous anode-side film
growth in a single battery cell, characterized by the map depicted
in Fig. 4. Additionally, both objectives are normalized by scaling
the range of their natural values to values between zero and one.

We vary the weighting o in (24) between zero and one to
obtain the convex subset of the Pareto optimal control policies.
Future work may apply multi-objective dynamic programming
techniques to acquire the entire Pareto optimal set [31]. Hence-
forth, we refer to the convex subset of Pareto optimal solutions
as, simply, the Pareto set - although this is admittedly an abuse
of terminology.

3.2 Constraints
In addition to minimizing the aforementioned objectives, the
power management algorithm satisfies constraints on both the

states and control actions. These constraints correspond to physi-
cal operating limits, zones of safe operation, and actuation limits.
Rate of change constraints are not considered here, although they
can be easily added in this formulation. The state constraints are
given by

O min(Te) <= Op <= ¢ max 27
Op1/G1min <= Op/61 <= O /G1 max (28)
Op1/G2,min <= Op1/G2 <= Op/G2,max (29)

SOCin <= SOC <= SOC4x (30)

Minimum engine speed is equal to idle speed when the engine
is on, which is typically enforced for combustion stability, noise,
vibration, and harshness. Minimum engine speed is zero oth-
erwise. The minimum M/G1 speed constraint also produces an
interesting effect in a power-split configuration. If the engine is
off, then )/ will violate its minimum value if vehicle speed,
which is proportional to @y, is sufficiently high, due to the
kinematic relationship in (1). Consequently the engine must turn
on for vehicle speeds greater than 36 mph, even when sufficient
battery charge exists to run in all-electric mode.
The control constraints are given by the following:

Tomin <= To <= T pax(®c) (31

Ty /61,min <= Tusc1 <= Ty/G1 max (32)
Tv)G2.min <= TmjG2 <= T /Ga.max (33)
Veettmin <= Veeti <= Veeil max (34)

The minimum M/G2 torque is determined by two constraints:
saturation limits on M/G2 and the maximum battery pack volt-
age, which can be violated if too much regenerative power is sup-
plied to the battery at, for example, high SOC levels. Hence the
minimum M/G?2 torque is a function of several states and control
inputs Ty /G2.min = Tv/G2.min(SOC, 0p1/G1: T jG1, @y /G2)- The
residual M/G2 torque after applying these constraints is provided
by hydraulic braking.

To enforce both the state and control constraints we apply
the following method. For all state and control pairs we simulate
the subsequent state using (20). If any constraints are violated
then the corresponding control inputs are removed from the set
of admissible controls, for the given state. This process gener-
ates the set of admissible controls U (x) for each state, which can
be computed offline from the stochastic dynamic programming
algorithm.

Numerically, this problem is solved via modified policy iter-
ation, where the policy evaluation step is approximated through
successive value iterations. This algorithm has the property that
convergence to the optimal policy occurs in finite time [28].
Since we solve the stochastic dynamic programming problem
for a sweeping range of o, and simulate the resulting controllers
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across 1,000 cycles each, we leverage parallel computing re-
sources at the University of Michigan Center for Advanced Com-
puting.

4 MAIN RESULTS

This section examines the performance of supervisory con-
trol algorithms that optimally tradeoff battery aging with energy
consumption cost. To obtain a measure of controller perfor-
mance across a variety of drive cycle behavior (as opposed to
single certification cycles), we apply the following procedure:

1. The Pareto optimal set of controllers is synthesized via the
stochastic dynamic program formulated in Section 3.

2. Alibrary of 1,000 drive cycles is generated from the Markov
chain described in Section 2.2.

3. Each controller in the Pareto set is simulated for all drive
cycles in the library.

4. Performance characteristics, including film growth and en-
ergy cost, are recorded.

Subsequently, we analyze three controllers of interest from the
Pareto set on single certification cycles to obtain a fundamental
understanding of how to optimally tradeoff battery health and
energy consumption through proper SOC management.

4.1 Energy Consumption vs. Film Growth
Performance results for the Pareto set of controllers that op-

timally tradeoff film growth (per battery cell) with energy con-

sumption costs are presented in Fig. 5. This is achieved by
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Figure 6. SOC TRAJECTORIES FOR HEALTH (o = 0), MIXED (a0 =
0.96), AND ENERGY (a0 = 1.0) OPTIMAL CONTROLLERS ON TWO
CONCATENATED FTP-72 CYCLES.

sweeping the weighting parameter o in (24) from zero to one.
A distribution of performance metrics is obtained for simulating
the controllers across the entire library of drive cycles. As such,
Fig. 5 indicates the average values as well as the 25/75% quantile
ranges. The horizontal axis reports the film growth resistance per
km, while the vertical axis indicates energy economy in km/USD
(analogous to miles per gallon). The utopia point is located in the
upper-left, which indicates the individually achievable optimal
performance metrics.

This plot indicates that, indeed, there exists a fundamental
tradeoff between anode-side film growth in battery packs and
energy consumption costs. Namely, average film growth can
be reduced by 37% relative to an “energy-only” controller, but
at the sacrifice of a 70% decrease in average energy economy.
The reason the distributions of film growth stretch left of the
mean is related to the distribution of trip length. As trips be-
come longer, more battery SOC is depleted and film growth rate
decreases. Normalizing this effect against longer distances trav-
eled produces a long tail toward the left side of Fig. 5.

4.2 Optimal Solution Analysis

To acquire physical insight into the structural properties
of the optimal controllers, we analyze three solutions from the
Pareto set, a0 = 1.0,0.96, and 0. Generally speaking these re-
spectively correspond to emphasizing energy only, energy mostly
and a little health, and health only. The controller correspond-
ing to o = 0.96 is chosen because it represents the best balance
between both objectives, measured in terms of the normalized 2-
norm distance from the utopia point in Fig. 5. These controllers
are simulated on two concatenated FTP-72 cycles.

Figure 6 demonstrates the SOC trajectories for each con-
troller. The energy-only controller (o0 = 1.0) conservatively ra-
tions battery charge by blending engine and battery power. This
process reduces the time spent in charge sustenance mode, where
fuel must be consumed to meet power demand and sustain bat-
tery charge [1]. Put simply, charge sustenance mode is extremely
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OPTIMAL CONTROLLERS ON TWO CONCATENATED FTP-72 CYCLES.

expensive relative to charge depletion, and should be avoided, if
possible, to reduce energy consumption cost. If the drive cy-
cle were known beforehand, the optimal strategy would blend
engine and battery power so battery SOC reaches its minimum
level exactly when the trip terminates. Recall that trip length dis-
tributions are directly implemented into the problem formulation
through the terminal state of the Markov chain, as described in
Section 2.2. Hence the controller is trip length-conscious. In
contrast, the health-only controller (o0 = 0) aggressively depletes
battery charge to avoid the high film growth rates seen in Fig. 4.
This results in a strategy that mimics electric-only operation, fol-
lowed by charge sustenance. Interestingly, the mixed (ot = 0.96)
controller’s characteristics are more similar to & = 0 than o0 = 1.
The reason can be understood by analyzing the gradient prop-
erties of the film growth map. Namely, the steep gradient at
high SOC values indicates significant benefits in accumulated
film growth can be achieved by quickly depleting charge. This
is in spite of heavily weighting energy costs over battery health,
since instantaneous energy cost as defined in (25) is relatively
insensitive to SOC. Conversely, film growth is very sensitive to
SOC. Mathematically this is shown from (25)-(26)

aCfilm acenergy
2S0C as0C
88film (17 SOC) QbattSOC dVOC(SOC)
o~ > —Oelec
350C Neid  dSOC

(35)

~ 0(36)

where the RHS of (36) is approximately zero because a typical
Li-ion battery has nearly constant open-circuit voltage with re-

spect to SOC, in the allowable SOC range.

This result is clearly illustrated in Fig. 7, which indicates
the operating points of each controller superimposed on the film
growth map from Fig. 4. Observe that adding a small considera-
tion for battery health (e.g. oo = 0.96) to an energy-only objective
(e.g. oo = 1.0) dramatically changes the operating point behav-
ior. Namely, it induces the controller to escape high film growth
rate regions by depleting battery charge quickly until it reaches a
lower SOC level (between 50-60%). However, it leaves enough
available battery energy to blend power until the trip ends, with-
out entering charge sustenance (near 25% SOC). In summary, a
PHEV power management strategy that considers film growth in
addition to energy consumption will, in general: (1) deplete bat-
tery charge quickly to reduce film growth rates, then (2) blend
engine and battery power to avoid charge sustenance.

In this study we focus on one particular battery degradation
mechanism - anode-side film growth. In truth a myriad of mech-
anisms exist that cause capacity fade in lithium-ion batteries, al-
though film growth has been identified as one of the most sig-
nificant [3]. A comprehensive review of these mechanisms can
be found in [3] and the references therein. From a systems-level
perspective degradation can be associated with SOC, tempera-
ture, depth of discharge, cycling, etc. Experiments identifying
several of these relationships are currently underway in our lab-
oratory. Nonetheless the application of an established degrada-
tion model [6] represents a reasonable first step toward health-
conscious power management.



5 CONCLUSIONS

This paper examines health-conscious power management
in plug-in hybrid electric vehicles through electrochemical mod-
eling and stochastic control. Namely, we formulate a multi-
objective optimal control problem which optimally trades off
battery health in terms of anode-side resistive film formation with
energy consumption cost (fuel and grid electricity). The problem
formulation includes a reduced form of a degrading electrochem-
ical battery model from the literature [6]. In addition, we apply a
shortest path stochastic dynamic programming formulation. This
enables us to match the Markov chain drive cycle model with
real-world daily trip length distributions reported by the National
Household Travel Survey [25].

Analysis of the optimal power management algorithms in-
dicates that an energy-focused controller conservatively depletes
SOC by blending engine and battery power. This reduces the
time spent in charge sustenance mode, where relatively expen-
sive fuel is required to meet driver power demand and sustain
battery charge. A health-focused controller aggressively depletes
SOC, since the anode-side film grows faster at high SOC levels.
A controller which considers both objectives will aggressively
deplete SOC first, to reduce film growth rates, then conserva-
tively blend engine and battery power to limit entry into charge
sustenance mode.
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Appendix A: Nomenclature

Symbol Description Units
Agy Effective frontal area of vehicle [m?]

a Vehicle acceleration [m/s?]
a, Specific surface area of anode [m2/m3]
Cy Aerodynamic drag coefficient [-]
c(+y-) Instantaneous cost function

F Faraday’s constant [C/mol]
F, Planetary gear force [N]

1 Current through each cell [A]

I, Engine inertia [kg~m2]
Iy/61 Motor/generator 1 inertia [kg-m?]
G2 Motor/generator 2 inertia [kg-m?]
I, Wheel inertia [kg~m2]
io Battery pack current [A]

io Exchange current density [A/m?]

for side reaction

i1,02

Pbatt

Qbatt

Rgas
R batt

Rser
Rti re

soc

Tv)c1
Tvjc2

Us,re f
U(x)
Veell
Voe

¢17¢2

,
Wyr/G1
Wy /G2

Cell current

Optimal cost for control policy g
Current density of side reaction
Final drive ratio

Molecular weight of product
from side reaction

Vehicle mass

Number of parallel strings of cells
Number of cells in series per string
Power transfer from battery pack
Battery pack charge capacity
Number of teeth on ring gear
Universal gas constant

Internal resistance of battery pack
Resistance of solid electrolyte
interphase (SEI)

Tire radius

Number of teeth on sun gear
Battery state of charge

Engine torque

Motor/generator 1 torque
Motor/generator 2 torque
Equilibrium potential of

side reaction

Admissible set of controls
Voltage of individual battery cell
Battery pack open circuit voltage
Vehicle speed

Mass flow rate of fuel
Admissible set of states

Spatial coordinate across cell

Linear objective weight

Energy price ratio

(Spatially averaged) anode-side
resistive film thickness
Grid-to-PHEV charging efficiency
Motor/generator 1 power efficiency
Motor/generator 2 power efficiency
Over potential driving side reaction
Conductivity of electrolyte

Rolling friction coefficient

Air density

Side reaction product density
Solid, electrolyte potential

Engine crankshaft speed
Motor/generator 1 speed
Motor/generator 2 speed

[A]

(-]
[A/m?]
[-]
[mol/kg]

[ke]

[-]

[-]

[W]

[A-s]

[-]
[J/K/mol]
[Q2]

[Q/m?]

[m]
(-]

[-]
[N-m]
[N-m]
[N-m]

[V]

[V]
[V]
[m/s]
[g/s]

[m/m]

[-]
[USD/USD]

[pm/m?]

[-]

[-]

[-]

[V]
[1/m/Q]
(-]
[kg/m3]
[kg/m?]
[Vl
[rad/s]
[rad/s]
[rad/s]



