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ABSTRACT
This paper develops an adaptive PDE observer for battery

state-of-charge (SOC) and state-of-health (SOH) estimation. Real-
time state and parameter information enables operation near
physical limits without compromising durability, thereby unlock-
ing the full potential of battery energy storage. SOC/SOH esti-
mation is technically challenging because battery dynamics are
governed by electrochemical principles, mathematically modeled
by partial differential equations (PDEs). Simultaneous state and
parameter estimation is extremely challenging in PDE models.
Consequently, several new theoretical ideas are developed, inte-
grated together, and tested. These include a backstepping PDE
state estimator, a Padé-based parameter identifier, nonlinear pa-
rameter sensitivity analysis, and adaptive inversion of nonlinear
output functions. The end result is the first combined SOC/SOH
battery estimation algorithm that identifies physical system vari-
ables via an electrochemical model, from measurements of voltage
and current only.

NOMENCLATURE
A Cell cross sectional area [m2]
a j Specific interfacial surface area [m2/m3]
c0

e Li concentration in electrolyte phase [mol/m3]
c j

s Li concentration in solid phase [mol/m3]
c j

ss Li concentration at particle surface [mol/m3]
c j

s,max Max Li concentration in solid phase [mol/m3]
D j

s Diffusion coefficent in solid phase [m2/sec3]
F Faraday’s constant [C/mol]
I Input current [A]
i j
0 Exchange current density [V]

j Positive (+) or negative (-) electrode
k j Reaction rate [A·mol1.5/m5.5]
L j Electrode thickness [m]
nLi Total number of Li ions [mol]
q Boundary input coefficient parameter
R Universal gas constant [J/mol-K]
R f Lumped current collector resistance [Ω]
R j

s Particle radius [m]
r Radial coordinate [m] or [m/m]
T Cell temperature [K]
t Time [sec] or [sec/sec]
U j Equilibrium potential [V]
V Output voltage [V]
α j Anodic/cathodic transfer coefficient
ε Diffusion parameter
ε

j
s Volume fraction of solid phase

1 INTRODUCTION
This paper investigates an adaptive PDE observer for com-

bined state-of-charge (SOC) and state-of-health (SOH) estimation
in batteries, using an electrochemical model.

Accurate battery SOC estimation algorithms are currently of
extreme importance due to their applications in electrified trans-
portation and energy storage systems for renewable sources. The
relevancy of this topic is further underscored by the 27.2 billion
USD federal government investment in energy efficiency and re-
newable energy research, including advanced batteries, under the
American Recovery and Reinvestment Act (ARRA) of 2009. As
such, battery management systems within these advanced trans-
portation and energy infrastructures must have accurate knowl-



edge of internal battery energy levels [1]. Such knowledge enables
them to efficiently route energy while satisfying power demands
and device-level operating constraints [2].

Monitoring battery SOC and SOH is particularly challenging
for several technical reasons. First, directly measuring Li concen-
tration or physical examination of cell components is impractical
outside specialized laboratory environments [3, 4]. Second, the
dynamics are governed by partial differential algebraic equations
derived from electrochemical principles [5]. The only measurable
quantities (voltage and current) are related to the states through
boundary values. Finally, the model’s parameters vary widely
with electrode chemistry, packaging, and time. In this paper we
directly address these technical challenges. Namely, we design
an adaptive observer using a reduced-form PDE model based
upon electrochemical principles. As such, the algorithm estimates
physical variables directly related SOC and SOH, a first to the
authors’ knowledge.

Over the past decade research on battery SOC/SOH estima-
tion has experienced considerable growth. One may divide this
research by the battery models each algorithm employs.

The first category considers estimators based upon equivalent
circuit models (ECMs). These models use circuit elements to
mimic the phenomenological behavior of batteries. For exam-
ple, the seminal work by Plett [6] applies an extended Kalman
filter to simultaneously identify the states and parameters of an
ECM. Verbrugge and his co-workers used ECMs with combined
coulumb-counting and voltage inversion techniques in [7] and
adaptive parameter identification algorithms in [8]. More recently,
a linear parameter varying approach was designed in [9]. The
key advantage of ECMs is their simplicity. However, they of-
ten require extensive parameterization for accurate predictions.
This often produces models with non-physical parameters, whose
complexity becomes comparable to electrochemical models.

The second category considers electrochemical models,
which account for the diffusion, intercalation, and electrical dy-
namics. Although these models can accurately predict internal
state variables, their mathematical structure is generally too com-
plex for controller/observer design. Therefore, these approaches
combine model reduction and estimation techniques. Some of
the first studies within this category use a “single particle model”
(SPM) of electrochemical battery dynamics in combination with
an extended Kalman filter [10,11]. A separate research group em-
ployed residue grouping for model reduction and linear Kalman
filters for observers [12]. The authors of [13] apply simplifica-
tions to the electrolyte and solid phase concentration dynamics to
perform SOC estimation. To date, however, simultaneous SOC
and SOH estimation using electrochemical models remains an
open question.

In this paper we extend the aforementioned research by de-
signing an electrochemical model based adaptive observer for
simultaneous SOC/SOH estimation. Several novel theoretical
ideas are developed, integrated, and tested. These include a PDE
backstepping state estimator, Padé-based PDE parameter identi-
fier, nonlinear identifiability analysis of the output equation, and

adaptive output function inversion. The final result is an adaptive
observer for simultaneous SOC/SOH estimation which identi-
fies physical battery system variables, from current and voltage
measurements only.

The paper is organized as follows: Section 2 describes the
electrochemical-based single particle model. Sections 3-6 de-
scribe the subsystems of the adaptive observer, including the state
estimator, PDE parameter identifier, output function parameter
identifier, and adaptive output function inversion. Sections 7 and
8 respectively provide simulation results and a summary of the
key contributions.

2 ELECTROCHEMICAL CELL MODEL & ANALYSIS
The single particle model (SPM) was first applied to lithium

battery systems in [14] and is the model we utilize in this work.
The key idea is that the solid phase of each electrode can be ide-
alized as a single spherical particle. This model results if one
assumes the electrolyte Li concentration is constant in space and
time. This assumption works well for small currents or elec-
trolytes with large electronic conductivities. However, it induces
errors at large C-rates. Moreover, we assume constant temperature.
Figure 1 provides a schematic of the SPM concept. Mathemati-
cally, the model consists of two diffusion PDEs governing each
electrode’s concentration dynamics, where input current enters
as a Neumann boundary condition. Output voltage is given by
a nonlinear function of the state values at the boundary and the
input current.

Although this model captures less dynamic behavior than
other electrochemical-based estimation models [14], its mathe-
matical structure is amenable to adaptive observer design.

2.1 Single Particle Model
Diffusion in each electrode is governed by Fick’s law in

spherical coordinates:
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with Neumann boundary conditions:
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The Neumann boundary conditions at r = R+
s and r = R−s signify

that the flux entering the electrode is proportional to the input
current I(t). The Neumann boundary conditions at r = 0 are
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Figure 1. EACH ELECTRODE IS IDEALIZED AS A SINGLE POROUS
SPHERICAL PARTICLE. DURING CHARGING/DISCHARGING, LI IN-
TERCALATES INTO/OUT OF THESE SPHERICAL PARTICLES.

required for well-posedness. Note that the states for the two
PDEs are dynamically uncoupled, although they have proportional
boundary inputs.

The measured terminal voltage output is governed by a com-
bination of electric overpotential, electrode thermodynamics, and
Butler-Volmer kinetics. The end result is:

V (t) =
RT
αF

sinh−1
(

I(t)
2a+AL+i+0 (c

+
ss(t))

)

−RT
αF

sinh−1
(
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2a−AL−i−0 (c

−
ss(t))

)

+U+(c+ss(t))−U−(c−ss(t))−R f I(t) (5)

where the exchange current density i j
0 and solid-electrolyte surface

concentration c j
ss are, respectively:

i j
0(c

j
ss) = k j

√
c0

ec j
ss(t)(c

j
s,max− c j

ss(t)) (6)

c j
ss(t) = c j

s(R
j
s , t), j ∈ {+,−} (7)

The functions U+(·) and U−(·) are the equilibrium potentials of
each electrode material, given the surface concentration. Mathe-
matically, these are strictly monotonically decreasing functions
of their input. This fact implies that the inverse of its derivative is
always finite, a property which we require later. Further details
on the electrochemical principles used to derive these equations
can be found in [1, 5].

This model contains the property that the total number of
lithium ions is conserved [13]. Mathematically, d

dt (nLi) = 0

nLi =
ε+s L+A

4
3 π(R+

s )3

∫ R+
s

0
4πr2c+s (r, t)dr

+
ε−s L−A

4
3 π(R−s )3

∫ R−s

0
4πr2c−s (r, t)dr (8)

This property will become important, as it relates the total con-
centration of lithium in the cathode and anode. We leverage this
fact to perform model reduction in the state estimation problem.

In the following sections we describe each subsystem of the
adaptive observer. A block diagram of the composed system is
provided in Fig. 2.

3 STATE ESTIMATION
3.1 Observability & Model Reduction

For the purpose of observer design we reduce the SPM by
approximating the cathode diffusion dynamics (2) by its equilib-
rium. This step is mathematically motivated by the fact that the
SPM states are weakly observable from voltage measurements, as
has been previously noted in the literature [11]. It turns out that
approximating the cathode dynamics as instantaneous produces
a reduced system whose states are locally strongly observable.
Moreover, physical motivation exists for this reduction when dif-
fusion dynamics are significantly faster in the cathode than the
anode, a common characteristic of certain anode/cathode combi-
nations. We discuss these points in succession.

Lack of observability can be shown using a number of tech-
niques. For example, one may (i) approximate the PDEs by ODEs
using the finite difference method, producing a tri-diagonal matrix
A, (ii) linearize the output equation about the states, producing a
matrix C, (iii) and compute the rank of the observability matrix
for the pair (A,C) [15].

The reduced SPM has a PDE given by (1), boundary condi-
tions given by (3), and output equation:

V (t) =
RT

α+F
sinh−1

(
I(t)

2a+AL+i+0 (αc−ss(t)+β)

)

− RT
α−F

sinh−1
(

I(t)
2a−AL−i−0 (c

−
ss(t))

)
(9)

+U+(αc−ss(t)+β)−U−(c−ss(t))−R f I(t)

Note that c+ss(t) has been replaced by αc−ss(t) + β. This is the
critical detail of the reduced SPM. The equilibrium of the cathode
states (i.e., c+s (r, t) = c+ss(t)) can be computed from the conserva-
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Figure 2. BLOCK DIAGRAM OF ADAPTIVE OBSERVER. IT IS COMPOSED OF THE BACKSTEPPING STATE ESTIMATOR (BLUE), PDE PARAMETER
IDENTIFIER (GREEN), OUTPUT FUNCTION PARAMETER IDENTIFIER (RED), AND ADAPTIVE OUTPUT FUNCTION INVERSION (ORANGE).

tion of Li property in (8) to produce the relationship1:

c+ss(t) =
1

ε
+
s L+A

[
nLi− ε

−
s L−Ac−ss(t)

]
(10)

where α =− ε−s L−

ε
+
s L+

and β = nLi
ε
+
s L+A

.
One can show this system is locally observable (i.e. in the

linear sense) by using the same finite difference and linearization
approach described above. Ultimately, we guarantee observability
for this reduced SPM by designing the observer gains such that the
estimation error dynamics mimic an exponentially stable target
system. This is the core concept behind backstepping observer
design [16].

Physical motivation sometimes exists for approximating the
cathode diffusion dynamics as instantaneous. Significant research
efforts on manufacturing and material science techniques for cath-
ode materials has enabled researchers to attain nano-scale particle
sizes and faster diffusion rates [17]. The result is characteristic
diffusion times (mathematically R2

s/Ds) which are often orders
of magnitude less in the cathode than the anode. Parallel studies
have been performed on the anode side (see e.g. [18]), however
they are less prevalent. Hence, approximating cathode diffusion
by its equilibrium is a reasonable approximation for certain cath-
ode/anode combinations. This insight was also observed through a
previous parameter identification study on commercially available

1To be technically correct, the cathode concentration should depend
on the anode concentration summed over the spherical volume: c+ss(t) =

1
ε
+
s L+A

[
nLi− 3ε−s L−A

4πR−s
3

∫ R−s
0 4πr2c−s (r, t)dr

]
. However, this results in a nonlinear

output equation which depends on the in-domain states, as well as the boundary
state. This would create additional complexity to the backstepping approach we
employ in this paper.

LiFePO4 cells with doped nano-scale cathode materials [19]. For
other cells, the requisite diffusive time scale separation property
may not exist.

The SPM comprises linear dynamics and a nonlinear output
function. In general an output injection-based estimator would be
nonlinear for this class of systems. However, we design a linear
estimator in this paper by injecting the boundary state error. This
idea requires us to calculate the boundary state from the measured
voltage, demonstrated visually by the block diagram in Fig. 2.
In [20] we show the output function (9) is invertible with respect
to the boundary state c−ss, uniformly in the input current I(t).

3.2 Normalization and State Transformation

Next we perform normalization and state transformation to
simplify the mathematical structure of the observer. First scale
the radial r and time t coordinates as follows:

r̄ =
r

R−s
t̄ =

D−s
(R−s )2

t (11)

Henceforth we will drop the bars over the space and time coordi-
nates to simplify notation. Next we perform a state transformation
to eliminate the first spatial derivative in the spherical diffusion
equation (1). Namely, let

c(r, t) = rc−s (r, t) (12)



This normalization and state transformation produces the follow-
ing PDE with Dirichlet and Robin boundary conditions:

∂c
∂t
(r, t) = ε

∂2c
∂r2 (r, t) (13)

c(0, t) = 0 (14)
∂c
∂r

(1, t)− c(1, t) = −qρI(t) (15)

and nonlinear output map given by (9) where c+ss = αc(1, t)+β

(see (10)) and c−ss = c(1, t). The parameter ρ = R−s /(D
−
s Fa−AL−)

groups together known parameters. The parameters ε and q are
nominally equal to one. Respectively, they represent uncertainty
in the diffusion and boundary input coefficients, which we identify
in Section 4.

3.3 Backstepping PDE State Estimator
In previous work [20], we designed a backstepping PDE state

estimator for the SPM. The state estimator structure consists of a
copy of the plant (13)-(15) plus boundary state error injection, as
follows:

∂ĉ
∂t
(r, t) = ε

∂2ĉ
∂r2 (r, t)+ p1(r)c̃(1, t) (16)

ĉ(0, t) = 0 (17)
∂ĉ
∂r

(1, t)− ĉ(1, t) = −qρI(t)+ p10c̃(1, t) (18)

where the boundary state error is given by:

c̃(1, t) = ϕ(V (t), I(t))− ĉ(1, t) (19)

and the function estimation gains are given by:

p1(r) =
−λr
2εz

[
I1(z)−

2λ

εz
I2(z)

]
(20)

where z =

√
λ

ε
(r2−1) (21)

p10 =
1
2

(
3− λ

ε

)
(22)

and I1(z) and I2(z) are, respectively, the first and second order
modified Bessel functions of the first kind. Please consult [20]
for the stability proof.

Note that the estimator is linear in the state because we use
the boundary state for error injection. The plant boundary state
is computed by inverting the nonlinear output mapping w.r.t. the
boundary state, given a current input (i.e. ϕ(V (t), I(t))). The
output function inversion is discussed in detail in Section 6.

Also note the parameters ε in (16), (20)-(22) and q in (18). In
the subsequent section we design an identifier for these parame-
ters. We form an adaptive observer by replacing these parameters
with their estimates, via the certainty equivalence principle [21].

4 PDE PARAMETER IDENTIFICATION
Next we design an identification algorithm for the diffusion

and boundary input coefficients in (13) and (15), respectively.
Identification of the diffusion coefficient ε from boundary mea-
surements is a significant fundamental challenge [22], for the
following reason. In finite-dimensional state-space systems we
typically write the system in observable canonical form. This
structure enables one to uniquely identify state-space parameters
from input-output data. In our problem we require a parametric
model where the diffusion coefficient multiplies measured data
only. There is no clear way to do this for PDEs. This moti-
vates our new contribution: utilizing a reduced-order model (Padé
approximation) for the parameter identification.

4.1 Padé Approximates
The PDE model (13)-(15) can be written in the frequency

domain as a transcendental transfer function:

G(s) =
css(s)
I(s)

=
−qρsinh

(√
s/ε

)

(√
s/ε

)
cosh

(√
s/ε

)
− sinh

(√
s/ε

) (23)

We now apply Padé approximations of the transcendental
transfer function (23). Padé approximants represent a function by
a ratio of two power series. The defining characteristic of a Padé
approximate is that its Taylor series matches the Taylor series of
the function it is approximating. Another useful property of Padé
approximates is that they naturally contain poles and zeros. The
Padé expansion takes the following form:

G(s) = lim
N→∞

∑
N
k=0 bksk

1+∑
N
k=1 aksk

(24)

Figure 3 provides bode plots of G(s) and several Padé approxi-
mates. Their analytical expressions are supplied in Table 1. The
Padé approximates capture low frequency dynamics well. Accu-
racy at high frequency increases as the Padé order increases. We
low-pass filter the input-output signals such that data is retained
where the Padé approximation is sufficiently accurate.

Our immediate goal is to design a parameter identification
scheme for the Padé approximation of the original PDE model.
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Figure 3. BODE PLOTS OF THE TRANSCENDENTAL TRANSFER
FUNCTION (23) AND PADÉ APPROXIMATES IN TABLE 1.

4.2 Least Squares Identification

We utilize the first order Padé approximant as the nominal
model. Namely,

Css(s)
I(s)

≈ P1(s) =
−3qρε− 2

7 qρs

s+ 1
35ε

s2
(25)

Assuming zero initial conditions and applying the inverse Laplace
transform produces the following linearly parameterized model:

1
35

c̈ss(t) =−εċss(t)−3ρqε
2I(t)− 2

7
ρqεİ(t) (26)

Table 1. PADÉ APPROXIMATES OF THE PDE MODEL (13)-(15)

Order, k Pk(s)

1
−qρ( 2

7 s+3ε)
s( 1

35ε
s+1)

2
−qρ( 1

165ε
s2+ 4

11 s+3ε)
s
(

1
3465ε2 s2+ 3

55ε
s+1

)

3
−qρ

(
4

75075ε2 s3+ 2
195ε

s2+ 2
5 s+3ε

)

s
(

1
675675ε3 s3+ 2

2275ε2 s2+ 1
15ε

s+1
)

Since the parametric model contains time derivatives of measured
signals, we employ filters [21] to avoid differentiation:

σ̇1 = σ2 (27)
σ̇2 = −λ0σ1−λ1σ2 + css (28)
ζ̇1 = ζ2 (29)
ζ̇2 = −λ0ζ1−λ1ζ2 + I (30)

where the polynomial Λ(s) = s2 + λ1s+ λ0 is chosen Hurwitz.
One can analytically show that selecting the roots of Λ(s) results
in a trade-off between convergence rate (via level of persistence
of excitation) and parameter bias (error induced by Padé approxi-
mation). Consequently, the parametric model is:

1
35

(−λ0σ1−λ1σ2 + css) =−3ρqε
2
ζ1−

2
7

ρqεζ2− εσ2 (31)

Let us denote the vector of unknown parameters by:

θpde =
[

qε2 qε ε
]T (32)

Then the parametric model can be expressed in matrix form as
zpde = θT

pdeφ, where

zpde =
1

35
(−λ0σ1−λ1σ2 + css) (33)

φ =

[
−3ρζ1 − 2

7
ρζ2 −σ2

]T

(34)

Given this linearly parameterized model, we chose a least-squares
update law of the form [21]:

˙̂
θpde = Ppde

zpde− θ̂T
pdeφ

m2
pde

φ (35)

Ṗpde =−Ppde
φφT

m2
pde

Ppde, Ppde(0) = Ppde0 = PT
pde0 > 0 (36)

m2
pde = 1+ γpdeφ

T
φ, γpde > 0 (37)

4.2.1 Managing Overparameterization with the
Pseudoinverse An important implementation issue with the
proposed Padé approximation approach is overparameterization.
That is, the physical parameters must be uniquely determined
from the parameter vector θ̂pde

θ̂pde =




q̂ε2

q̂ε

ε̂


−→

[
ε̂

q̂

]
= θ̂εq (38)



Coincidently, the particular nonlinear form (products and pow-
ers) of the elements in vector θ̂pde allows us to write a set of
linear equations using a logarithmic nonlinear transformation and
properties of the logarithm function:




2 1
1 1
1 0



[

log ε̂

log q̂

]
=




log
(

ˆqε2
)

log(q̂ε)
log(ε̂)


 (39)

which we re-write into compact notation as

Aεqlog(θ̂εq) = log(θ̂pde) (40)

where log(θ) = [log(θ1), log(θ2), ...]
T . The parameter vector θ̂εq

can be uniquely solved from (39) via the Moore-Penrose pseu-
doinverse. That is:

log(θ̂εq) = (AT
εqAεq)

−1AT
εqlog(θ̂pde) (41)

This method works well in practice with respect to feeding param-
eter estimates into the adaptive observer (lower-left-hand block in
Fig. 2), since the pseudoinverse ultimately involves computation-
ally efficient matrix algebra.

5 OUTPUT FUNCTION PARAMETER IDENTIFICATION
The greatest difficultly in battery estimation arguably stems

from the nonlinear relationship between SOC and voltage [9].
We directly address this difficulty by developing an identifica-
tion algorithm for the uncertain parameters in the nonlinearly
parameterized output function (9). First, we analyze parameter
identifiability to assess which subset of parameters are uniquely
identifiable. Second, we apply nonlinear least squares to this
subset.

5.1 Identifiability
A necessary first step in nonlinear parameter identification is

a parameter sensitivity analysis. We specifically apply the ranking
procedure outlined in [23] to assess linear dependence. Consider
the output function (9) written in parametric form:

h(t;θ) =V (t) =
RT
αF

sinh−1


 θ2I(t)

2
√

c+ss(t;θ1)(c+s,max− c+ss(t;θ1))




− RT
αF

sinh−1


 θ3I(t)

2
√

c−ss(t)(c−s,max− c−ss(t))




+U+(c+ss(t;θ1))−U−(c−ss(t))−θ4I(t) (42)

where c+ss(t;θ1) and the parameter vector θ are

c+ss(t;θ1) =−
ε−s L−

ε
+
s L+

c−ss(t)+
θ1

ε
+
s L+A

θ =

[
nLi,

1

a+AL+k+
√

c0
e
,

1

a−AL−k−
√

c0
e
,R f

]T

(43)

We have selected the elements of θ because diminishing nLi phys-
ically models capacity fade and increasing values for the other
parameters capture various forms of internal resistance.

The following sensitivity analysis is performed in discrete
time, since the required data is supplied in discrete time. Let
k index time such that t = k∆T , k ∈ 1,2, ...,nT . The sensitiv-
ity of the output with respect to variations in the parameter θi

at time index k is defined as Si,k =
∂h(k∆T ;θ)

∂θi
. For each param-

eter θi, stack the sensitivities at time indeces k = 1,2, ...nT , i.e.
Si = [Si,1,Si,2, . . . ,Si,nT ]

T . Denote S = [S1,S2,S3,S4], such that
S ∈ RnT×4. A particular decomposition of ST S reveals useful
information about linear dependence between parameters. Let
ST S = DTCD where

D =




‖S1‖ 0 0 0
0 ‖S2‖ 0 0
0 0 ‖S3‖ 0
0 0 0 ‖S4‖




C =




1 〈S1,S2〉
‖S1‖‖S2‖

〈S1,S3〉
‖S1‖‖S3‖

〈S1,S4〉
‖S1‖‖S4‖

〈S2,S1〉
‖S2‖‖S1‖ 1 〈S2,S3〉

‖S2‖‖S3‖
〈S2,S4〉
‖S2‖‖S4‖

〈S3,S1〉
‖S3‖‖S1‖

〈S3,S2〉
‖S3‖‖S2‖ 1 〈S3,S4〉

‖S3‖‖S4‖
〈S4,S1〉
‖S4‖‖S1‖

〈S4,S2〉
‖S4‖‖S2‖

〈S4,S3〉
‖S4‖‖S3‖ 1




(44)

where ‖ · ‖ denotes the Euclidian norm and 〈·, ·〉 is the inner
product. By the Cauchy Schwarz inequality −1 ≤ 〈Si,S j〉

‖Si‖‖S j‖ ≤ 1.

This has the interpretation that values of 〈Si,S j〉
‖Si‖‖S j‖ near -1 or 1

imply strong linear dependence between parameters θi and θ j,
whereas values near zero imply orthogonality.

An example for the matrix C is provided in (45). This exam-
ple analyzes parameter sensitivity for a UDDS drive cycle data
set applied to the SPM battery model.

C =




1 −0.3000 0.2908 0.2956
−0.3000 1 −0.9801 −0.9805

0.2908 −0.9801 1 0.9322
0.2956 −0.9805 0.9322 1


 (45)

Note that strong linear dependence exists between θ2,θ3,θ4. This
property is uniformly true across various drive cycles (e.g. US06,
SC04, LA92, naturalistic micro-trips). This means it is difficult to
determine how each individual parameter value changes, amongst



these three parameters. As a result, we identify only two pa-
rameters, nLi and R f , which capture capacity and power fade,
respectively.

5.2 Nonlinear Least Squares
Now our immediate goal is to identify the parameter vec-

tor θh = [nLi R f ]
T via a nonlinear least squares identification

algorithm. Define θ̃h = θh− θ̂h and write (42) in terms of θ̃h

V (t;θh) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̃h1 + θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]
(46)

+U+(c+ss(t; θ̃h1 + θ̂h1))−U−(c−ss(t))− (θ̃h2 + θ̂h2)I(t)

Next we take the Maclaurin series expansion with respect to θ̃h

V (t;θh) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]

+U+(c+ss(t; θ̂h1))−U−(c−ss(t))− θ̂h2I(t)

+
∂h

∂θh1
(t; θ̂h)θ̃h1− I(t)θ̃h2 +O(θ̃T

h θ̃h) (47)

Truncate the higher order terms and re-arrange the previous ex-
pression into the matrix form

enl = θ̃
T
h Φ (48)

where the nonlinear error term enl depends on the parameter
estimates θ̂h

enl =V (t)− RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

+
RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]

−U+(c+ss(t; θ̂h1))+U−(c−ss(t))+ θ̂h2I(t) (49)

and the regressor vector Φ is defined as:

Φ =
[

∂h
∂θh1

(t; θ̂h), −I(t)
]T

(50)

which depends upon measured signals and parameter estimates.

We now choose a least-squares parameter update law:

˙̂
θh = PhenlΦ (51)

Ṗh =−Ph
ΦΦT

m2
h

Ph, Ph(0) = Ph0 = PT
h0 > 0 (52)

m2
h = 1+ γhΦ

T
Φ, γh > 0 (53)

6 ADAPTIVE OUTPUT FUNCTION INVERSION
In Section 3 we discussed how a linear state observer can be

designed by using boundary values of the PDE. These boundary
values must be processed from measurements by inverting the
nonlinear output function. In this section we design an adaptive
output function inversion scheme which utilizes the parameter
estimate θh generated from Section 5.

Our goal is to solve g(c−ss, t) = 0 for c−ss, where

g(c−ss, t) =
RT
αF

sinh−1

[
I(t)

2a+AL+i+0 (c
+
ss(t; θ̂h1))

]

− RT
αF

sinh−1
[

I(t)
2a−AL−i−0 (c

−
ss(t))

]
(54)

+U+(c+ss(t; θ̂h1))−U−(c−ss(t))− θ̂h2I(t)−V (t)

The main idea is to construct an ODE whose equilibrium satisfies
g(c−ss, t) = 0 and is locally exponentially stable. This can be
viewed as a continuous-time version of Newton’s method for
solving nonlinear equations [21]. Consider the ODE

d
dt

[
g(č−ss, t)

]
=−γg(č−ss, t) (55)

whose equilibrium satisfies g(c−ss, t) = 0. We expand and re-
arrange this equation into the familiar Newton’s update law

d
dt

č−ss =−
[

∂g
∂c−ss

(č−ss, t)
]−1 [

γg(č−ss, t)+
∂g
∂t

(č−ss, t)
]

(56)

One can prove Lyapunov stability of this ODE, given appropriate
bounds ∂g/∂c−ss and ∂g/∂t. The state č−ss of ODE (56) provides a
recursive estimate of the surface concentration css(t) from mea-
sured current and voltage data, adapted according to the parameter
estimate θ̂h. The processed surface concentration č−ss supplies the
“measured output” for the state estimator in Section 3.

Note that analytically proving stability of the fully-composed
estimator is difficult. Consequently, we utilize simulation studies
described in the following section.

7 SIMULATIONS
In this section we present numerical experimental results,

which demonstrate the adaptive PDE observer’s performance.
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Figure 4. STATE AND PARAMETER ESTIMATION RESULTS FOR UDDSX2 DRIVE CYCLE. ZERO MEAN GAUSSIAN NOISE WITH A 2 mV VARIANCE
WAS ADDED TO THE VOLTAGE MEASUREMENT. THE SPM PROVIDES THE “MEASURED” PLANT DATA. STATE AND PARAMETER ESTIMATES
WERE INITIALIZED WITH INCORRECT VALUES.

Specifically, we apply the observer to the original SPM (includes
diffusion in both electrodes). The model parameters used in this
study originate from the genetic algorithm-based parameter iden-
tification study performed on commercial lithium-iron phosphate
cells in [19]. For these parameters the characteristic diffusion
times (R2

s/Ds) are 745 sec and 0.32 sec for the anode and cath-
ode, respectively, which supports the argument for approximating
cathode diffusion as instantaneous.

The state and parameter estimates are initialized at incor-
rect values: ĉ−s (r,0) = 0.6c−s (r,0), ε̂(0) = 2, q̂ = 0.5,
n̂Li(0) = 1.25nLi, R̂ f (0) = 3R f . Moreover, zero mean normally
distributed noise with a standard deviation of 2 mV is added to
the voltage measurement. Figure 4 portrays the evolution of the
state and parameter estimates. The state estimates are represented
by the bulk SOC, defined in (57), and surface concentrations.
The surface concentration error includes the state estimation error
c−ss− ĉ−ss and output function inversion error c−ss− č−ss. The PDE
parameter estimates ε̂, q̂ and output function parameter estimates
n̂Li, R̂ f also converge near their true values. The results are sim-

ilar for various other initial conditions and drive cycle inputs,
including US06, SC04, LA92, and naturalistic micro trip data.

SOC−bulk(t) =
3

c−s,max

∫ 1

0
r2c−s (r, t)dr (57)

8 CONCLUSION
This paper reports on the first combined SOC/SOH estimator

for electrochemical battery models. The adaptive observer uti-
lizes concepts from PDE estimation and adaptive control theory
to generate various new concepts for battery systems and control.
These are summarized by four key ideas: First, a backstepping
PDE state estimator is designed in previous work [20]. Second, a
Padé approximation of the transfer function for lithium diffusion
is used to identify the diffusion coefficient. Third, parameter
sensitivity analysis is applied to elucidate the linear dependence
between physically meaningful parameters related to capacity and
power fade. Fourth, an adaptive output function inversion tech-



nique enables linear state estimation designs. Finally, we present
simulations which demonstrate how the adaptive observer suc-
cessfully identifies the states and parameters from measurements
of voltage and current, only. The composition of these unique
ideas provides a combined SOC/SOH estimation algorithm for
battery systems using electrochemical models.

Our next steps include state/parameter estimation schemes
for the complete Doyle-Fuller-Newman model [5]. This work
will enable output feedback controllers for optimal charging and
discharging.
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