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ABSTRACT
The performance of model predictive control (MPC) for en-

ergy management in hybrid electric vehicles (HEVS) is strongly
dependent on the projected future driving profile. This paper pro-
poses a novel velocity forecasting method based on artificial neu-
ral networks (ANN). The objective is to improve the fuel econ-
omy of a power-split HEV in a nonlinear MPC framework. In
this study, no telemetry or on-board sensor information is re-
quired. A comparative study is conducted between the ANN-
based method and two other velocity predictors: generalized ex-
ponentially varying and Markov-chain models. The sensitivity
of the prediction precision and computational cost on tuning pa-
rameters in examined for each forecasting strategy. Validation
results show that the ANN-based velocity predictor exhibits the
best overall performance with respect to minimizing fuel con-
sumption.

1 INTRODUCTION
This paper introduces an ANN-based velocity forecaster into

a predictive energy management controller for HEVs. The goal
is to reduce the performance gap between deterministic dynamic

programming and MPC by more accurately forecasting future
velocity and thus enhancing fuel economy. We leverage existing
techniques in data-driven forecasting models, such as ANN [1]
or Gaussian mixture models [2].

Over the past decade, sophisticated energy management
strategies have been developed to fully exploit the advantages of
a hybrid powertrain for increasing fuel economy [3, 4]. These
strategies include dynamic programming (DP) [5], equivalent
consumption minimization strategy (ECMS) [6], MPC [7]. This
paper focuses on the MPC approach, which optimizes the de-
cision variables over a finite moving horizon in real-time while
maintaining computational load within a practical range [8]. As-
suming the terrain information is known, the performance of
MPC-based energy management strongly depends on future ve-
locity forecasts [4]. This paper seeks to enhance the perfor-
mance of predictive HEV energy management via precise ve-
locity forecasting. Throughout this study, we assume the HEV is
not equipped with telemetry or range-finding devices.

ANN is a powerful method for time series forecasting [9]
across many application areas. Through appropriate training,
an ANN can approximate any continuous measurable function
to desired accuracy. It has also demonstrated strong capabili-
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ties in predicting nonlinear dynamic behaviors [10]. To our best
knowledge, ANN-based velocity predictors for MPC-based en-
ergy management of HEVs has not been investigated. Previously
implemented methods include the exponentially varying predic-
tor [7] and Markov-chain predictor [11]. The authors of [7] as-
sumed power demand decreases exponentially over the predic-
tion horizon. To systematically investigate this method, a gener-
alized exponentially varying velocity predictor is considered in
this paper. Markov-chain models are also often used for vehicle
forecasting [11], and is effective for generating stochastic driv-
ing patterns [12]. This study extends the Markov-chain velocity
predictor by developing multi-stage Markov chain models.

A comparative evaluation of the three classes of velocity
predictors for MPC-based energy management of a power-split
HEV is presented in this paper. The main contribution is an
ANN-based velocity predictor for MPC implementation. The
sensitivity of fuel economy to different network structures is an-
alyzed. We also examine a generalized exponentially varying
model and Markov-chain model. The three classes of veloc-
ity predictors are systematically compared in terms of prediction
precision, computation time and resulting fuel economy.

The remainder of the paper is arranged as follows. Section
2 describes the ANN-based velocity predictor structures. Sec-
tion 3 details the generalized exponentially varying and Markov-
chain velocity predictors. The HEV powertrain control problem
is formulated in Section 4, including the control-oriented vehi-
cle model and nonlinear hierarchical MPC energy management
strategy. Comparison results are illustrated in Section 5, fol-
lowed by key conclusions in Section 6.

2 ARTIFICIAL NEURAL NETWORK VELOCITY PRE-
DICTOR
ANNs can be trained to approximate a highly nonlinear in-

put/output relationship [1]. Three typical ANN structures, back
propagation neural network (BP-NN), layer recurrent neural net-
work (Recurrent-NN) and radial basis function neural network
(RBF-NN) are investigated with respect to short-term vehicular
velocity forecasting. In the BP-NN structure, the input layer is
used to receive and distribute the input pattern, followed by a hid-
den layer that depicts the nonlinearities of the input/output rela-
tionship. The output layer yields the desired output patterns [1].

For BP-ANN, the activation function is hyperbolic tangent
sigmoid function. The basic formula of the hidden layer in the
BP-algorithm is

a1 =
en− e−n

en + e−n (1)

n = Wa0 +b (2)

where a1 and a0 are neural outputs of the current layer and prior
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FIGURE 1. INPUT-OUTPUT PATTERN FOR ANN-BASED HORI-
ZON VELOCITY PREDICTORS.

layer, respectively; n is accumulator output; W is weight and b is
bias.

With a self-connected hidden layer, the Recurrent-NN has
an internal state, which allows the network to exhibit temporal
dynamic behavior [13]. However, this may increase the training
convergence time. The basic formula of the recurrent layer in
Recurrent-NN is

a1(t) =
en− e−n

en + e−n (3)

n(t) = Wa0(t)+W ′a1(t−∆t)+b (4)

where W ′ is the feedback weight; a1(t−∆t) is the delayed output
at time (t−∆t).

The RBF-NN is also considered for comparison. In the stan-
dard approach to RBF-NN implementation, a radial basis func-
tion needs to be predefined at first. Then, the number of hidden
layer neurons can be determined with a given training accuracy.
The Gaussian function is used as the radial basis function in the
hidden layer to activate the neurons, formulated as

a1 = exp
(
−‖ n−µ ‖2

2σ2

)
(5)

n = Wa0 +b (6)

where µ is the neural net center and σ is the spread width. Both
µ and σ are typically fit using gradient descent.

The input-output structure of a NN-based velocity predictor
is demonstrated in Fig. 1. The network inputs include historical
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velocity sequences, and the outputs include predicted future ve-
locity sequences. Each input-output pattern composes a moving
window of fixed length. In Fig. 1, Hh is the length of the past
velocity vector, Hp is the length of the forecasted velocity vector,
and t is the time instant. All three ANN structures have the same
input-output structure.

Six arbitrarily selected driving cycles are employed as train-
ing samples, including the WVUSCITY, JN1015, NEDC, US06,
Artemis-highway and Artemis-suburban [14]. This training data
set includes both urban and highway schedules, and therefore
covers a relatively comprehensive set of driving scenarios. A to-
tal of 5930 input-output training samples are derived from this
dataset. An arbitrary set of 85% of the data is used for training;
while the remainder is used for validation. A sensitivity study has
been conducted to avoid over-fitting. The ANN training process
is well-studied [1], and therefore not discussed here.

3 EXPONENTIALLY VARYING AND MARKOV-CHAIN
VELOCITY PREDICTOR
The exponentially varying velocity predictor is based on the

empirical hypothesis that future vehicle velocity evolves expo-
nentially. The Markov-chain velocity predictor is based on sta-
tistical analysis of driving data.

3.1 Exponentially Varying Velocity Predictor
For compactness of notation, denote Vk = V (tk). In each

receding horizon, the exponentially varying velocity forecast is
modeled as

Vk+n =Vk× (1+ ε)n, for n = 1,2, ...,Hp (7)

where Vk is the initial velocity at time step k, ε is the exponential
coefficient. When ε is positive, future velocity increases; when
ε is negative, future velocity decreases; when ε is zero, future
velocity is constant and equal to Vk. Symbol ε is a tuning param-
eter, to be discussed later.

3.2 Markov-chain Velocity Predictor
The Markov states and emissions are defined on discrete-

valued domains given by vehicle velocity V (0 to 30 m/s) and
vehicle acceleration α in (−1.5 to 1.5 m/s2), respectively. For
fair comparison, the same driving cycles used for ANN training
are used to calculate the Markov emission probability matrix.

Suppose the vehicle velocity and acceleration are discretized
into p and q intervals indexed by i and j, respectively. The cur-
rent velocity is Vk, and possible future acceleration values are
αk+n. The Markov-chain process is defined by an emission prob-
ability matrix T ∈ Rp×q with

[T ]i j = Pr[αk+n = α j|Vk+n−1 =V i] (8)
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for i ∈ {1, . . . , p}, j ∈ {1, . . . ,q} and n ∈
{

1, . . . ,Hp
}

[11]. Sup-
pose p = 60 and q = 60, the probability matrix extracted from
the sample driving cycle data is shown in Fig. 2. Note that large
accelerations or decelerations are more likely at lower velocities
than at high velocities.

To increase the prediction accuracy, a 1-stage Markov-chain
process can be extended to multi-stage models [15], using the
following probabilities

Pr [αk+1 = l1,αk+2 = l2, . . . ,αk+m = lm
|Vk = l0,Vk−1 = l−1, . . . ,Vk−m = l−m] (9)

where li’s are appropriate values from the corresponding
discrete-valued domains.

4 PROBLEM FORMULATION
4.1 Control-oriented Power-split HEV Model

The structure of the power-split HEV is shown in Fig. 3,
where the engine and generator are connected to the planet car-
rier and the sun gear, respectively. A torque coupler is used to
combine the ring gear with the motor to power the final drive.
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The kinematic constraint of the planetary gear set is given by

ωsS+ωrR = ωc(S+R) (10)

where S and R are the radii of the sun gear and the ring gear,
respectively. Angular speeds of the ring, sun, and carrier gears
are denoted as ωr, ωs and ωc. By neglecting the inertia of the
pinion gears and assuming that all the powertrain shafts are rigid,
inertial dynamics of the powertrain can be derived as

Jgen
dωgen

dt
= Tgen +FS (11)

Jeng
dωeng

dt
= Teng−F(S+R) (12)

Jmot
dωmot

dt
= Tmot − (Taxle/g f )+FR (13)

where Jgen, Jeng and Jmot are lumped inertias of the generator, en-
gine and motor, respectively; Tgen = Ts, Teng = Tc and Tmot = Tr
are torques of the generator, engine, and motor, respectively; F
represents the internal force on pinion gears; g f is the gear ra-
tio of the final drive; Taxle is the drive axle torque. To reduce
the control-oriented model’s complexity, we disregard the iner-
tial dynamics, and use the steady-state values of (11)-(13). Motor
torque and vehicle velocity are given by

ωmot =
g f

Rwheel
V (14)

m
dV
dt

=
Taxle +Tbrake

Rwheel
+mgsin(θ)− ρACdV 2

2
−Crmgcos(θ) (15)

where Rwheel is the wheel radius; m is vehicle mass; Tbrake is the
friction brake torque; θ denotes the road grade and is assumed to
be zero; 1

2 ρACd is the aerodynamic drag resistance; Cr represents
the rolling resistance coefficient.

The engine fuel flow rate (ṁ f uel) and power transfer efficien-
cies for the motor and generator (ηmot and ηgen) are:

ṁ f uel = ψ1(ωeng,Teng) (16)
ηmot = ψ2(ωmot ,Tmot) (17)
ηgen = ψ3(ωgen,Tgen) (18)

where ψ1, ψ2 and ψ3 are empirical maps of the engine fuel flow,
motor efficiency and generator efficiency, respectively.

Battery state of charge (SOC) is modeled as a single state.
The internal resistance model is applied in the control-oriented
model [16], described as

˙SOC = −(Ibatt/Qmax) (19)
Pbatt = VocIbatt − I2

battRbatt (20)

where Ibatt and Qmax are battery current and charge capacity, re-
spectively; Pbatt and Rbatt are the power and internal resistance;
Voc represents the open circuit voltage. Positive Pbatt denotes dis-
charge. Terminal battery power is described by

Pbatt = Pmot/(ηmotηinv)
kmot +Pgen/(ηgenηinv)

kgen (21)

where Pmot and Pgen are motor and generator shaft powers, re-
spectively; ηinv is the inverter efficiency;

ki =

{
1, if Pi > 0
−1, if Pi ≤ 0 for i = {mot,gen} (22)

Eqn. (10)-(22) summarize the control model used for MPC,
and more details can be found in [12]. Throughout this study,
MPC is applied to a detailed plant model furnished by the QSS-
toolbox developed at ETH Zürich (see [17] for details).

4.2 Nonlinear Model Predictive Control
Engine speed ωeng and torque Teng are chosen as decision

variables. Denoting x as the state variable, u as the control vari-
able, d as the system disturbance, and y as the output, the pro-
posed control-oriented powertrain model can be represented as

ẋ = f (x,u,d), y = g(x,u,d) (23)

with x = SOC, u = [ωeng,Teng]
T , d = Vpredict , y =[

ṁ f uel ,Pbatt ,Tmot ,ωgen,Tgen
]T . Vpredict is a short-term fu-

ture velocity sequence provided by the velocity predictor at each
time step. Considering ∆t = 1 second, at time step k, the cost
function Jk is formulated as

Jk =
∫ (k+Hp)∆t

k∆t

[
ṁ f uel(u(t))

]2 dt (24)

where Hp is the prediction horizon length, which is herein equal
to the control horizon length for simplicity [7]. Additionally, the
following physical constraints must be enforced:

SOCmin ≤ SOC≤ SOCmax,
T min

eng ≤ Teng ≤ T max
eng , ωmin

eng ≤ ωeng ≤ ωmax
eng ,

T min
gen ≤ Tgen ≤ T max

gen , ωmin
gen ≤ ωgen ≤ ωmax

gen ,

T min
mot ≤ Tmot ≤ T max

mot , ωmin
mot ≤ ωmot ≤ ωmax

mot .

(25)

In addition, HEVs must also keep the final SOC close to
the initial SOC over the entire driving cycle. However, since fu-
ture velocity trajectories are unknown in this paper, it is difficult
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to acquire the optimal SOC trajectory for the MPC controller to
follow. Thus, we define a charge sustaining strategy as the bat-
tery energy usage policy. Namely, the terminal SOC is restricted
within a pre-defined envelope in each control horizon.

SOClow(k)≤ SOC((k+Hp)∆t)≤ SOChigh(k). (26)

The horizon’s terminal-SOC-bounds are given by

SOClow(k) = SOCmin +(SOC f −SOCmin)sin( k
N ·

π

2 ),

SOChigh(k) = SOCmax +(SOC f −SOCmax)sin( k
N ·

π

2 ),
(27)

where SOC f is the desired final SOC and N is the total number
of time steps in the driving cycle. These bounds converge to the
desired final SOC as the drive cycle reaches the final time step.
For comparative analysis, all simulations with different velocity
predictors employ the same terminal-SOC-reference bound func-
tions.

The architecture of the simulation diagram is illustrated in
Fig. 4. The MPC controller is applied in the supervisory level
and the optimal control problem is solved using DP [18]. The
actual driving velocity Vrequest is sent to the quasi-static HEV
model. Velocity forecast Vpredict is provided from the velocity
predictor. The simulation procedure is described as follows:

1. The horizon velocity predictor generates the forecasted ve-
locity vector Vpredict ;

2. Given Vpredict , the MPC controller calculates the optimal
control policy that minimizes objective function (24);

3. Apply the first element of the optimal control policy to the
lower level controller;

4. Measure the system states and update. Repeat the simulation
procedure at each time instant.

5 SIMULATION RESULTS AND DISCUSSION
Eight driving cycles are used for comparing the performance

of the three velocity predictors. These include certification driv-
ing cycles HWFET, UDDS [14] and real collected driving data
WVUSUB, WVUINTER, Real HW2, Real HW3, Real UB2 and
Real UB3. The real-world cycles in the testing data are from
[19,20]. Note these cycles differ from those used for ANN train-
ing and Markov probability computation. All testing cycles are
concatenated for ease of presentation in Fig. 5.

Deterministic DP (DDP) and deterministic MPC (DMPC)
use full knowledge of the vehicle velocity schedule and serve
as benchmarks. Vehicle parameters and empirical maps are ob-
tained for the Toyota Prius model in ADVISOR 2002 [14]. Simu-
lation was performed on a personal computer with an Intel Corel
i7-3630QM CPU @2.4GHz. Horizon length Hp is specified to
be 10 as a compromise between computation and optimality. The
optimal control policy is solved by DP, and the computation time
is 0.67 seconds on average for each time step. Thus the control
system runs in real time in Matlab. The initial SOC and final
SOC in all simulations are set as 0.65. Upper and lower SOC
bounds are 0.8 and 0.5, respectively. Four metrics are used to
assess the velocity predictors:

1. Average root mean squared error (RMSE, in m/s) of the pre-
dicted velocities in all of the receding horizons.

2. Violating frequency of the velocity and acceleration con-
straints for the predicted velocities, represented by e.

3. Online computation time T (in microseconds) of the velocity
prediction process at each time step.

4. Consequent vehicle fuel consumption (in grams).

Detailed simulation results for the UDDS cycle are shown
in Sections 5.1 to 5.4. Comparative results for all testing cycles
are shown in Section 5.5. Note that the terminal SOC deviation
has been compensated for in the fuel consumption calculation.

5.1 Exponentially Varying Predictor for UDDS
As shown in Table 1, the minimum fuel consumption occurs

when predicted velocity decreases slightly. Terminal SOC, rep-
resented by SOCt , ascends as ε grows. This is because when
the predicted velocity changes aggressively, the engine tends to
provide more power. Thus, more engine power is absorbed by
the battery through the generator. The minimum fuel consump-
tion occurs for ε = −0.01, which corresponds to relatively low
predicted velocity RSME.

5.2 Markov-chain Velocity Predictor for UDDS
Next the Markov-chain velocity predictor is evaluated. The

1-stage Markov-chain model has the worst performance in char-
acterizing future velocities, as shown in Table 2. It is, however,
the most computationally efficient. For multi-stage Markov-
chain models, one requires an often prohibitively large set of

5 Copyright c© 2014 by ASME



1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40
US06 Artemis

highway
Real HW1 Artemis

suburban NEDC
JN1015

WVUCITY

Real UB1

Sample Data

V
el

oc
ity

 (
m

/s
)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40
HWFET WVUINTER Real HW2 Real HW3

WVUSUB UDDS

Real UB2

Real UB3

Testing Data

Time Step

V
el

oc
ity

 (
m

/s
)

FIGURE 5. TESTING DATA. REAL HW: REAL COLLECTED HIGHWAY DATA; REAL UB: REAL COLLECTED URBAN DATA.

TABLE 1. EXPONENTIALLY VARYING PREDICTOR UDDS

ε SOCMPC
t RMSE Fuel T

-0.03 0.6475 3.63 539.2 0.023

-0.02 0.6487 3.45 538.4 0.026

-0.01 0.6501 3.38 537.3 0.032

0 0.6515 3.44 538.8 0.034

0.01 0.6554 3.67 541.7 0.029

0.02 0.6588 4.07 545.0 0.023

training cycles to identify each transition probability. This phe-
nomenon elucidates the poor practicality of multi-stage Markov-
chain speed predictors. To address this problem, either a suffi-
ciently rich sample database is needed or a well-tuned probabil-
ity map must be computed off-line. The maximum Markov stage
in this simulation is 5. The extracted probability matrix changes
negligibly for higher stages.

When a specific multi-stage Markov state is not found in the
probability matrix, the Markov stage will decrease until an effec-
tive probability distribution is found. For example, if a 5-stage
Markov state is extracted from the testing cycle and the exact
same state cannot be identified from the assigned database, the
Markov chain velocity predictor will abandon the last state ele-
ment and reduce the stage to 4. For a new Markov state in the
next prediction process, the Markov stage will recover to 5. It
can be seen in Table 2 that more stages result in smaller RMSE.
Hence, increased fuel efficiency can be achieved via multi-stage
Markov chain speed predictors. However, the cardinality of the
probability matrix for a multi-stage Markov-chain model scales
exponentially. Therefore, Markov-chain models with greater
than 3 stages are rarely used.

5.3 ANN Velocity Predictor for UDDS
For ANN velocity predictors, the dimension of the input ve-

locity vector Hh is specified to be 10. The authors investigated

TABLE 2. MARKOV-CHAIN PREDICTOR FOR UDDS

Stage SOCMPC
t RMSE e (%) Fuel T

1 0.6578 3.67 0 564.5 1.647

2 0.6642 3.23 0 529.8 2.821

3 0.6648 3.21 0 528.3 2.919

4 0.6646 3.14 0 526.7 2.831

5 0.6648 3.11 0 523.9 2.797

different neuron numbers. In order to gain the best prediction
performance within an acceptable training time, the neuron num-
bers for BP-NN and Recurrent-NN are both set as 20 and 50.
Since the RBF-NN has much faster training speed than BP-NN
and Recurrent-NN, we can easily develop RBF-NN based veloc-
ity predictors with more neural nodes. Therefore the RBF-NN
neuron number is set as 50 and 100.

Table 3 shows the comparison results of the three categories
of ANN velocity predictors for UDDS testing. Note that the error
caused by velocity/acceleration constraint violations (e) of the
predicted velocity is included in the average RMSE computation.
The RBF-ANN structure achieves better fuel economy than the
Recurrent-NN and BP-NN velocity predictors, despite a similar
RMSE, since there are substantially fewer constraint violations.

5.4 Comparison of the Velocity Predictors for UDDS
The 1-stage and 5-stage Markov-chain velocity predictors

are selected to compare with the best velocity predictors from
the exponentially varying and ANN classes. Comparison results
are shown in Table 4.

5.4.1 Prediction Precision From Table 4, the aver-
age RMSE of 1-stage Markov-chain velocity predictor is about
10% larger than that of the exponentially varying predictor. This
means the 1-stage Markov-chain process behaves poorly in mod-
eling comprehensive driving behaviors. Additionally, the aver-

6 Copyright c© 2014 by ASME



TABLE 3. ANN PREDICTOR FOR UDDS

Net-Node SOCMPC
t RMSE e (%) Fuel T

BP-20 0.6576 2.32 914 (6.67%) 500.9 0.22

BP-50 0.6562 2.29 528 (3.85%) 501.2 0.21

Re-20 0.6595 2.28 819 (5.98%) 497.9 0.21

Re-50 0.6571 2.29 933 (6.81%) 500.0 0.22

RBF-50 0.6566 2.28 26 (0.19%) 499.9 0.22

RBF-100 0.6580 2.27 24 (0.18%) 496.1 0.21

(e is the number (and percentage) of constraint violations.)

TABLE 4. VELOCITY PREDICTING COMPARISON FOR UDDS

Methods SOCMPC
t RMSE e (%) Fuel T

DDP 0% – 0 0% –

DMPC +0.68% 0 0 +4.86% –

-0.01 EV +0.02% 3.38 0 +14.45% 0.03

1-stage MC +1.2% 3.67 0 +20.24% 1.65

5-stage MC +2.28% 3.11 0 +11.60% 2.92

RBF-100 +1.23% 2.27 0.18% +5.67% 0.21

(EV = exponentially varying; MC = Markov-chain. The
terminal SOC and fuel consumption results have been
normalized against DDP for an intuitive comparison.)

age RMSE of the 100-node RBF-NN velocity predictor is 27%
less than that of the 5-stage Markov chain predictor. Both of
them are better than the other two approaches. This indicates
that the 100-node RBF-NN and 5-stage Markov-chain velocity
predictors are preferable in predicting short-term future veloci-
ties.

The nature of each prediction method can be seen visually
in Fig. 6. This figure elucidates how a 1-stage Markov chain is
too short-sighted to capture velocity profiles longer than a few
time steps. One can also observe how the 5-stage Markov chain
roughly predicts constant acceleration. In contrast, the 100-node
RBF-NN seems to capture micro-trip-like behaviors better than
the other three. This is especially apparent when the velocity
switches from acceleration to deceleration.

5.4.2 Fuel Consumption From Table 4, the 100-node
RBF-NN predictor is the most energy-saving predictor. In par-
ticular, the fuel consumption of 100-RBF is only 4 grams higher
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SO
C

 

 

Dynamic Programming
Deterministic MPC
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FIGURE 7. SOC TRAJECTORIES FOR UDDS TESTING.

than the deterministic MPC approach, which is only 0.8%. Fig.
7 shows the SOC trajectories for DDP, DMPC and the four
velocity-predictor-based MPC controllers given in Table 4. The
difference between the DP and MPC-based trajectories is due
to DP being a global optimization; whereas the MPC controller
yields a locally optimal solution for each control horizon. With
the same battery energy consuming policy, the SOC trajectory of
the 100-node RBF-ANN MPC is close to the DMPC benchmark.

5.4.3 Computation Time and Repeatability From
Table 4, it is obvious that the Markov-chain method is compu-
tationally heavier than the ANN-based method and the exponen-
tially varying method. This is because the process of generat-
ing a stochastic Markov emission needs additional calculations to
form the probability distributions. In addition, the Markov-chain
approach produces different velocity forecasts from the same in-
put, which creates a repeatability issue. The other methods pro-
vide deterministic velocity forecasts.

5.4.4 Constraint Violation The exponentially-
varying and Markov-chain approaches do not violate the speed
and acceleration constraints at all. In the 100-node RBF-NN
case, the constraints are violated 24 times, which is 0.18% of all
the predicted velocities.

5.5 Simulation Results for All Testing Cycles
Similar outcomes are achieved for the other seven testing

cycles. Fig. 8 provides the average values and standard devia-
tions of fuel consumption (percentage) for MPC with different
velocity predictors, relative to deterministic DP. We can see that
ANN predictors generally provide the least increase in fuel con-
sumption, both in terms of average values and standard devia-
tion. Note these results are evaluated across both emission cer-
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tification cycles and real-world drive cycle data. Consequently,
we conclude the ANNs provide a promising blend of prediction
capability and computational efficiency for MPC energy man-
agement in HEVs.

6 CONCLUSIONS
The performance of MPC-based HEV energy management

strongly depends on accurate forecasts of vehicular velocities

over the receding horizon. This paper compares three classes
of velocity forecasting algorithms. Generalized exponentially
varying, stochastic Markov-chain and novel ANN-based veloc-
ity predictors are systematically described and evaluated in terms
of prediction precision, computation burden and fuel economy.
Simulation results indicate that the 100-node RBF-NN velocity
predictor has the best overall performance. Namely, it provides
the least average fuel consumption for eight testing cycles, and
is computationally efficient.
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