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ABSTRACT
Efficient and safe battery charge control is an important pre-

requisite for large-scale deployment of clean energy systems.
This paper proposes an innovative approach to devising op-
timally health-conscious fast-safe charge protocols. A multi-
objective optimal control problem is mathematically formulated
via a coupled electro-thermal-aging battery model, where elec-
trical and aging sub-models depend upon the core tempera-
ture captured by a two-state thermal sub-model. The Legendre-
Gauss-Radau (LGR) pseudo-spectral method with adaptive
multi-mesh-interval collocation is employed to solve the result-
ing highly nonlinear six-state optimal control problem. Charge
time and health degradation are therefore optimally traded off,
subject to both electrical and thermal constraints. Minimum-
time, minimum-aging, and balanced charge scenarios are exam-
ined in detail. The implications of the upper voltage bound, am-
bient temperature, and cooling convection resistance to the opti-
mization outcome are investigated as well.

1 INTRODUCTION
Batteries are widely utilized in mobile handsets, electric ve-

hicles (EVs), and power grid energy storage [1, 2]. They are an
enabling technology for diversifying and securing our future en-
ergy supplies. In contrast to simple and rapid refueling of gaso-
line or diesel, battery recharge requires meticulous control and
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management, owing to complex electrochemical reactions, im-
measurable internal states, and serious safety concerns [3]. Fast
charging is a thriving area of research, as it increases the practi-
cality and consumer acceptance of battery-powered devices (e.g.,
EVs). Nevertheless, it can also impair battery longevity depend-
ing on the charging method used, particularly due to heating. It is
thus crucial to systematically study the tradeoffs between charg-
ing time and health degradation, which is the focus of this paper.

The traditional charging protocol for Li-ion batteries is
constant-current/constant-voltage (CCCV) [4]. In the CC stage,
the charging current is constant until a pre-specified voltage
threshold is reached; in the CV stage the voltage threshold is
maintained until the current relaxes below a pre-specified thresh-
old value. This technique is simple and easily implemented. The
current rate and voltage threshold are, however, almost univer-
sally selected in an ad-hoc manner.

Various methods were proposed to reduce charge times,
such as multi-stage CC (high CC followed by low CC) plus CV
(MCC-CV) [5], fuzzy logic [6, 7], neural networks [8], grey sys-
tem theory [9], and ant colony system algorithm [10]. Alternative
protocols were reported to prolong the battery lifetime as well,
such as MCC-CV (low CC followed by high CC plus CV) [11]
and CCCV with negative pulse (CCCV-NP) [12]. These pro-
tocols are almost always heuristic. That is, they employ basic
knowledge or empirical observations of electrical properties of
batteries to devise a charging strategy. Their implementation
and performance are subject to cumbersome meta-parameter tun-
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FIGURE 1. SCHEMATIC OF ELECTRICAL MODEL.

ing. Furthermore, there are no mathematical guarantees for fast
charge optimality or safe constraint satisfaction.

Recently, some researchers have given first insights into
model-based optimal charge control [13–18]. A significant chal-
lenge for model-based charge control is numerically solving a
multi-state nonlinear calculus of variations optimal control prob-
lem. These previous studies side-step this difficulty using linear-
quadratic formulations [13], state independent electrical param-
eters [14], piecewise constant time discretization [15], linear
input-output models [16], a one-step model predictive control
formulation [17], or a reference governor formulation [18]. To
directly face the nonlinear variational calculus problem, orthogo-
nal collocation enabled pseudo-spectral methods were employed
in [19] to optimize charging time and efficiency of lithium-ion
batteries. However, all of the foregoing studies merely consider
the electrical behavior of batteries, without simultaneously ac-
counting for thermal and aging dynamics. Consequently, the op-
timized protocols may markedly deviate from reality as batteries
invariably work at varying thermal and aging conditions. More-
over, aging minimization and temperature-related safety consid-
eration (e.g., overheating avoidance) during charge cannot be ex-
plored.

This paper pursues a different approach to developing opti-
mally health-conscious fast-safe charging protocols. Mathemat-
ically, we formulate a multi-objective optimal control problem
via a coupled electro-thermal-aging model. In the full model,
a two-state thermal subsystem captures both core and surface
temperature dynamics; and then the core temperature (represent-
ing the electrode assembly thermal status) feeds into parame-
ters for the electrical and aging subsystems [20]. Due to the bi-
directional coupling between subsystems, the optimization prob-
lem is highly nonlinear. Consequently, there are no analytic so-
lutions and numerical solutions have been previously considered
intractable. We challenge this entrenched mindset by leverag-
ing the Legendre-Gauss-Radau (LGR) pseudo-spectral method
with adaptive multi-mesh-interval collocation. To the best of our
knowledge, it is the first multi-objective optimization framework
for optimally trading off charging time and battery capacity fade,
subject to both electrical and thermal limits. It is also worth high-
lighting that incorporating a two-state temperature model in lieu
of the commonly-used single lumped temperature yields more

accurate predictions and safer charging protocols.
The remainder of this paper is structured as follows. In Sec-

tion 2, the coupled electro-thermal-aging model is described. In
Section 3, the multi-objective optimal control problem is formu-
lated, and the LGR pseudo-spectral method is briefly introduced.
Optimization results are discussed in Section 4, followed by con-
clusions in Section 5.

2 COUPLED ELECTRO-THERMAL-AGING MODEL
In this section, a coupled electro-thermal-aging model is

described for cylindrical lithium-iron-phosphate batteries (A123
ANR26650M1). It consists of a second-order equivalent cir-
cuit model for emulating voltage behavior, a two-state thermal
model for predicting the core and surface temperatures, and a
semi-empirical capacity-fade model. The electrical parameters
depend upon core temperature, SOC, and current direction; the
thermal parameters are constant; and the parameters of the ag-
ing model depend upon current rate and core temperature. None
of the individual subsystem models are new, yet their integration
into optimal charging control is novel.

2.1 Electrical Model
The electrical model in Fig. 1 comprises an open-circuit

voltage (OCV, Voc), two resistor-capacitor (RC) pairs (R1, C1,
R2, C2), and a resistor (R0). The state-space model is given by:

dSOC(t)
dt

=
I(t)
Cbat

, (1)

dV1(t)
dt

= −V1(t)
R1C1

+
I(t)
C1

, (2)

dV2(t)
dt

= −V2(t)
R2C2

+
I(t)
C2

, (3)

Vt(t) = Voc(SOC)+V1(t)+V2(t)+R0I(t), (4)

where Cbat is the nominal capacity, I(t) is the current (positive
for charge), and Vt(t) denotes the terminal voltage. The three
states include SOC and voltages (V1, V2) across the two RC pairs.
Through proper experimental design, the electrical parameters
have been identified in [20, 21], and those for charge are dis-
played in Fig. 2.

2.2 Thermal Model
The thermal model sketched in Fig. 3 describes the radial

heat transfer dynamics of a cylindrical battery by considering
core and surface temperatures Tc and Ts as follows:

dTc(t)
dt

=
Ts(t)−Tc(t)

RcCc
+

Q(t)
Cc

, (5)
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FIGURE 2. ELECTRICAL PARAMETERS FOR CHARGE: (a) Voc,
(b) R0, (c) C1, (d) R1, (e) C2, AND (f) R2 from [20, 21]
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dTs(t)
dt

=
Tf (t)−Ts(t)

RuCs
− Ts(t)−Tc(t)

RsCs
, (6)

where Q(t) = |I(Voc −Vt)| is heat generation including joule
heating and energy dissipated by electrode over-potentials. The
heat conduction resistance, convection resistance, core heat ca-
pacity, and surface heat capacity are represented by Rc, Ru, Cc,
and Cs, respectively. The two states are the core Tc and surface
Ts temperatures. As treated in [20,21], we herein assume that the
coolant flow rate is constant, and the ambient temperature Tf is
nearly constant. The thermal parameters have been calibrated in
previous work and are summarized in Table 1 [20, 21].

We remark that the electro-thermal model has been validated
over a broad range of loading conditions covering a maximum
current rate up to 22C. More details are furnished in [20] regard-
ing the model topology, parameterization, experimental design
for identification, and validations.

2.3 Aging Model
We adopt an aging model from [22] that is based upon a

matrix of cycling tests. This matrix spans different C-rates1

(C/2 to 10C), temperatures (-30◦C to +60◦C), and depths-of-
discharge (10% to 90%) for lithium iron phosphate cells (A123
ANR26650M1) in [22]. The experimental data demonstrates
that capacity fade depends strongly on C-rate and temperature in
these cells, whereas the sensitivity to depth-of-discharge is negli-
gible. A correlation between the capacity loss and the discharged
ampere-hour (Ah) throughput has been calibrated by the follow-
ing semi-empirical model:

∆Qb = M(c)exp
(
−Ea(c)

RTc

)
A(c)z, (7)

where ∆Qb is the percentage of capacity loss in [%], c is the C-
rate, and M(c) is the pre-exponential factor as a function of the
C-rate, (see Table 3 of [22]). Symbol R is the ideal gas constant
and A is the discharged Ah throughput depending on C-rate. The
activation energy Ea in [J/mol] and the power-law factor z are
given by

Ea(c) = 31700−370.3c, z = 0.55. (8)

A capacity loss of 20% (∆Qb = 20%) is often indicative of
the end-of-life (EOL) for an automotive battery, and the corre-
sponding total discharged Ah throughput Atol and number of cy-
cles until EOL, N are algebraically calculated as

Atol(c,Tc) =

 20

M(c)exp
(
−Ea(c)

RTc

)
 1

z

, (9)

N(c,Tc) =
3600Atol(c,Tc)

Cbat
, (10)

where each cycle corresponds to 2Cbat charge throughput. Note
that Atol is the discharged Ah throughput used by the aging model
in [22], and thus the total throughput should be 2Atol including
both charged and discharged Ah. Based on (9) and (10), the

1C-rate is a normalized measure of electric current, defined as the ratio of
current I(t) in Amperes, to a cell’s nominal capacity Cbat in Ampere-hours.

TABLE 1. THERMAL PARAMETERS.

Rc(K/W ) Ru(K/W ) Cc(J/K) Cs(J/K)

1.94 3.19 62.7 4.5
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FIGURE 4. BATTERY SOH MODEL: (a) EOL CYCLE N(c,Tc),
AND (b) SOH DECAY RATE AS FUNCTIONS OF C-RATE.

battery State-of-Health (SOH) can be defined below:

SOH(t) = SOH(t0)−
∫ t

t0 |I(τ)|dτ

2N(c,Tc)Cbat
, (11)

where t0 denotes the initial time. Consequently, SOH = 1 cor-
responds to a fresh battery and SOH = 0 corresponds to 80%
capacity loss. The time derivative of (11) yields the dynamical
battery aging model

dSOH(t)
dt

=− |I(t)|
2N(c,Tc)Cbat

. (12)

The EOL cycle number and SOH decay rate, as a function of
the C-rate and core temperature, are visualized in Fig. 4. As
the C-rate or core temperature increases, the SOH decay rate in-
creases. It is worth pointing out that more EOL cycles can be
sustained at medium C-rates (2-5C) than at low C-rates, since
the aging model includes calendar-life effects as well (one cycle
at a very low C-rate has a dramatically increased duration). The
aging model was validated in [22] has been previously applied
to component sizing and energy management in hybrid electric
vehicles [23, 24].

2.4 Full Model

Combining the above three sub-models produces the cou-
pled electro-thermal-aging model (block diagram in Fig. 5) used
for the subsequent charging protocol optimization. The model

Electrical 
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Aging 
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Thermal 
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I(t)

Vt (t)
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SOH(t)

Tf (t)

Ts (t)

Tc (t)

FIGURE 5. ELECTRO-THERMAL-AGING MODEL COUPLING.

dynamics are summarized in (13)-(18), with output equation (4).

dSOC(t)
dt

=
I(t)
Cbat

, (13)

dV1(t)
dt

=−V1(t)
R1C1

+
I(t)
C1

, (14)

dV2(t)
dt

=−V2(t)
R2C2

+
I(t)
C2

, (15)

dTc(t)
dt

=
Ts(t)−Tc(t)

RcCc
+

I(t)(V1(t)+V2(t)+R0I(t))
Cc

, (16)

dTs(t)
dt

=
Tf (t)−Ts(t)

RuCs
− Ts(t)−Tc(t)

RsCs
, (17)

dSOH(t)
dt

=− |I(t)|
2N(c,Tc)Cbat

. (18)

3 FORMULATION OF OPTIMAL CHARGE CONTROL
The objective function J combines charge time with capacity

loss (i.e. SOH decay) as follows:

min
I(t),x(t),t f

J = β ·
t f − t0

tmax− t0
+(1−β ) · (SOH(t0)−SOH(t f )),

(19)
where t f is the final time of charge and 0 ≤ β ≤ 1 weights
the relative importance between the two objectives. The op-
timization variables are the input current I(t), state variables
x(t) = [SOC(t),V1(t),V2(t),Tc(t),Ts(t),SOH(t)]T , and final time
t f . The constraints include the model dynamics (13)-(18) and the
electrical, thermal, health, and time limits below:

SOCmin ≤ SOC ≤ SOCmax, Imin ≤ I ≤ Imax, (20)
SOC(t0) = SOC0, Vt,min ≤Vt ≤Vt,max, (21)
SOC(t f ) = SOC f , Tc,min ≤ Tc ≤ Tc,max, (22)
SOHmin ≤ SOH ≤ SOHmax, Tc(t0) = Tc,0,Ts(t0) = Ts,0, (23)
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SOH(t0) = SOH0, t0 ≤ t ≤ tmax. (24)

Since the optimal control problem has six states and is
highly nonlinear, it is difficult to use conventional optimization
techniques, e.g., dynamic programming, Pontryagin’s minimum
principle, and indirect methods, due to intractable computational
burden or accuracy. Instead, we pursue pseudo-spectral meth-
ods to transcribe this infinite-dimensional optimal control prob-
lem into a finite-dimensional optimization problem with alge-
braic constraints at the discretized nodes. Then, the optimiza-
tion variables at such nodes are solved by off-the-shelf nonlinear
programming (NLP) solvers, like SNOPT or IPOPT [25]. Note
that convexity is not guaranteed, and therefore these solvers yield
locally optimal solutions. Pseudo-spectral methods are an ef-
fective tool for complex nonlinear optimal control problems and
have been extensively applied to real-world optimization prob-
lems in engineering, including aerospace and autonomous flight
systems [26], road vehicle systems [27], energy storage [19], etc.
There are a myriad of approaches for discretizing integral and
differential equations, leading to a spectrum of pseudo-spectral
variants. In this study, we use the Legendre-Gauss-Radau (LGR)
pseudo-spectral method with adaptive multi-mesh-interval collo-
cation, featured by the general purpose optimal control software
(GPOPS-II) [25]. This software incorporates an orthogonal col-
location method to generate the LGR points. Rather than a tradi-
tional fixed global mesh, an adaptive mesh refinement algorithm
is employed to iteratively adjust the number of mesh intervals,
the width of each interval, and the polynomial degree (the num-
ber of LGR points). More theoretical and algorithmic properties
of this method and GPOPS-II are elaborated in [28, 29] and in
the Appendix.

4 RESULTS AND DISCUSSION
This section presents optimization results for three illustra-

tive charge paradigms: minimum-time charge, minimum-aging
charge, and balanced charge. The physical bounds in (20)-(24)
and ambient temperature Tf are specified as follows:

SOCmin = SOC0 = 0.2, SOCmax = SOC f = 0.9, (25)
Imin = 0A = 0C, Imax = 46A = 20C, (26)

Vt,min = 2V, Vt,max = 3.6V, (27)
Tc,min = 5◦C, Tc,max = 45◦C, (28)

Tc,0 = Tf ,0 = 25◦C, Tf (t) = 25◦C ∀t ≥ t0, (29)
SOHmin = 0, SOHmax = SOH0 = 1, (30)

t0 = 0sec, tmax = 36000sec. (31)

Here, the voltage limits are selected according to the manufac-
turer’s specification sheet, and the temperature and current limits
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FIGURE 6. OPTIMIZATION RESULT FOR MINIMUM TIME
CHARGE: (a) C-RATE, (b) TERMINAL VOLTAGE, (c) CORE AND
SURFACE TEMPERATURES, AND (d) SOC/SOH.

are chosen based on the validated range in [20].

4.1 Minimum-Time Charge
By setting β = 1, the optimization produces a minimum-

time charge protocol. The optimal trajectories are shown in Fig.
6. It takes 6.86 minutes to achieve the target SOC. Heuris-
tically, the charge process follows a constant-voltage/constant-
temperature (CVCT) protocol. To minimize charging time, the
maximum C-rate is applied initially, causing the maximum volt-
age constraint to become active. The core temperature increases
until it reaches its maximum value, which becomes the dominant
inequality constraint. This induces a momentary voltage drop.

A comparison is made with CCCV charges with varying
C-rates (see Fig. 7). It is clear that CCCV are sub-optimal
and/or infeasible. Despite a shorter charge time of 6.76 min,
CCCV with 15C violates the maximum temperature constraint
Tc(t)≤ Tc,max = 45◦C. CCCV with 10C yields a 6.91 min charge
time and trajectory that is very similar to the optimal solution. In
other words, this analysis yields the insight that CCCV with 10C
happens to be nearly-optimal in the sense of minimizing charge
time.

4.2 Minimum-Aging Charge
By setting β = 0, we can investigate the other extreme – a

minimum aging charge protocol. The optimization result is illus-
trated in Fig. 8. Interestingly, the protocol is pulse-like, while
maintaining relatively low core temperature. The resulting SOH
decay is approximately 0.004%, more than one order of mag-
nitude less than the SOC decay from minimum-time charging
(SOH decay of approximately 0.05%). As shown in Fig. 9, a
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comparison is performed with a C/10 constant-current charge
that is widely perceived as a minimum-aging choice. Under
the models considered here, the relatively slow C/10 constant-
current charge is in fact non-optimal, since the long duration sig-
nificantly contributes to calendar-life decay.
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FIGURE 9. SOH TRAJECTORIES OF MINIMUM-AGING
CHARGE AND 10-HOUR CONSTANT CURRENT-CHARGE.

4.3 Balanced Charge
By sweeping β values between 0 and 1, we compute a Pareto

frontier of balanced charge protocols, i.e., the optimal tradeoffs
between fast charge time and SOH decay displayed in Fig. 10.
Not surprisingly, the two objectives conflict. Consider the region
between the left two data labels in Fig. 10. Battery SOH de-
cay can be substantially mitigated with a negligible increase in
charge time. Therefore, one may sacrifice a trivial amount of fast
charge time to circumvent rapid SOH decay.

A “balanced” protocol (β = 0.05) is exemplified in Fig. 11,
which can be interpreted as the smallest-aging solution in the
case of 12.22-minute charge duration. Note the highly non-
intuitive nature of this charging protocol. The current is carefully
regulated to limit the increase of core temperature (a dominant
accelerating factor of capacity fade). That is, the current reduces
in the first 6 minutes to slow down the temperature rise. Next,
current increases in the vicinity of the smallest resistance (see
Fig. 12); and ultimately the current diminishes with the enlarged
resistance at high SOC. The optimal solution exploits nonlinear
model properties to improve charge time and SOH decay.

4.4 Sensitivity of Pareto Curve
Next we example solution sensitivity to perturbations in the

constraint parameters.

4.4.1 Upper Voltage Bound Vt,max The impact of the
upper voltage bound Vt,max on the Pareto curve is shown in Fig.
13 (Top). As Vt,max decreases, the Pareto curve moves to the
upper-right and shrinks, resulting in reduced control flexibil-
ity. Diminishing Vt,max is therefore unfavorable to both con-
trol objectives (charge time reduction and SOH decay mitiga-
tion). For example, compared to Vt,max = 3.6V , the minimum
charge time increases by about 39.1% and 106.8% in the cases
of Vt,max = 3.55V and Vt,max = 3.5V , respectively.
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4.4.2 Ambient Temperature Tf The impact of the
ambient temperature Tf is shown in Fig. 13 (Middle). At low am-
bient temperature (Tf = 10◦C), the battery SOH decays slower,
whereas the minimum charge time increases due to greater inter-
nal resistance. That is, the maximum voltage is reached sooner,
because of higher ohmic overpotential. At high ambient temper-
ature (Tf = 35◦C), the battery SOH decays faster, and the mini-
mum charge time increases because the maximum core tempera-
ture is reached sooner, compared to the ambient temperature.

4.4.3 Cooling Convection Resistance Ru The im-
pact of cooling convection resistance Ru is shown in Fig. 13
(Bottom). Given a relatively large Ru (e.g., natural convec-
tion), the battery SOH decays faster, and the minimum charge
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FIGURE 12. TRAJECTORY OF TOTAL EQUIVALENT RESIS-
TANCE (R0 +R1 +R2) FOR BALANCED CHARGE (β = 0.05).

time increases because the maximum core temperature is reached
sooner. In the case of Ru = 1.20K/W (forced convection), the
battery SOH decay is alleviated, but the minimum charge time
increases because internal resistance increases as the core tem-
perature decreases, compared to the case of Ru = 3.19K/W .

4.5 Further Discussion
The influence of battery aging on the electrical parameters

is not addressed in this work, as it has a substantially longer time
scale than the SOC and thermal dynamics. While a fresh battery
(SOH0 = 1) is herein considered before charge, the proposed op-
timization framework applies to different aging levels, provided
that the associated SOH0 and electrical parameters are available
via recalibration or estimation [30, 31].

5 CONCLUSIONS
A multi-objective optimal control framework has been de-

veloped to explore model-based fast-safe charging protocols. In
this framework, a coupled electro-thermal-aging model is in-
corporated to account for thermal constraints and aging effects.
The Legendre-Gauss-Radau (LGR) pseudo-spectral method with
adaptive multi-mesh-interval collocation is leveraged to solve the
infinite dimensional nonlinear optimal control problem. Charge
time and battery capacity fade is optimally traded off, subject
to both electrical and thermal constraints, a first to the authors’
knowledge. Three charging regimes are analyzed in detail, with
the following key findings: (i) Minimum-time charge: the pro-
tocol is constant-voltage/constant-temperature (CVCT), requir-
ing 6.86 minutes to replenish the SOC from 20% to 90%. (ii)
Minimum-aging charge: the protocol is pulse-like rather than a
slow constant current charge such as C/10. The associated SOH
decay is 0.004%, more than one order of magnitude smaller than
that in the minimum-time case. (iii) Balanced charge: the Pareto
chart demonstrates that a fundamental tradeoff exists between
charge time and SOH decay. A slight (even negligible) time in-
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FIGURE 13. TOP: INFLUENCE OF Vt,max ON PARETO CURVE.
MIDDLE: INFLUENCE OF Tf ON PARETO CURVE. BOTTOM: IN-
FLUENCE OF Ru ON PARETO CURVE.

crease, relative to the minimum-time case, can significantly al-
leviate SOH decay. Finally, we examine solution sensitivity to
variations in several constraint parameters, including maximum
voltage, ambient temperature, and cooling convection resistance.
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Appendix: Pseudo-Spectral Optimal Control
We summarize the LGR pseudo-spectral method for solv-

ing optimal control problems [25, 29, 32, 33]. Consider a general
optimal control problem formulated in Bolza form,

min
x(t),u(t),p

J = φ(t0,x(t0), t f ,x(t f ), p)+
∫ t f

to
f (t,x(t),u(t), p)dt,

(32)

s. to:
dx(t)

dt
−g(t,x(t),u(t), p) = 0, (33)

l(t,x(t),u(t), p) = 0, (34)
h(t,x(t),u(t), p)≤ 0, (35)
lb(x(t0),x(t f ),u(t0),u(t f ), p) = 0, (36)
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where t0 ≤ t ≤ t f is the optimization horizon. Variables t0 and t f
can be fixed or free optimization variables. The vector p contains
either fixed parameters, free parameters to be optimized, or both.
Obtaining the numerical solution of the optimal control problem
involves three steps: (1) the transcription of the optimal control
problem into a nonlinear programming problem (NLP); (2) the
solution of the (sparse) NLP; and (3) an examination of the solu-
tion accuracy, discretization grid refinement, and then repeating
these three steps.

The accuracy and efficiency of this numerical process de-
pends on various factors within the three steps, particularly the
first step. Before the three steps, the time interval t0 ≤ t ≤ t f in
the original problem is normalized to −1≤ τ ≤ 1, by the change
of variable t = t f−t0

2 τ +
t f +t0

2 , which yields

min
x(τ),u(τ),p

J = φ(t0,x(−1), t f ,x(1), p) (37)

+
t f − t0

2

∫ 1

−1
f (τ,x(τ),u(τ), p)dτ,

s. to:
dx(t)

dτ
−

t f − t0
2

g(τ,x(τ),u(τ), t0, t f , p) = 0, (38)

l(τ,x(τ),u(τ), t0, t f , p) = 0, (39)
h(τ,x(τ),u(τ), t0, t f , p)≤ 0, (40)
lb(x(−1),x(1),u(−1),u(1), t0, t f , p) = 0. (41)

The discretization principle of LGR pseudo-spectral method
is illustrated as follows. The N-th order Legendre polynomial is

PN(τ) =
1

2NN!
dN

dτN (τ2−1)N . (42)

The collocation points are the roots of PN(τ)+PN−1(τ), denoted
by τi for i= 1,2, ...,N, and τN+1 = 1. The Lagrange interpolating
polynomial is defined as

Li(τ) =
N+1

∏
j=1, j 6=i

τ− τ j

τi− τ j
. (43)

Then the state vector is approximated by

x(τi)≈
N+1

∑
j=1

L j(τi)x(τ j), (44)

dx(τi)

dτ
≈

N+1

∑
j=1

dL j(τi)

dτ
x(τ j) =

N+1

∑
j=1

Di, j x(τ j), (45)

where Di, j represents the (i, j) element of the difference matrix
D ∈ RN×(N+1). The system dynamics (38) are approximated by

N+1

∑
j=1

Di, jx(τ j)−
t f − t0

2
g(τi,x(τi),u(τi), t0, t f , p) = 0. (46)

The integral term in the objective function (37) is approximated
by Gaussian quadrature,

∫ 1

−1
f (τ,x(τ),u(τ), t0, t f , p)dτ ≈

N

∑
i=1

ωi f (τi,x(τi),u(τi), t0, t f , p),

(47)

where ωi =
∫ 1

−1
Li(τ)dτ. (48)

The optimal control problem can now be transcribed into the fol-
lowing NLP,

min
x(τi),u(τi),p,t f

J = φ(t0,x(−1), t f ,x(1), p) (49)

+
N

∑
i=1

ωi f (τi,x(τi),u(τi), t0, t f , p),

s. to:
N+1

∑
j=1

Di, jx(τ j)−
t f − t0

2
g(τi,x(τi),u(τi), t0, t f , p) = 0,

(50)

l(τi,x(τi),u(τ), t0, t f , p) = 0, (51)
h(τi,x(τi),u(τi), t0, t f , p)≤ 0, (52)
lb(x(−1),x(1),u(−1),u(1), t0, t f , p) = 0, (53)

which can be efficiently solved by SNOPT or IPOPT (the co-
state vector can also be estimated by the KKT conditions of NLP
and the co-state mapping theorem [25, 29, 32, 33].)

The multi-mesh-interval collocation segments the optimal
control problem first, and then employs the aforementioned or-
thogonal collocation technique within each segment. GPOPS-II
uses a two-tiered (hp) adaptive grid refinement strategy that re-
fines both the integration segmentation (h) and the orthogonal
polynomial order (p). If the integration error across a particular
segment is uniform, the order of polynomial collocation points
may be increased. If the error at an isolated point within the
segment is significantly larger than those at other points within
the segment, it may be subdivided (at these large-error points).
See [25, 33] for additional details.
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