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ABSTRACT
This paper presents state estimation for a system of diffusion

equations coupled in the boundary appearing in reduced elec-
trochemical models of lithium-ion batteries with multiple active
materials in single electrodes. The observer is synthesized from a
single particle model and is based on the backstepping method for
partial differential equations. The observer is suitable for state
of charge estimation in battery management systems and is an
extension of existing backstepping observers which were derived
only for cells with electrodes of single active materials. Observer
gains still can be computed analytically in terms of Bessel and
modified Bessel functions. This extension is motivated by the trend
in cell manufacturing to use multiple active materials to combine
power and energy characteristics or reduce degradation.

1 Introduction
Accurate battery estimation algorithms are of great impor-

tance due to their application in consumer electronics, electrified
transportation and energy storage systems for renewable sources.
Electrochemical model-based estimation provides visibility into
operating regimes that induce degradation enabling a larger do-
main of operation to increase performance with respect to energy
capacity, power capacity and fast charge rates [1]. Electrochem-
ical model-based estimation is challenging for several reasons.
First, measurements of lithium concentrations outside specialized

WHAT ?

laboratory environments is impractical [2]. Second, the concen-
tration dynamics are governed by partial differential algebraic
equations (PDAE) [3]. Finally, the only measurable quantities
(voltage and current) are related to dynamic states through a non-
linear function. Manufacturers are using multiple active materials
in the positive electrode of lithium-ion cells to combine power
and energy characteristics or reduce degradation. For example,
LiyMn2O4 is a promising positive-electrode material because
of its high potential, high rate capability, abundance and low
cost [4, 5]. However, LiyMn2O4 has problems with the dissolu-
tion of Mn and its migration to the negative electrode where it
increases the rate of side reactions and reduces cell life [4, 5].
Adding a layered oxide material such as LiyNi0.80Co0.15Al0.05O2
in the positive electrode can reduce the rate of dissolution and
cells with a mixture of these two positive-electrode materials are
now being produced commercially [4].

1.1 Relevant Literature
Over the past decade, the engineering literature on battery

estimation has grown considerably rich with various algorithms,
models, and applications. One may categorize this literature by
the battery models each algorithm employs.

The first category utilizes equivalent circuit models (ECMs).
These models use circuit elements to mimic the phenomenological
behavior of batteries [6]. The seminal paper by Plett [7] was one
of the first to apply extended Kalman filtering (EKF) to ECMs
for simultaneous state and parameter estimation. Over the past
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decade, a variety of ECM-based algorithms have been developed,
including linear parameter varying observers [8], sliding mode
observers [9], polynomial chaos [10], unscented Kalman filters
[11], and particle filters [12].

The second category of literature considers electrochemi-
cal models, which account for the diffusion, intercalation, and
electrochemical kinetics. Although these models can accurately
predict internal state variables, their mathematical structure ren-
ders observer design challenging. Consequently, most approaches
develop estimators for reduced-order models. Among the various
reduced models the single particle model (SPM) has been widely
used for estimation [13–16] including extensions to account for
electrolyte dynamics [17–20] and for electrodes with multiple
active materials [21].

1.2 Main Contributions
The main contributions of this paper are the following:

1. A derivation of a single particle model for lithium-ion batter-
ies with multiple active materials in single electrodes.

2. An observer based on the backstepping method for partial
differential equations [22] suitable for state of charge estima-
tion. This observer is an extension of backstepping observers
for electrodes of a single active material [15, 20, 23].

1.3 Outline
The remainder of the paper is organized as follows. First,

section 2 derives a single particle model for lithium-ion batteries
with multiple active materials in single electrodes. Then, section
3 presents the derivation of an observer suitable for state of charge
estimation. After that, simulation results are provided in section
4. Finally, conclusions are listed in section 5.

2 Model Derivation
First, an extension of the Doyle-Fuller-Newman (DFN)

model [1, 3] for cells with multiple active materials is described
briefly. This extension follows results in [4] and describes the
dynamic behavior of a cell with n+ active materials in the posi-
tive electrode and n− active materials in the negative electrode.
Modifications to the original DFN model are the following. Diffu-
sion of lithium in solid phase is described independently for each
material

(1)
∂cs,i

∂ t
(x,r, t) =

1
r2

∂

∂ r

[
Ds,ir2 ∂cs,i

∂ r
(x,r, t)

]
,

(2)
∂cs,i

∂ r
(x,0, t) = 0,

(3)Ds,i
∂cs,i

∂ r
(x,Rp,i, t) = − jn,i(x, t),

with i ∈ {1−,2−, ...,n−,1+, ...,n+}. A unique molar ion flux
jn,i(x, t) should be computed for each material

(4)jn,i(x, t) =
i0,i(x, t)

F

[
e

αaF
RT ηi(x,t) − e−

αcF
RT ηi(x,t)

]
,

where css,i(x, t) = cs,i(x,Rp,i, t) and

(5)i0,i(x, t) = ki [css,i(x, t)]
αc [ce(x, t)(csmax,i − css,i(x, t))]

αa ,

(6)ηi(x, t) = φs(x, t)− φe(x, t)−Ui(css,i(x, t))
− Rf,iF jn,i(x, t).

Charge conservation in electrodes becomes

(7)
∂ ie
∂x

(x, t) = ∑
k

as,kF jn,k(x, t),

where the sum is over all materials in each electrode, as,i =
3εs,i/Rp,i is the specific interfacial area and εs,i is the volume
fraction of each active material in the corresponding electrode.
Equations for lithium concentration in the electrolyte ce(x, t),
solid electric potential φs(x, t) and electrolyte electric potential
φe(x, t) remain unchanged

(8)
∂ce

∂ t
(x, t) =

∂

∂x

[
De

∂ce

∂x
(x, t) +

1− t0
c

εeF
ie(x, t)

]
,

(9)
∂φs

∂x
(x, t) =

I(t)− ie(x, t)
σ

,

(10)

∂φe

∂x
(x, t) =

ie(x, t)
κ

+
2RT

F
(1− t0

c )

×
(

1 +
d ln fc/a

d lnce
(x, t)

)
∂ lnce

∂x
(x, t).

Notice that solid and electrolyte electric potential have the same
value for all materials in the same electrode. Boundary conditions
for the electrolyte-phase diffusion PDE (8) are given by

(11)
∂ce

∂x
(0−, t) =

∂ce

∂x
(0+, t) = 0,

(12)
∂ce

∂x
(L−, t) =

εe,sepDe(0sep)

εe,−De(L−)
∂ce

∂x
(0sep, t),

(13)
∂ce

∂x
(Lsep, t) =

εe,+De(L+)

εe,sepDe(Lsep)

∂ce

∂x
(L+, t),

(14)ce(L−, t) = ce(0sep, t),
(15)ce(Lsep, t) = ce(L+, t).
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Boundary conditions for the solid-phase potential ODE (9) are
given by

∂φs

∂x
(L−, t) =

∂φs

∂x
(L+, t) = 0. (16)

Boundary conditions for the electrolyte-phase potential ODE (10)
are given by

φe(0−, t) = 0, (17)
φe(L−, t) = φe(0sep, t), (18)

φe(Lsep, t) = φe(L+, t). (19)

Boundary conditions for the ionic current ODE (7) are given by

ie(0−, t) = ie(0+, t) = 0, (20)

and ie(x, t) = I(t) for x ∈ [0sep,Lsep]. The input to the model is
the applied current density I(t) (with positive values used for
discharging) and the output is the voltage measured across the
current collectors,

V (t) = φs(0+, t)−φs(0−, t). (21)

The main assumptions used to derive the SPM model for elec-
trodes with multiple materials are the following

[A1]: Lithium concentration in both electrodes is constant
in space, uniformly in time. Mathematically, cs,i(x, t) and
jn,i(x, t) are constant in the x direction.
[A2]: The term i0,i(x, t) can be approximated by its averaged
value i0,i(t), which is independent of x.
[A3]: Lithium concentration is constant in space and time,
i.e. ce(x, t) = ce,0.

This ultimately renders a model consisting of: (i) a set of n−+n+

spherical diffusion PDEs modeling concentration in each active
material, (ii) a set of nonlinear algebraic equations and (iii) a
nonlinear output function mapping boundary values of solid con-
centration and molar fluxes to terminal voltage. The resulting
SPM equations are the following. Using assumption [A1] solid
diffusion equations are

(22)
∂cs,i

∂ t
(r, t) =

1
r2

∂

∂ r

[
Ds,ir2 ∂cs,i

∂ r
(r, t)

]
,

(23)
∂cs,i

∂ r
(0, t) = 0,

(24)Ds,i
∂cs,i

∂ r
(Rp,i, t) = − jn,i(t),

Separator PositiveNegative

0+

css,2+(x, t)

L+

r

r

0−
0sep Lsep

L−

css,1+(x, t)

Li+

Electrolyte Solid

FIGURE 1. DFN SCHEMATIC. Schematic of Doyle-Fuller-Newman
(DFN) model for electrodes with multiple active materials. This is a
two-dimensional model with two phases: solid and electrolyte. States in
the solid evolve in x and r dimensions while states in electrolyte evolve
only in the x dimension. The cell is divided in three subdomains: negative
electrode, separator and positive electrode.

where the solid-phase concentration no longer depends on x. Us-
ing assumption [A1] and boundary conditions (20) charge conser-
vation becomes

(25)I(t) =
n−

∑
k=1−

as,kFL− jn,k(t),

(26)I(t) = −
n+

∑
k=1+

as,kFL+ jn,k(t).

From assumptions [A1], [A2] and [A3] Butler-Volmer equation
in (4) becomes

(27)jn,i(t) =
i0,i(t)

F

[
e

αaF
RT ηi(t) − e−

αcF
RT ηi(t)

]
,

(28)i0,i(t) = ki [css,i(t)]
αc [ce,0 (cs,max,i − css,i(t))]

αa ,

with css,i(t) = cs,i(Rp,i, t). Solid electric potential is constant over
each electrode and equal for all materials within the same elec-
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I(t) = −
n+∑

i=1+

3ǫs,i+

Rp,i+
FL+jn,i+(t)

3ǫs,1−

Rp,1−
FL−jn,1−(t) = I(t)

−φs,−(css,1−(t), jn,1−(t)) + φs,+(css,i+(t), jn,i+(t)) = V(t)

∂cs,1−

∂r
(Rp,1− , t) = − I(t)

Ds,1−as,1−FL−

∂cs,i+

∂r
(Rp,i+ , t) = −jn,i+(t)

Ds,i+

FIGURE 2. SPM SCHEMATIC. Schematic of single particle model
for one material in the negative electrode and n+ materials in the positive
electrode. This a common configuration of commercial lithium-ion
batteries where graphite is used for the negative electrode and a mixture
of multiple active materials is used in the positive electrode.

trode, therefore any index i− or i+ can be used to compute φs,−(t)
or φs,+(t) respectively, i.e.

(29)φs,−(t) = ηi− ,(t) +Ui−(css,i−(t)) + Rf,i−F jn,i−(t),

(30)φs,+(t) = ηi+ ,(t) +Ui+(css,i+(t)) + Rf,i+F jn,i+(t).

Finally, output voltage is computed as

(31)V (t) = φs,+(t)− φs,−(t).

Proposition 1. Lithium in the solid phase is conserved [24].
Mathematically, d

dt nLi,s(t) = 0 where

nLi,s(t) = ∑
i

εs,iLi
4
3 πR3

s,i

∫ Rp,i

0
4πr2cs,i(r, t)dr (32)

where the sum is computed over all active materials in both
electrodes.

The proof is straight-forward and omitted for brevity. In the fol-
lowing observer estimation gains are selected to conserve lithium
in solid phase.

3 State Observer Design
In this section an observer is developed for a cell with one

active material in the negative electrode and two active materials
in the positive electrode, see Fig. 2. Extension to more active
materials in the positive electrode is straightforward. The observer
design process is summarized as follows:

1. Linearization of algebraic equations in the positive electrode
2. Normalization and state transformation of solid diffusion

equations in the positive electrode
3. Derivation of backstepping PDE observer for the transformed

solid diffusion system
4. Inverse state transformation and un-normalization
5. Derivation of an observer in the negative electrode to con-

serve lithium in solid

3.1 Linearization of Algebraic Equations
First, a linear approximation of the dynamic and algebraic

states in the positive electrode is being considered

(33)φs,+(t) = Ui+(c
eq
s,i+) + φ̃s,+(t),

(34)css,1+(t) = ceq
s,1+ + c̃ss,1+(t),

(35)css,2+(t) = ceq
s,2+ + c̃ss,2+(t),

(36)jn,1+(t) = j̃n,1+(t),

(37)jn,2+(t) = j̃n,2+(t),

around the equilibrium (Ui+(c
eq
s,i+),c

eq
s,1+ ,c

eq
s,2+ ,0,0) to find a linear

approximation of the algebraic equation in (26) and the pair of
algebraic equations in (30) (one for each active material)

(38)I(t) = −3εs,1+

Rp,1+
FL j̃n,1+(t)−

3εs,2+

Rp,2+
FL j̃n,2+(t).

(39)
0 = −φ̃s,+(t) +

RT j̃n,1+(t)
(αa + αc)i0,1+(t)

+ Rf,1+F j̃n,1+(t) +
∂U1+

∂css,1+

(
ceq

s,1+

)
c̃ss,1+(t),

(40)
0 = −φ̃s,+(t) +

RT j̃n,2+(t)
(αa + αc)i0,2+(t)

+ Rf,2+F j̃n,2+(t) +
∂U2+

∂css,2+

(
ceq

s,2+

)
c̃ss,2+(t),

and then solve for j̃n,1+(t) and j̃n,2+(t) in terms of c̃ss,1+ , c̃ss,2+

and I(t)

(41)j̃n,1+(t) = −ρ11c̃ss,1+(t)− ρ12c̃ss,2+(t)− ρ1I (t) ,

(42)j̃n,2+(t) = −ρ21c̃ss,1+(t)− ρ22c̃ss,2+(t)− ρ2I (t) .
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3.2 Normalization and State Transformation
Next normalization and state transformation is used to sim-

plify the mathematical structure of the observer in the positive
electrode. First scale the radial r and time t coordinates as follows

r̄ =
r

Rp,i
, t̄ =

Ds,i

(Rp,i)2 t. (43)

Bars over the space and time coordinates will be dropped to
simplify notation. Next state transformation is used to eliminate
the first spatial derivative in the spherical diffusion Eqns. (22)

ci(r, t) = rcs,i(r, t). (44)

This normalization and state transformation produces the follow-
ing PDE

(45)
∂

∂ t

[
c1
c2

]
(r, t) =

∂ 2

∂ r2

[
c1
c2

]
(r, t),

(46)
[

c1
c2

]
(0, t) = 0,

(47)

∂

∂ r

[
c1
c2

]
(1, t)−

[
c1
c2

]
(1, t) =

[
a11 a12
a21 a22

][
c1
c2

]
(1, t)

+

[
a1
a2

]
I(t).

where

(48)a11 =
Rp,1+

Ds,1+
ρ11, a12 =

Rp,1+

Ds,1+
ρ12,

(49)a21 =
Rp,2+

Ds,2+
ρ21, a22 =

Rp,2+

Ds,2+
ρ22,

(50)a1 =
Rp,1+

Ds,1+
ρ1, a2 =

Rp,2+

Ds,2+
ρ2.

3.3 Backstepping Observer for Positive Electrode
The observer in the positive electrode is a copy of the plant

(45)-(47) plus boundary state error injection

(51)

∂

∂ t

[
ĉ1
ĉ2

]
(r, t) =

∂ 2

∂ r2

[
ĉ1
ĉ2

]
(r, t)

+

[
p11 (r) p12 (r)
p21 (r) p22 (r)

][
c̃1
c̃2

]
(1, t),

(52)
[

ĉ1
ĉ2

]
(0, t) = 0

(53)

∂

∂ r

[
ĉ1
ĉ2

]
(1, t)−

[
ĉ1
ĉ2

]
(1, t) =

[
a11 a12
a21 a22

][
ĉ1
ĉ2

]
(1, t)+

[
a1
a2

]
I(t)

+

[
q11 q12
q21 q22

][
c̃1
c̃2

]
(1, t)

where boundary estimation error is defined as [c̃1, c̃2]
T (r, t) =

[c1,c2]
T (r, t)− [ĉ1, ĉ2]

T (r, t) and values of surface concentration
[c1,c2]

T (r, t) are assumed to be known or are being estimated
from measurements. The estimation error system is

(54)

∂

∂ t

[
c̃1
c̃2

]
(r, t) =

∂ 2

∂ r2

[
c̃1
c̃2

]
(r, t)

−
[

p11 (r) p12 (r)
p21 (r) p22 (r)

][
c̃1
c̃2

]
(1, t),

(55)
[

c̃1
c̃2

]
(0, t) = 0

(56)

∂

∂ r

[
c̃1
c̃2

]
(1, t)−

[
c̃1
c̃2

]
(1, t) =

[
a11 a12
a21 a22

][
c̃1
c̃2

]
(1, t)

−
[

q11 q12
q21 q22

][
c̃1
c̃2

]
(1, t)

The backstepping approach seeks to find the upper-triangular
transformation

(57)

[
c̃1
c̃2

]
=

[
w1
w2

]

−
∫ 1

r

[
Q11 (r,s) Q12 (r,s)
Q21 (r,s) Q22 (r,s)

][
w1
w2

]
(s, t)ds,

that transforms the original error system (54)-(56) into the target
system

(58)

∂

∂ t

[
w1
w2

]
(r, t) =

∂ 2

∂ r2

[
w1
w2

]
(r, t)

+

[
λ1 −λc
λc λ2

][
w1
w2

]
(r, t),

(59)
[

w1
w2

]
(0, t) = 0,

(60)
∂

∂ r

[
w1
w2

]
(1, t) = −1

2

[
w1
w2

]
(1, t).

where λ1,λ2 < 1/4. For the target system (58) - (60), equilibrium
[weq

1 ,weq
2 ](r) = [0,0] is exponentially stable in the L2-norm and

the proof of this statement is as follows. Considering the positive-
definite function

V (t) =
1
2

∫ 1

0
w2

1(r, t)+w2
2(r, t)dr, (61)
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taking the time derivate and using integration by parts

(62)
V̇ (t) = −1

2
w2

1(1, t)−
∫ 1

0
w2

1,rdr + λ1

∫ 1

0
w2

1dr

− 1
2

w2
2(1, t)−

∫ 1

0
w2

2,rdr + λ2

∫ 1

0
w2

2dr,

using the Poincaré inequality

(63)V̇ (t) ≤ −
(

1
4
− λ1

)∫ 1

0
w2

1dr −
(

1
4
− λ2

)∫ 1

0
w2

2dr,

(64)≤ −
(

1
2
− 2λmax

)
V (t) ,

with λmax = max(λ1,λ2). Comparison principle (Lemma 3.4
in [25]) implies V (t)≤V (0)e−(

1
2−2λmax)t or in terms of the norm

‖w(t)‖ = ‖w(0)‖e−(
1
4−λmax)t . Then for all λ1,λ2 < 1

4 equilib-
rium [weq

1 ,weq
2 ](r) = [0,0] is exponentially stable. Following the

procedure in [22] elements of the kernel in (57) are solutions of
the PDE

(65)Q11,rr(r,s)− Q11,ss(r,s) = λ1Q11(r,s),
(66)Q12,rr(r,s)− Q12,ss(r,s) = −λcQ12(r,s),
(67)Q21,rr(r,s)− Q21,ss(r,s) = λcQ21(r,s),
(68)Q22,rr(r,s)− Q22,ss(r,s) = λ2Q22(r,s),

with boundary conditions

(69)Q11(0,s) = 0, Q11(r,r) =
λ1

2
r,

(70)Q12(0,s) = 0, Q12(r,r) = −
λc

2
r,

(71)Q21(0,s) = 0, Q21(r,r) =
λc

2
r,

(72)Q22(0,s) = 0, Q22(r,r) =
λ2

2
r,

defined on D = {(r,s)|0≤ r ≤ s≤ 1}. Output injection gains are

(73)p+11(r) = −
1
2

Q11(r,1)− Q11,s(r,1),

(74)p+12(r) = −
1
2

Q12(r,1)− Q12,s(r,1),

(75)p+21(r) = −
1
2

Q21(r,1)− Q21,s(r,1),

(76)p+22(r) = −
1
2

Q22(r,1)− Q22,s(r,1),

(77)q+11 = a11 +
3− λ1

2
,

(78)q+12 = a12 −
λc

2
,

(79)q+21 = a21 +
λc

2
,

(80)q+22 = a22 +
3− λ2

2
,

The Klein-Gordon PDE (65)-(68) has a closed form solution

(81)Q11(r,s) = λ1r
I1(z1)

z1
, Q12(r,s) = −λcr

J1(zc)

zc
,

(82)Q21(r,s) = λcr
I1(zc)

zc
, Q22(r,s) = λ2r

I1(z2)

z2
,

where zi := zi(r,s) =
√

λi (r2− s2), i ∈ {1,c,2}. Substituting
(81)-(82) in (73)-(76)

(83)p11(r) = −
λ1r
2z1

[
I1 (z1)−

2λ1

z1
I2 (z1)

]
,

(84)p12(r) = +
λcr
2zc

[
J1 (zc)−

2λc

zc
J2 (zc)

]
,

(85)p21(r) = −
λcr
2zc

[
I1 (zc)−

2λc

zc
I2 (zc)

]
,

(86)p22(r) = −
λ2r
2z2

[
I1 (z2)−

2λ2

z2
I2 (z2)

]
,

where J1(·), J2(·), I1(·) and I2(·) are first and second order Bessel
functions and first and second ortder modified Bessel functions,
respectively.

3.4 Inverse Transformation and Un-normalization
An observer in the original coordinates ĉs,1+ , ĉs,2+ can be

found by inverting transformation (44) and un-normalizing the
dimensions (43).

Since the observer for the positive electrode is based on
the linear approximation (41) and (42), convergence results hold
only locally. However, the linearization and the computation of
observer gains can be done continuously (using measurements of
surface concentration or their estimates) and the final result is an
observer for the nonlinear PDAE of the positive electrode

(87)

∂ ĉs,1+

∂ t
(r, t) =

1
r2

∂

∂ r

[
Ds,1+r2 ∂ ĉs,1+

∂ r
(r, t)

]

+ p+11(r)
[
css,1+(t)− ĉss,1+(t)

]

+ p+12(r)
[
css,2+(t)− ĉss,2+(t)

]
,
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(88)ĉs,1+(0, t) = 0,

(89)
Ds,1+

∂ ĉs,1+

∂ r
(Rp,1+ , t) = − ĵn,1+(t)

+ q+11
[
css,1+(t)− ĉss,1+(t)

]

+ q+12
[
css,2+(t)− ĉss,2+(t)

]
,

(90)

∂ ĉs,2+

∂ t
(r, t) =

1
r2

∂

∂ r

[
Ds,2+r2 ∂ ĉs,2+

∂ r
(r, t)

]

+ p+21(r)
[
css,1+(t)− ĉss,1+(t)

]

+ p+22(r)
[
css,2+(t)− ĉss,2+(t)

]
,

(91)ĉs,2+(0, t) = 0,

(92)
Ds,2+

∂ ĉs,2+

∂ r
(Rp,2+ , t) = − ĵn,2+(t)

+ q+21
[
css,1+(t)− ĉss,1+(t)

]

+ q+22
[
css,2+(t)− ĉss,2+(t)

]
,

where ĵn,1+(t) and ĵn,2+(t) are obtained by solving the nonlinear
algebraic equations

(93)I(t) = −as,1+FL+ ĵn,1+(t)− as,2+FL+ ĵn,2+(t),

(94)0 = −φ̂s,+(t) + η̂1+ ,(t) +U1+(css,1+(t))

+ Rf,1+F ĵn,1+(t),

(95)0 = −φ̂s,+(t) + η̂2+ ,(t) +U2+(css,2+(t))

+ Rf,2+F ĵn,2+(t),

(96)ĵn,1+(t) =
i0,1+(t)

F

[
e

αaF
RT η̂1+ (t) − e−

αcF
RT η̂1+ (t)

]
,

(97)ĵn,2+(t) =
i0,2+(t)

F

[
e

αaF
RT η̂2+ (t) − e−

αcF
RT η̂2+ (t)

]
.

Observer gains are

(98)p+11(r) = −
λ1Ds,1+

2R2
p,1+z1

[
I1 (z1)−

2λ1

z̄1
I2 (z1)

]
,

(99)p+12(r) = +
λcDs,1+

2R2
p,1+zc

[
J1 (zc)−

2λc

zc
J2 (zc)

]
,

(100)p+21(r) = −
λcDs,2+

2R2
p,2+zc

[
I1 (zc)−

2λc

zc
I2 (zc)

]
,

(101)p+22(r) = −
λ2Ds,2+

2R2
p,2+z2

[
I1 (z2)−

2λ2

z2
I2 (z2)

]
,

with z j := z j(r) =

√
λ j

(
r2

R2
p,i+
−1
)

and

(102)q+11 = ρ11 +
Ds,1+(3− λ1)

2Rp,1+
,

(103)q+12 = ρ12 −
Ds,1+λc

2Rp,1+
,

(104)q+21 = ρ21 +
Ds,2+λc

2Rp,2+
,

(105)q+22 = ρ22 +
Ds,2+(3− λ2)

2Rp,2+
.

3.5 Observer for Negative Electrode
The observer for the negative electrode consists of a copy

of the plant and surface concentration error injection from the
positive electrode as follows

(106)

∂ ĉs,1−

∂ t
(r, t) =

1
r2

∂

∂ r

[
Ds,1−r2 ∂ ĉs,1−

∂ r
(r, t)

]

+ p−1 (r)
[
css,1+(t)− ĉss,1+(t)

]

+ p−2 (r)
[
css,2+(t)− ĉss,2+(t)

]
,

(107)ĉs,1−(0, t) = 0,

(108)
Ds,1−

∂ ĉs,1−

∂ r
(Rp,1− , t) = −

I(t)
Fa−L

+ q−1
[
css,1+(t)− ĉss,1+(t)

]

+ q−2
[
css,2+(t)− ĉss,2+(t)

]
.

Observer gains p−1 (r), p−2 (r),q
−
1 and q−2 are selected such that

d
dt n̂Li,s(t) = 0. This property holds true under the following rela-
tions between the estimation gains

0 = as,1+L+Ds,1+q+11 + as,2+L+Ds,2+q+21 + as,1−L−Ds,1−q−1 ,
(109)

0 = as,1+L+Ds,1+q+12 + as,2+L+Ds,2+q+22 + as,1−L−Ds,1−q−2 ,
(110)

(111)

0 =
as,1+L+

R2
p,1+

∫ Rp,1+

0
r2 p+11(r)dr +

as,2+L+

R2
p,2+

∫ Rp,2+

0
r2 p+21(r)dr

+
as,1−L−

R2
p,1−

∫ Rp,1−

0
r2 p−1 (r)dr,

(112)

0 =
as,1+L+

R2
p,1+

∫ Rp,1+

0
r2 p+12(r)dr +

as,2+L+

R2
p,2+

∫ Rp,2+

0
r2 p+22(r)dr

+
as,1−L−

R2
p,1−

∫ Rp,1−

0
r2 p−2 (r)dr,
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There are multiple solutions for gains p−1 (r) and p−2 (r) but con-
stant gains can be found easily

p−1 = −

as,1+L+

R2
p,1+

∫ Rp,1+

0 r2 p+11(r)dr +
as,2+L+

R2
p,2+

∫ Rp,2+

0 r2 p+21(r)dr

εs,1−L−
,

(113)

p−2 = −

as,1+L+

R2
p,1+

∫ Rp,1+

0 r2 p+12(r)dr +
as,2+L+

R2
p,2+

∫ Rp,2+

0 r2 p+22(r)dr

εs,1−L−
,

(114)

and

(115)q−1 = −as,1+L+Ds,1+q+11 + as,2+L+Ds,2+q+21

as,1−L−Ds,1−
,

(116)q−2 = −as,1+L+Ds,1+q+12 + as,2+L+Ds,2+q+22

as,1−L−Ds,1−
.

The observer is initialized with the correct value of lithium in the
solid phase, nLi,s in (32), assuming it is known beforehand, i.e.

nLi,s = ∑
i

εs,iLi
4
3 πR3

p,i

∫ Rp,i

0
4πr2ĉs,i(r,0)dr. (117)

4 Simulation
For the simulation presented in this section, one particle in

the negative electrode and two particles in the positive electrode
are being considered. Simulation results are shown in Fig. 3
with λ1 = λ2 =−10 and λc = 10−8. From top to bottom, the first
plot shows the current density profile used in this test which is
obtained from the urban dynamometer driving schedule (UDDS)
and is representative of the battery use in automotive applications.
The second plot shows the estimation error in the output voltage
and since measurements are being generated from a SPM, con-
vergence is expected. The third plot shows the real and estimated
(normalized) surface concentrations in the two particles of the
positive electrode. Finally, the fourth plot shows the real and
estimated (normalized) surface concentration in the particle of
negative electrode. Here, perfect knowledge of surface concentra-
tion in particles of the positive electrode is assumed. For battery
management applications values of surface concentration in the
positive electrode could be estimated from current and voltage
measurements [15, 20, 23]. Initial estimates of lithium concen-
tration are chosen with the correct value of nLi (i.e. condition in
(117) is satisfied).
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FIGURE 3. SIMULATION. Perfect measurement of surface concen-
tration is used from a single particle model and current density (input)
is obtained fromUDDS. Initial estimates of lithium concentration are
chosen with the correct value of nLi (i.e. condition in (117) is satisfied).
Normalized values of real and estimated surface concentration are plotted
i.e. θi = css,i(t)/cmax,s,i

.
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5 Conclusions
An observer for a system of diffusion equations appearing

in a single particle model of lithium-ion batteries with electrodes
of multiple active materials has been derived in this paper. The
observer is based on the backstepping method for PDEs and is
an extension of previous backtepping observers designed only for
single active materials. Simulations where presented showing the
effectiveness of the estimation scheme. This observer could be
used for other settings apart from the multiple material problem,
for example in electrodes with a unique active material (i.e. same
OCP functions and all parameters with same values) but with two
or more distinct particle sizes (i.e. different Rp). An important
limitation of the observer is that, since it is derived from a reduced
electrochemical model, convergence is only expected in the cases
when this reduced model is an appropriate approximation of the
full electrochemical model (or battery). Future work includes the
test of this observer against the full electrochemical model and
the extension to simultaneous parameter and state estimation.

The authors would like to acknowledge the support from
ARPA-E (AMPED).

6 Nomenclature

TABLE 1. States and Variables

cs Concentration of lithium ions in particles

css Surface concentration in particles

θ Normalized surface concentration

jn Molar ion flux

i0 Exchange current density

η Overpotential

ce Concentration of lithium ions in electrolyte

φs Electric potential in the solid electrodes

φe Electric potential in the electrolyte

ie Ionic current density

fc/a Activity coefficient in the electrolyte

U Open circuit potential functions

I Current density (input)

V Voltage (output)

TABLE 2. Parameters and Constants

Ds Diffusion coefficient in solid particles

Rp Particle radius

n−,n+ Number of active materials in electrodes

αa,αc Transport coefficients

R Gas constant

T Constant temperature

F Faraday constant

k Effective reaction rate

cmax
s Maximum concentration

Rf Film resistance

εs Volume fraction of active material

εe Volume fraction of electrolyte

as Specific interfacial area

De Diffusion coefficient in electrolyte

σ Conductivity in solid electrodes

κ Conductivity in electrolyte

t0
c Transference number

L Length of region

ce,0 Constant approximation of ce

nLi Total lithium in solid particles (per unit area)
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