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ABSTRACT

Model predictive control (MPC) strategies hold great po-
tential for improving the performance and energy efficiency of
building heating, ventilation, and air-conditioning (HVAC) sys-
tems. A challenge in the deployment of such predictive thermo-
static control systems is the need to learn accurate models for
the thermal characteristics of individual buildings. This neces-
sitates the development of online and data-driven methods for
system identification. In this paper, we propose an autoregres-
sive with exogenous terms (ARX) model of a thermal zone within
a building. To learn the model, we present a backpropagation
approach for recursively estimating the parameters. Finally, we
fit the linear model to data collected from a residential building
with a forced-air heating and ventilation system and validate the
accuracy of the trained model.

INTRODUCTION

Heating, ventilation, and air-conditioning (HVAC) account
for 43% of commercial and 54% of residential energy consump-
tion [1]. Space heating alone accounts for 45% of all residential
energy use. HVAC systems are an integral part of buildings re-
sponsible for regulating temperature, humidity, carbon dioxide,
and airflow, conditions which directly impact occupant health
and comfort. Estimates suggest that component upgrades and
advanced HVAC control systems could reduce building energy

*Address all correspondence to this author.

usage by up to 30% [2]. Such intelligent systems can improve
the efficiency of building operations, better regulate indoor con-
ditions to improve air quality and occupant comfort, and enable
buildings to participate in demand response services to improve
power grid stability and reduce energy related carbon emissions
[3-8].

To effectively control the operation of an HVAC system, it is
essential that a model predictive controller incorporate an accu-
rate mathematical representation of a building’s thermal dynam-
ics. The processes that determine the evolution of temperatures
within a building are complex and uncertain. A reliable model
improves the ability of a controller to forecast conditions and
meet cost, efficiency, and/or comfort objectives [9, 10]. Simula-
tion software, such as EnergyPlus and TRNSYS, is capable of
high fidelity modeling of building HVAC systems. These math-
ematical models play a crucial role in the architectural and me-
chanical design of new buildings, however, due to high dimen-
sionality and computational complexity, are not suitable for in-
corporation into HVAC control systems [9, 11].

The American Society of Heating, Refrigeration, and Air-
Conditioning Engineers (ASHRAE) handbook [12] describes
how to determine the thermal resistance values of a building
surface given it materials and construction type. However, for
existing buildings, details about the materials in and construc-
tion of walls and windows may be difficult to obtain or non-
existent [13]. Additionally, modifications to the building or
changes brought about by time and use (e.g. cracks in windows
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or walls) further diminish the potential for characterizing a build-
ing based on design or construction information.

Therefore, an ideal control-oriented model would capture
the predominant dynamics and disturbance patterns within a
building, enable accurate forecasting, adapt to future changes in
building use, provide a model structure suitable for optimization,
and be amenable to real-time data-driven model identification
methods. For these reasons, low order linear models are widely
employed for control-oriented thermal building models [13—15].
Such models trade complexity and accuracy for simplicity and
efficiency.

In this paper, we present an autoregressive with exogenous
terms (ARX) model for the thermostatic control of buildings and
a recursive backpropagation method for parameter estimation.
The structure of the linear model enables the approximate iden-
tification of unmodeled dynamics, in particular higher-order dy-
namics and time delays related to changes in the mechanical state
of the system. By employing a recursive parameter estimation
technique, we are able to perform online data-driven learning of
the model.

We do not model heating from solar gain, building occu-
pants, or equipment. This does not restrict the applicability of
this work because the model structure can be extended for such
cases. By estimating these effects with a single time-varying
gain, we produce a simpler model better suited for predictive
control.

This paper is organized as follows. Section 2 presents
our autoregressive exogenous thermal model and Section 3
overviews the parameter estimation problem. Section 4 for-
mulates our recursive parameter estimation approach employing
backpropagation and stochastic gradient descent. Section 5 pro-
vides numerical examples of our proposed model and algorithm
for the parameter estimation of an apartment with a forced-air
heating and ventilation system. Finally, Section 6 summarizes
key results.

BUILDING THERMAL MODEL
LINEAR THERMAL MODEL

In this paper, we focus on the modeling of an apartment with
a forced-air heating system. To begin, we consider a simple lin-
ear discrete time model [4,5,16,17]

7" = 0,T% + 6, + 6.m* + 6, (1)

where T% € R, TX € R, and m* € {0, 1} are the indoor air tem-
perature (state, °C), outdoor air temperature (disturbance input,
°C), and heater state (control input, On/Off), respectively, at time
step k.

The parameters 6, and 6, correspond to the thermal
characteristics of the conditioned space as defined by 6, =
exp(—Ar/RC) and 6, = 1 —exp(—At/RC), 6, to the energy trans-
fer due to the system’s mechanical state as defined by 6, =
(1 —exp(—At/RC))RP, and 6, to an additive process account-
ing for energy gain or loss not directly modeled.

The linear discrete time model (1) is a discretization of a RC-
equivalent continuous time model and thus derived from (very
basic) concepts of heat transfer. As noted in [5, 17], the discrete
time model implicitly assumes that all changes in mechanical
state occur on the time steps of the simulation. In this paper, we
assume that this behavior reflects the programming of the sys-
tems being modeled. In other words, we assume that the ther-
mostat has a sampling frequency of 1/(3600A¢) Hz or once per
minute.

AUTOREGRESSIVE EXOGENOUS THERMAL MODEL

The linear discrete time model (1) is capable of representing
the predominant thermal dynamics within a conditioned space.
Unfortunately, because it does not capture any higher-order dy-
namics or time delays related to changes in the mechanical state
of the system, the model is fairly inaccurate in practice. Research
into higher-order RC models, in particular multi-zone network
models and the modeling of walls as 2R-1C or 3R-2C elements,
have shown potential for producing higher fidelity building mod-
els [13—15]. However, this comes at the cost of increasing the
model complexity and the need for temperature sensing (in par-
ticular, within interior and exterior walls).

In this paper, we present an autoregressive exogenous
(ARX) model capable of approximating dynamics related to
trends in the ambient temperature and to changes in the mechan-
ical state of the system. We note that the linear discrete time
model (1) is, by definition, a first-order ARX model. The dis-
tinguishing characteristic of the ARX model presented below is
that the model is higher-order with respect to the exogenous in-
put terms. By increasing the number of exogenous input terms,
we can better approximate observed dynamics in the systems.
However, we will not pursue a physics-based justification for the
number of exogenous terms and thus the ARX model represents
a slight departure from the practice of increasing the model order
through RC-equivalent circuit modeling.

Our autoregressive exogenous (ARX) thermal model is
given by

s—1
Tk _ eaTk + Z (GbJTo{fﬂ + Gc’imkil) + 6, 2)
i=0

=l

where 7% € R, Tolj € R, and m* € {0,1} are the indoor air tem-
perature (state, °C), outdoor air temperature (disturbance input,
°C), and heater state (control input, On/Off), respectively, at time
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step k. The order of the exogenous terms (and thus the number
of 6, and 6, parameters) is given by s.
The ARX model can be expressed more compactly as

T8 = 0,7" + 0] T* + 0T m* 4 6, (3)

where T € R, TX € R*, and m* € {0,1}* are the indoor air
temperature (state, °C), previous outdoor air temperatures (dis-
turbance input, °C), and previous heater states (control input,
On/Off), respectively, at time step k. Lastly, 6, € R* and 6, € R®
are the parameters of the exogenous terms.

PARAMETER ESTIMATION BACKGROUND
A fundamental machine learning problem involves the iden-
tification of a linear mapping

Y= 0Txk 4)

where variable x* € RX is the input, y* € RY is the output, and
the linear map is parameterized by 8 € RX*Y. Additionally, X
and Y are the number of inputs and outputs, respectively.

BATCH PARAMETER ESTIMATION

Learning can be performed in a batch manner by producing
6, an estimate of the model parameters, given a training set of
observed inputs and desired outputs, {x,y}. The goal of a pa-
rameter estimation algorithm is to minimize some function of
the error between the desired and estimated outputs as given by
ek =yk— BTk,

The least squares problem is given by

S A
mlnlgnlze 3 Z(Orx,- —y,-)2 (5)

i=1

with variables x; € R”, the model input for the i-th data point, y; €
R, the i-th observed response, 6e R”, the weighting coefficients,
andi=1,...,N, where N is the number of data samples and n is
the number of features in x;.

RECURSIVE PARAMETER ESTIMATION
The least squares problem can be solved recursively with
stochastic gradient descent as given by

0:=0-n0"x—y) (©6)
with variables x; € R", the model input for at time step k, y; €

R, the observed response at time step k, @ € R”, the weighting
coefficients, and 7, the learning rate.

BACKWARD PROPAGATION OF ERRORS

A fundamental limitation of least squares regression when
applied to autoregressive models of dynamical systems is that
the optimization only minimizes the error of the output at one
time step into the future. Thus, the model may produce a small
error when employed to predict the state in the next time step
but perform poorly when used to recursively produce a multiple
time step forecast. To address this issue, we can represent the
system as a multilayer neural network where each layer shares
the same set of weights. By training the neural network with
backpropagation and stochastic gradient descent, we can produce
an estimate of the system’s parameters that minimizes the output
error multiple time steps into the future.

Backward propagation of errors, or backpropagation, is a
technique commonly used for training multilayer artificial neural
networks. The method consists of propagating an input forward
through the layers of the neural network until the output layer is
reached. The estimated output is then compared to the desired
output to calculate an error value according to a loss function.
Next, the error value is propagated backwards in order to cal-
culate the relative contribution of each neuron in each layer to
the network’s estimated output. These relative contributions are
used to calculate the gradient of the loss function with respect to
the weights in the network. Finally, the weights of the network
are updated according to a gradient-based optimization method,
such as stochastic gradient descent, so as to minimize the loss
function.

In this paper, we employ backpropagation to train the ARX
thermal model (3) according to the optimization problems pre-
sented below. In each case, we represent the system as a mul-
tilayer neural network where each layer shares the same set of
weights. Unlike typical neural networks, the activation function
of each layer is linear.

Thus, for a network with £ layers,

T = 0,7 + 6, TS, + 6/ m" + 6,
k= Tkt _ ke

T2 = 9,7 + 6] TEH + 67 m* ! 1 6,
ek = T2 _ Jht2

T3 = 0,7%2 + 6/ 52 + 9T m* 2 1 g,
ok = TR _ k3 @)

Fhtt — g pht=14

GbTT/:O+f71 +6Cka+f71 +6d
e/g _ Tk+£ _ ka+é

where 75+ is the output of layer i (i.e. the estimated temperature
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i time steps from k) and eﬁ.‘ is the error of the layer i output (i.e.
the error of the estimated temperature i time steps from k). Note
that the output of the first layer, T+1 is a function of the mea-
sured temperature, 7%, whereas the output of each subsequent
layer, 7%+ takes the output of the previous layer, 7%*/, as an
input. Therefore, the neural network model is linear with respect
to the inputs but nonlinear with respect to the parameters. This
nonlinearity, as well as the forward propagation of noise, is a
central challenge with respect to training the network.

Next, we present 3 approaches for training the multilayer
neural network so as to produce estimates of the ARX model
(3) that perform well when used to product multiple time step
forecasts.

FINAL ERROR BACKPROPAGATION

In our first training approach, we define our objective func-
tion so as to minimize the error of the final output layer of the
neural network as given by

1 N
minimize — Z (e)? (8)
o 23

with variables elg € R, the output error of the final output layer
(as defined in (7)) given the input and output data samples at
time step k, bc R%*2, the model parameter estimates (i.e. 6=
[6,,6],67,8,)"), and k = 1,...,N, where N is the number of
data samples.

We solve the optimization program (8) recursively using
backpropagation and stochastic gradient descent. Therefore, at
each time step k, the stochastic gradient descent update equation
is

2
) ©)

and the gradient of the loss function with respect to the pa-
rameters is

(e Zél §(k)? STHH STk
56 & STH ST 56

14 . _5Tk+i
=Y (ef)(6.)" 55 (10)
i=1

where

b = [T%, ()T, (m*)T 17
X = [T (k)T 1T (11
Vi=2,...0

Note that with this training approach, we only backpropa-
gate the error of the final output layer. The assumption is that
by minimizing the final output error, we minimize the error of
every layer in the network. In the following training approaches,
we incorporate the output errors of multiple layers into the loss
function in an effort to improve the robustness of the model train-
ing.

ALL ERROR BACKPROPAGATION

In our second training approach, we define our objective
function so as to minimize the error of each layer in the neural
network as given by

T I
minimize — e; 12
mize 5 X, Y (€0) (12)
with variables ei-‘ € R, the output error of each layer i (as defined
in (7)) given the input and output data samples at k, § € R**+2,
the model parameter estimates (i.e. 8 = [6,,0,67,6,]"), and
k=1,...,N, where N is the number of data samples.
We solve the optimization program (12) recursively using
backpropagation and stochastic gradient descent. Therefore, at
each time step k, the stochastic gradient descent update equation

18

0
n 82i=1A(ei'()2 (13)
66

>
I

D>
|

and the gradient of the loss function with respect to the pa-
rameters is

Y €f(0a) 7 ox (14)

where xiﬁl is defined in (11).

PARTIAL ERROR BACKPROPAGATION
An issue with the Final Error Backpropagation and All Er-
ror Backpropagation methods presented above is that, for large
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values of ¢, we are propagating the errors backwards over many
time steps. However, given that we are using the neural network
model to represent a dynamical system, there may be very little
signal between the input at time step k and the output at time step
k4 ¢. This potential lack of signal between the input and output
is a well known issue with training deep artificial neural networks
using backpropagation and gradient-based optimization methods
and can result in what is often described as the vanishing (or ex-
ploding) gradient problem.

In our case, the issue stems from the exponential terms in
(10) and (14). Specifically, small values of 6, may cause the
gradient to “vanish” while large values may cause the gradient
to “explode”. To address this, our third training approach will
backpropagate the errors of each layer a maximum of f time
steps. As with the All Error Backpropagation method, the objec-
tive function is defined so as to minimize the error of each layer
in the neural network as given by (12) and the stochastic gradient
descent update equation is (13).

However, for the Partial Error Backpropagation approach,
we approximate the gradient of the loss function with respect to
the parameters as

where xf_l is defined in (11) and f (i, 8) is given by

f(i,B) =max(1,i—B+1) (16)

Note that with the Partial Error Backpropagation method,
the output error ef of each layer i is backpropagated a maximum
of B layers (i.e. backwards f3 time steps).

GROWING THE NEURAL NETWORK

When training the neural network using the 3 methods de-
scribed above, poor initial estimates of the parameter values will
cause the algorithm to diverge. Therefore, it is necessary to start
with a shallow network and gradually increase the depth as the
parameter estimates improve. In other words, when training the
model, we start with a small value of ¢. Once the algorithm has
converged, we increase the value of ¢ and continue to recursively
update the parameters. We repeat this procedure until the neural
network has reached the desired depth (i.e. desired value of /).

RESIDENTIAL HEATING SYSTEM
PARAMETER ESTIMATION EXPERIMENTS

In this section, we present parameter estimation results for
an 850 sq ft apartment with a forced-air heating and ventilation

system. The apartment is located in Berkeley, California and
equipped with a custom thermostat designed and built for this
research. Therefore, we are able to control the operation of the
heating system and to measure the indoor air temperature. Local
weather data, specifically ambient air temperature, is retrieved
from the Internet service, Weather Underground [18].

Data was collected at a time-scale of one minute for 6 weeks
during December and January of 2015-2016. With this data,
we are able to perform recursive parameter estimation of the
ARX thermal model (2). The results presented in this section
focus of quantifying and qualifying the advantages of the ARX
model and the backpropagation parameter estimation methods
presented above.

INCREASING MODEL ORDER

With the ARX model, we are able to adjust the number of
exogenous terms, s, based on the dynamics of a particular con-
ditioned space. Increasing the number of exogenous terms in-
creases the computational cost of training and employing the
ARX model. Therefore, we want to find the minimum value of s
such that the model performs well for a specific system.

To evaluate the sensitivity of the ARX model to the number
of exogenous terms, we have trained the model using different
values of s. In each case, the model is trained using batch least
squares on 80% of the sensor data (i.e. training data) and the
model performance is evaluated by producing multi-hour fore-
casts with the remaining 20% of the data (i.e. test data).

Figure 1 presents examples of 2 hour temperature forecasts
produced by ARX models with varying numbers of exogenous
input terms. The top subplot shows forecasts from an ARX
model with s = 1, which is equivalent to the linear thermal model
in (1). As shown, the model is simply incapable of representing
the evolution of the indoor air temperature. Most notably, the
forecasts poorly account for the thermal dynamics immediately
after the heating system turns off. These dynamics are related
to the interaction between the air and the other thermal masses
(walls, furniture, etc.) within the conditioned space.

By increasing s to 10, the ARX model is able to better rep-
resent the dynamics immediately after the heating system turns
off. However, we observe an elbow in the temperature forecasts
at 10 time steps after the heating system turns off, as shown in the
second subplot. This suggests that the conditioned space is still
responding to the change in state of the heating system, but that
the ARX model no longer has any knowledge of the state change
and thus cannot estimate its impact on the indoor air temperature.

By increasing s to 30, the model is able to better represent
the dynamics of the conditioned space from the time the heat-
ing system turns off until it turns on again. This is an intuitive
result and indicates that s must be sufficiently large so as to cap-
ture a full cycle of the heating system. Increasing s to 60 and
100, as shown in the bottom 2 subplots, does not noticeably im-
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FIGURE 1: Examples of 2 hour temperature forecasts over 24 hours of test data generated by ARX models with varying numbers of

exogenous input terms

prove the accuracy of the 2 hour forecasts. In other words, the
additional inputs provide little to no signal and thus potentially
increase the complexity of the ARX model with no performance
improvement.

Figure 2 shows the performance (RMSE) of ARX models
with varying numbers of exogenous terms, s, when used to gen-
erate forecasts of 1, 5, 10, 30, 60, 120, 240, and 480 time steps.
Each ARX model was trained using batch least squares on 80%
of the sensor data (i.e. training data) and the model performance
was evaluated by producing forecasts with the remaining 20% of
the data (i.e. test data). The performance of each model is mea-
sured as the root mean squared error (RMSE) of all multiple time
step forecasts of a certain length. In other words, the RMSEG60 is
the RMSE of all 60 time step forecasts over a given data set. For
comparison, Figure 2 includes the performances of each ARX
model when used to produce forecasts on both the training data
and test data.

As shown in Figure 2, the RMSEs of the ARX models over
horizons of 1, 5, 10, and 30 time steps decrease as s increases
from 1 to 30 and level off at around 40. The RMSEs of the 240
and 480 time step forecasts also decrease at first, but begin to
increase as s increases from 40 to 80, particularly for the test
data. A simple (though imprecise) explanation of this behavior
is that we are underfitting the model when s is less than 30 and
overfitting when s is greater than 40. The lowest RMSEI (i.e. the
RMSE of all 1-minute forecasts) on the training data is 0.0343°C
when s = 120 and on the test data is 0.0384°C when s =48. Since
the least squares optimization problem minimizes the 1 time step
ahead error, it is no surprise that each additional exogenous terms
reduces the RMSEI of the training data. By contrast, the lowest
RMSEA480 (i.e. the RMSE of all 8-hour forecasts) on the training
data is 0.431°C when s = 40 and on the test data is 0.523°C when
s = 32. With the longer forecast horizon, we see more agreement
between the training and test performances with respect to the
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FIGURE 2: Performance (RMSE) of ARX models with varying numbers of exogenous input terms on training and test data when used

to generate forecasts of 1, 5, 10, 30, 60, 120, 240, and 480 time steps

optimal number of exogenous terms.

BACKPROPAGATION METHODS AND
INCREASING NEURAL NETWORK DEPTH

In this section, we present results from training the ARX
model using the 3 backpropagation methods: Final Error Back-
propagation, All Error Backpropagation, and Partial Error Back-
propagation. Once again, we use 80% of the sensor data col-
lected from the apartment as training data and the remaining 20%
of the data as test data. For each backpropagation method, we
train ARX models with 30, 60, and 100 exogenous terms. Addi-
tionally, each model is trained with different numbers of neural
network layers, . As previously noted, poor initial parameter
estimates will cause the training algorithm to diverge. Therefore,
when training a network with depth ¢, we initialize the parame-
ters with estimates from a network of depth ¢ — 1. For a network
of depth ¢ = 1, we train the model using least squares rather than
backpropagation and stochastic gradient descent. Lastly, to re-
duce the likelihood that the stochastic gradient descent algorithm
diverges for large values of ¢, we set a small learning rate, 7,
of 3% 1072 and limit the number of iterations (i.e. number of
stochastic gradient descent updates) to 200,000.

Results from training the ARX models using the Final Er-
ror Backpropagation method are presented in Figures 3, 4, and
5. For the ARX model with s = 30 exogenous terms, we observe
little to no improvement in the forecast error as a result of the
backpropagation training method. In fact, the lowest RMSE480
on the training data is 0.468°C when ¢ = 3 and on the test data
is 0.525°C when £ = 7. As the depth of the neural network in-
creases, the accuracy of the forecasts remain relatively stable un-
til ¢ reaches about 40. With an ¢ of 70, we start to experience

exploding gradients resulting in poor parameter estimates and a
sharp increase in the RMSEs of the forecasts.

Figures 4 and 5 present results from ARX models with
s = 60 and s = 100 exogenous terms. As discussed in the previ-
ous section, training models with such large numbers of exoge-
nous terms using least squares caused overfitting and an increase
in the RMSE240 and RMSE480. Using the Final Error Back-
propagation method, we are able to improve the performance of
both models on the training and test data. In fact, we are able to
produce 8-hour forecasts that are, on average, more accurate than
with the s = 30 model. For the s = 60 ARX model, the lowest
RMSE480 on the training data is 0.413°C when ¢ = 30 and on the
test data is 0.475°C when ¢ = 60. For the s = 100 ARX model,
the lowest RMSE480 on the training data is 0.394°C when ¢ = 53
and on the test data is 0.463°C when ¢ = 65. Once again, with an
¢ of 70, we start to experience exploding gradients and a sharp
increase in forecast error.

Results from training the ARX models using the All Error
Backpropagation method are presented in Figures 6, 7, and 8.
For the ARX model with s = 30 exogenous terms, we observe
an overall increase in forecast error as a result of the backprop-
agation training method. The lowest RMSE480 on the training
data is 0.468°C when ¢ = 3 and on the test data is 0.527°C when
¢ = 12. By contrast, for the s = 60 and s = 100 ARX models, we
again see an improvement in the model performance as a result
of the backpropagation training method. For the s = 60 ARX
model, the lowest RMSE480 on the training data is 0.419°C
when ¢ = 25 and on the test data is 0.485°C when ¢ = 55. For
the s = 100 ARX model, the lowest RMSE480 on the training
data is 0.398°C when ¢ = 53 and on the test data is 0.461°C
when ¢ = 47. The performances of the ARX models exhibit
greater variability when trained with the All Error Backpropa-
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FIGURE 3: Performance (RMSE) of ARX model with s = 30 ex-
ogenous input terms when trained using Final Error Backpropa-
gation with varying neural network depth, ¢, and used to produce
60, 120, 240, and 480 time step forecasts
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FIGURE 4: Performance (RMSE) of ARX model with s = 60 ex-
ogenous input terms when trained using Final Error Backpropa-
gation with varying neural network depth, ¢, and used to produce
60, 120, 240, and 480 time step forecasts

gation method than compared with the Final Error Backpropaga-
tion approach and we observe a sharp increase in forecast error
at an ¢ of about 60 due to exploding gradients.

Results from training the ARX models using the Partial Er-
ror Backpropagation method are presented in Figures 9, 10, 11,
12, and 13. Figures 9, 10, and 11 present results from training
ARX models using a maximum of § =5 layers for backpropa-
gation and Figures 12 and 13 present results using § = 10 and
B = 20, respectively. Unlike with Final Error Backpropagation
and All Error Backpropagation, we only observe divergence in
the gradient descent algorithm for the B = 20 case when using
Partial Error Backpropagation. For the other cases, the algorithm
remains stable (or as stable as can be expected of stochastic gra-
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FIGURE 5: Performance (RMSE) of ARX model with s = 100
exogenous input terms when trained using Final Error Backprop-
agation with varying neural network depth, ¢, and used to pro-
duce 60, 120, 240, and 480 time step forecasts
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FIGURE 6: Performance (RMSE) of ARX model with s = 30
exogenous input terms when trained using All Error Backpropa-
gation with varying neural network depth, ¢, and used to produce
60, 120, 240, and 480 time step forecasts

dient descent) even at large values of /. This suggests that by
limiting the number of neural network layers through which the
errors are backpropagated, we can approximate the gradient of
the objective function and reduce the risk of exploding gradients.

For the ARX model with s = 30 exogenous terms, the lowest
RMSE480 on the training data is 0.468°C when ¢ = 2 and on the
test data is 0.526°C when ¢ = 12. These results are very close
to those when trained with Final Error Backpropagation and All
Error Backpropagation. For the s = 60 ARX model, the lowest
RMSE480 on the training data is 0.417°C when ¢ =22 and on the
test data is 0.501°C when ¢ = 93. For the s = 100 ARX model,
the lowest RMSE480 on the training data is 0.398°C when ¢ =26
and on the test data is 0.470°C when ¢ = 100. Note that with Par-
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FIGURE 7: Performance (RMSE) of ARX model with s = 60
exogenous input terms when trained using All Error Backpropa-
gation with varying neural network depth, ¢, and used to produce
60, 120, 240, and 480 time step forecasts
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FIGURE 8: Performance (RMSE) of ARX model with s = 100
exogenous input terms when trained using All Error Backpropa-
gation with varying neural network depth, ¢, and used to produce
60, 120, 240, and 480 time step forecasts

tial Error Backpropagation for the s = 60 and s = 100 cases, the
test error is minimized with an ¢ greater than 90. With the pre-
vious training approaches, the gradient descent algorithm began
to diverge with an ¢ of around 60. If we increase 3 to 10, the
lowest RMSE480 of the s = 100 ARX model on the training data
is 0.401°C when ¢ = 22 and on the test data is 0.465°C when
¢ =96. By increasing 3 again to 20, the lowest RMSE480 on
the training data becomes 0.400°C when ¢ = 26 and on the test
data becomes 0.470°C when ¢ = 38. As previously noted, with
s =100 and = 20, the algorithm diverges at around £ = 60.

Using the Final Error Backpropagation, All Error Backprop-

agation, and Partial Error Backpropagation approaches, the low-
est RMSE480 values on the test data were 0.463°C, 0.461°C, and
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FIGURE 9: Performance (RMSE) of ARX model with s = 30
exogenous input terms when trained using Partial Error Back-
propagation with a limit of § = 5 and varying neural network
depth, ¢, and used to produce 60, 120, 240, and 480 time step
forecasts
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FIGURE 10: Performance (RMSE) of ARX model with s = 60
exogenous input terms when trained using Partial Error Back-
propagation with a limit of f = 5 and varying neural network
depth, ¢, and used to produce 60, 120, 240, and 480 time step
forecasts

0.465°C, respectively. Each of these was achieved by an ARX
model with s = 100 exogenous terms. Given the clear potential
for instability in the Final Error Backpropagation and All Error
Backpropagation methods, these parameter estimation methods
are poorly suited for control applications. However, given the
greater stability and comparable model performances (as mea-
sured by the RMSE480 values), the Partial Error Backpropaga-
tion method presented in this paper has the greatest potential for
improving the accuracy of the ARX model by minimizing the
output error over multiple time steps rather than one time step
into the future. This in turn, improves the suitability of the ARX
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FIGURE 11: Performance (RMSE) of ARX model with s = 100
exogenous input terms when trained using Partial Error Back-
propagation with a limit of § = 5 and varying neural network
depth, ¢, and used to produce 60, 120, 240, and 480 time step
forecasts

model for use in model predictive control (MPC) applications.

In this paper, we have identified values for the ¢ and s pa-
rameters which optimize the accuracy of the ARX model. The
optimal values of these parameters are related to time delays in
the dynamics of the system being modeled and correlations be-
tween the previous system inputs and the indoor air temperature.
Therefore, we argue that these parameters must be identified ex-
perimentally on a case by case basis. Given that this paper is
limited to data collected from a single apartment, we are unable
to prescribe procedures for the selection of the ¢ and s parame-
ters beyond the relatively exhaustive procedure described above.
The development of guidelines for selecting ¢ and s will be the
subject of future work.

CONCLUSIONS

This paper addresses the need for control-oriented thermal
models of buildings. We present an autoregressive with exoge-
nous terms (ARX) model of a building that is suitable for model
predictive control applications. To estimate the model parame-
ters, we present 3 backpropagation and stochastic gradient de-
scent methods for recursive parameter estimation: Final Error
Backpropagation, All Error Backpropagation, and Partial Error
Backpropagation. Finally, we present experimental results using
real temperature data collected from an apartment with a forced-
air heating and ventilation system. These results demonstrate
the potential of the ARX model and Partial Error Backpropaga-
tion parameter estimation method to produce accurate forecasts
of the air temperature within the apartment.
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FIGURE 12: Performance (RMSE) of ARX model with s = 100
exogenous input terms when trained using Partial Error Back-
propagation with a limit of 8 = 10 and varying neural network
depth, ¢, and used to produce 60, 120, 240, and 480 time step
forecasts
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FIGURE 13: Performance (RMSE) of ARX model with s = 100
exogenous input terms when trained using Partial Error Back-
propagation with a limit of § = 20 and varying neural network
depth, ¢, and used to produce 60, 120, 240, and 480 time step
forecasts
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